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1. Analysis of the convergence of ∆µi

In this section, we will show the position offset ∆µi con-
verge to a fixed value at the infinite training iterations. Re-
call that the ∆µi in the iteration k can be formulated as:
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We define H ≜ Tanh(Dpos(F(·))) · vsize for simplicity, i.e.,
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Given that ∆µi small, we apply the first-order Taylor ex-
pansion to approximate Eq. 4:
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constants, we reformulate Eq. 5 as:
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The training converges in our experimental observations.
Therefore, we assume ∆µ∞

i converges as k approaches the
infinite step, i.e., k → ∞. This allows us to derive ∆µ∞

i :
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This indicates that µ∞
i converges to a constant value. In

supplementary Sec. 4.2, we show that µt
i converges quickly

at early steps during inference.

2. Implementation Details
2.1. Remove Depth Outliers

We begin by applying a depth consistency check to filter
out noisy depth data. Specifically, we unproject the depth
map Di of ith frame to 3D and reproject it to a nearby view
j, obtaining a projected depth Di→j . Next, we compare
Di→j and Dj and filter out depths where the absolute rel-
ative error exceeds an empirical threshold σ = 0.2m. We
formulate this process as:

Md = |Di→j −Dj | < σ,Di→j = Dj

(
πjπ

−1
i (ui)

)
(9)

where ui denotes pixel coordinates of ith frame and Md

represents the geometric consistency mask. We further uti-
lize the 3D statistical filter in Open3D [11] to remove the
clear floaters in the unprojected point clouds for each frame.
In our implementation, we set the number of neighbors to
20 and the standard deviation ratio to 2.0.

2.2. Foreground Gaussian Details

Following [4], Σ is decomposed into two learnable compo-
nents: rotation matrix R and a scaling matrix S to holds
practical physical significance, see the following formula:

Σ = RSSTRT (10)

To allow independent optimization of both factors, we use
a 3D vector s representing scaling and a quaternion q for
rotation separately. Instead of directly learning scales s,
we initialize the sinit with the average distance of K near-
est neighbors using the KNN algorithm and learn the scales
residual ∆s from the volume latent feature fi via a decoder
Dcov . We experimentally observe that the residual learning
strategy helps our network converge faster and enhances the
model capacity.

s = sinit +∆s, ∆s = Dcov(fi) (11)

2.3. Hemisphere Background Details

We also develop the generalizable hemisphere model for the
background which typically lies hundreds of meters away
from the vehicle, as discussed in the main paper. Specif-
ically, we initialize the background as a hemisphere with
a fixed radius rbg = 100m as a hyperparameter, with its
center positioned at the midpoint of the foreground volume.
This background hemisphere moves along with the vehicle
such that the relative distance is fixed wrt. the target camera.
We project the points onto K reference images to retrieve
their 2D color {ck}Kk=1 to regress all gaussian parameters
through network Mbg as mentioned in the main paper. Sim-
ilar to the foreground framework, we initialize the Gaussian
scales using the KNN algorithm and learn their scale resid-
uals ∆sbg for each Gaussian.

sbg = ∆sbg + sinitbg , ∆sbg = Mbg

(
{ck}Kk=1

)
(12)

For opacity and rotation, we explicitly set the opacity to 1
and the rotation to a unit quaternion [1, 0, 0, 0] as a reason-
able initialization, without involving them in the network
optimization.



2.4. SparseCNN Network Architecture

We build a generalizable efficient 3DCNN ψ3D to provide
the geometric priors for the foreground contents. Given
the global point cloud P ∈ RNp×3, we quantize the point
cloud with the voxel size vsize = 0.1m and fed these sparse
tensors into the ψ3D to predict the latent feature volumeF.
The sparse 3DCNN uses a U-Net like architecture with skip
connections, comprising some convolution and transposed
convolution layers. The details of 3DCNN are listed in the
Tab. 1. We use torchsparse as the implementation of ψ3D.

SparseCNN Network Architecture
Layer Description In/Out Ch.
Convi=0 kernel = 3× 3× 3, stride = 1 3/16
Convi=1 kernel = 3× 3× 3, stride = 2 16/16
Convi=2 kernel = 3× 3× 3, stride = 1 16/16
Convi=3 kernel = 3× 3× 3, stride = 2 16/32
Convi=4 kernel = 3× 3× 3, stride = 1 32/32
Convi=5 kernel = 3× 3× 3, stride = 2 32/64
Convi=6 kernel = 3× 3× 3, stride = 1 64/64
DeConvi=7 kernel = 3× 3× 3, stride = 2 64/32
DeConvi=8 kernel = 3× 3× 3, stride = 2 32/16
DeConvi=9 kernel = 3× 3× 3, stride = 2 16/16

Table 1. Architecture of SparseConvNet. Each layer consists of
sparse convolution, batch normalization, and ReLU.

3. Baselines
In this section, we discuss the state-of-the-art baselines used
for comparison with our approach.

Feed-Forward NeRFs: We adopt the official implemen-
tations of MVSNeRF [2], MuRF [9] and EDUS [6]. For
each method, we retrain the model using 160 sequences
from KITTI-360 [5] under a 50% drop rate. We select
the three nearest training frames of the target view as ref-
erence images for these methods. MVSNeRF and MuRF
utilize multi-view stereo (MVS) algorithms to construct the
cost volume and apply 3DCNN to reconstruct a neural field
while EDUS leverages the depth priors to learn a generaliz-
able scene representation.

