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A. More on Analysis
Proposition A.1. Given N nodes {xi}Ni=1, the set S(x) =
{
∑N

i=1 λixi | λi > 0,
∑

i λi = 1} is a bounded convex
set.

Proof. For each element x′ =
∑N

i=1 λixi of S(x), we
have,

∥x′∥ =

∥∥∥∥∥
N∑
i=1

λixi

∥∥∥∥∥ ≤
N∑
i=1

λi ∥xi∥ . (14)

With given {xi}Ni=1, every element x′ =
∑N

i=1 λixi is
bounded. Therefore, S(x) is a bounded convex set.

Proposition A.2. If Sh is a bounded convex set, ∀h =
1, · · · , H , the set S = S1 + · · ·+ SH = {x1 + · · ·+ xH |
∀xh ∈ Sh} is also a bounded convex set.

Proof. For each element x′ =
∑H

h=1 x
h of S, we have,

∥x′∥ =
∥∥x1 + · · ·+ xH

∥∥ ≤
∥∥x1

∥∥+ · · ·+
∥∥xH

∥∥ . (15)

Since
∥∥xh

∥∥ ,∀h = 1, · · · , H are bounded, ∥x′∥ is also
bounded. Therefore, S = S1 + · · ·+ SH is also a bounded
convex set.

Detailed calculation of parameters. We have provided
the analysis and estimation of the parameters in Sec.
4.2 and Sec. 5 in the submission. Our method re-
quires a significantly small number of parameters. In
ViT for example, our method only requires an additional
12× 12× 12 = 0.0017M parameters (12 heads with 12
layers), which is negligible. We provide the number of pa-
rameters with more precisions in Table 1.

Complexity Analysis. We provide comparisons of train-
ing flops of forward pass & backward pass of a single image
in Table 1. Our method utilizes comparable training flops
with other baseline methods while achieving consistent per-
formance improvement.

B. Supplementary Experimental Details
B.1. Task and Experiment Backgrounds
More on PEFT. Besides the widely-adapted LoRA [21]
and following works [38], [4] propose the filter subspace
decomposition for weight matrices. The filter subspace de-
composition method [52] has shown effectiveness in contin-
ual learning [3, 40, 75], video representation learning [41],

graph learning [7], and generative tasks [33, 72–74]. There
are some other works on fine-tuning the SVD decompo-
sition of weights[15], Kronecker decomposition [47–49],
sparsity [32, 39, 70], non-linearity [83] or fine-tunig bias
parameters[76].

Tuning Vision Foundation Models. As there are emer-
gent needs to customize the pre-trained foundation models
for downstream tasks, a large corpus of fine-tuning methods
has been proposed for both both discriminative and genera-
tive tasks. Among them, [16–19, 42, 43, 56, 61, 62, 66, 77]
have focused on tuning pre-trained image diffusion models
for personalized generation, diversity, compositional gen-
eration, and human preference. While [23, 24] propose to
tune propose to tune vision transformers for downstream
discriminative tasks.

B.2. ViT Fine-tuing

We first describe our selection of high-resolution sub-tasks
from the 19 VTAB [81] fine-tuning dataset. Specifically, we
select datasets containing images with a resolution equal to
or higher than 224, corresponding to the pre-training image
in ImageNet-21k [9]. The selected datasets are shown in
Table 1.

We now present the training details. For the first setting,
i.e., tuning subspace coefficient α only, we only add for
each attention layer a subspace coefficient α with the pro-
posed parameterization and tune α together with the linear
head for each task. We set the dropout rate p = 0. For
the second case, we add α in the same way while adding
the scaling and shift parameters as in SSF [35], and set the
dropout rate p = 0.1. For both settings, we adopt the batch
size of 64 and train the model on each task with the AdamW
optimizer for 100 epochs.

B.3. Concept Customization

In this experiment, we choose 10 concepts from Dream-
booth [56] and Custom Diffusion [30]. These concepts in-
clude toys, objects, and animals. We generate images with
25 text prompts adapted from Dreambooth [56]. We utilize
Adam [26] optimizer with a learning rate of 3 × 10−4 and
fine-tune the SDXL for 200 steps. The ranks of LoRA [21]
and Dora [38] are r = 2. We generate 4 different images
with the shape of 1024× 1024 for each text prompt.

We provide additional comparison in Figure 5-10. The
generated images with Coeff-Tuning have higher concept fi-



delity, preserving more characteristics from the input im-
ages.

B.4. Image-Text Understanding
We provide the experiment details of the multi-modal
tuning with VL-BART [8]. Following the settings in
DoRA [38], we utilize the fixed vision tower CLIP-ResNet-
101 [54], and tune the BART, a encoder-decoder lan-
guage model, with Coeff-Tuning with multi-task image-text
datasets as described in Sec. 5.3. Specifically, we demon-
strate the ability of the proposed Coeff-Tuning can be inte-
grated with other popular weight-based PEFT methods in a
plug-and-play manner. So we first add either DoRA [38] or
LoRA [21] with r = 128, and then add the subspace co-
efficient α in each attention layer, including self-attention
layers in both the encoder and the decoder, and the cross-
attention in the decoder. Specifically, we introduce addi-
tional (12 + 6) ∗ 12 ∗ 12 = 2.6K parameters in the BART,
which are neglectable compared with the added LoRA or
DoRA which takes millions of parameters.

As for the training, we set the batch size to 300, adopt
the AdamW optimizer, and train for 20 epochs. For DoRA
and Coeff-Tuning+DoRA, we adopt the learning rate of
1× 10−3, weight decay of 0.01 for DoRA parameters, and
learning rate 5×10−4, weight decay of 1×10−6, p = 0.2 for
tuning α. For LoRA and Coeff-Tuning+LoRA, we choose
a learning rate 5 × 10−4, weight decay of 0.01 for LoRA
parameters, and 2× 10−4, 1× 10−6 for coefficient α.



Figure 5. Results on Concept Customization.

Figure 6. Results on Concept Customization.



Figure 7. Results on Concept Customization.

Figure 8. Results on Concept Customization.



Figure 9. Results on Concept Customization.

Figure 10. Results on Concept Customization.
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