Feed-Forward 3DGS: We adopt the official implementa-
tions of PixelSplat [1] and MVSplat [3]. We find that using
three reference images caused color shifts at novel view-
points in urban scenes, so we use the two nearest training
frames to achieve optimal performance following the orig-
inal paper. PixelSplat predicts 3D Gaussians with a two-
view epipolar transformer and then spawns per-pixel Gaus-
sians. MVSplat exploits multi-view correspondence infor-
mation for geometry learning and predicts 3D Gaussians
from image features. Both methods are trained on a single

Nvidia RTX V100 using the full resolution of KITTI-360.
Additionally, as we illustrated in the teaser figure in the

main paper, these pixel-align 3DGS methods predict incon-
sistent 3DGS when accumulating multiple local volumes.
Note that to ensure a fair comparison, we conduct exper-
iments using a single local volume following their default
setting(use 2 reference images), as reported in Table 1 and
Figure 4 in the main paper.

Test-Time Optimization Methods: To evaluate our fine-
tuning results, we compare them against recent test-time op-
timization methods under the 50% drop rate. Specifically,
we use the latest version of Nerfacto [8] provided by Nerf-
studio and the official codebase of 3DGS [4]. Nerfacto is a
combination of many published methods that demonstrate
strong performance on real-world data, including pose re-
finement, appearance embedding, scene contraction, and
hash encoding. For 3DGS, we initialize the 3DGS model
with our global point cloud to ensure a fair comparison.

4. Additional Experimental Results
4.1. Monocular Depth Modularity

To further evaluate the sensitivity of our method to differ-
ent depth estimation approaches, we conduct experiments
using two distinct metric depth estimators: Metric3D [10]
and UniDepth [7]. Specifically, we pretrain our model with
Metric3D, and evaluate using depth maps of two different
models for feed-forward inference on novel scenes. As
shown in Tab. 2, our EVolSplat consistently outperforms the
baseline methods on both depth estimators, demonstrating
its robustness in handling depth predictions across varying
distributions.

Depth Method PSNR↑ SSIM↑ LPIPS↓
Metric3D [10] 24.43 0.786 0.202
UniDepth [7] 23.38 0.775 0.223

Table 2. Depth Sensitivity Experiment The results are averaged
on five testsets from the Waymo dataset.

4.2. Additional Ablation for ∆µi

As mentioned in the main paper, ∆µi depends on the pre-
vious estimation ∆µprev

i , but it stabilizes at a stationary
point after infinite training iterations. Note that Dpos is
designed to continually decode the offset ∆ wrt. µinit,
even at the ideal location, avoiding an infinite loop caused
by toggling between the ideal offset and zero. We fur-
ther conduct experiments by recursively updating the offsets
(i = 0, 1, 2, 3) during inference to verify its convergence.
As reported in Tab. 4, our pretrained model successfully re-
fines the noisy primitive’s position after the first inference
(increasing PSNR by approximately 0.46 dB) and maintains
a stable value of 23.78dB even with additional updates.



Method
Waymo KITTI-360

PSNR(dB)↑ SSIM↑ LPIPS↓ PSNR(dB)↓ SSIM↑ LPIPS↓

MuRF [9] 23.66 0.746 0.256 19.83 0.669 0.340
EDUS [6] 23.41 0.769 0.147 20.13 0.659 0.257
MVSplat [3] 24.08 0.758 0.197 17.80 0.581 0.361
Ours 25.06 0.820 0.189 21.23 0.738 0.222

Table 3. Quantitative results on Waymo and KITTI-360 datasets with other generalizable methods. All models are trained on the
Waymo dataset using drop50% sparsity level. Metrics are averaged on five validation scenes without any finetuning.

PSNR↑ SSIM↑ LPIPS↓
i = 0 23.329 0.794 0.175
i = 1 23.787 0.819 0.171
i = 2 23.778 0.819 0.171
i = 3 23.786 0.819 0.171

Table 4. Ablation Study on recursion of ∆µi

Layers Width PSNR↑ SSIM↑ LPIPS↓
2 64 22.61 0.780 0.192
3 128 22.69 0.785 0.189
4 128 22.60 0.785 0.191

Table 5. Ablation study of the background MLP capacity.

4.3. Training on Waymo

To verify our method’s performance given different train-
ing sequences, we train our method on the Waymo dataset
and evaluate its feed-forward performance on Waymo and
KITTI-360, as shown in the Tab. 3. Our method consistently
achieves state-of-the-art performance in terms of PSNR and
SSIM metrics, indicating its robustness for different driving
data distributions.

4.4. Ablation Experiments for Background MLP

Our background model primarily blends colors from nearby
reference images rather than learning textures from scratch.
As shown in Tab. 5, increasing the layers and width of the
background MLP does not yield significant improvements.
A light-weight two-layer MLP provides sufficient capac-
ity to reconstruct backgrounds while minimizing computa-
tional overhead.

5. More Qualitative Results
5.1. More Qualitative Results in Ablation Study

Removing offset refinement and occlusion check leads to
visible artifacts in small regions, such as the car boundary in
Fig. 7(b) in the main paper and the car light in Fig. 1. While
these components don’t significantly affect overall quantita-
tive results, they improve local visual quality. Similarly, the
color projection window, which compensates for inaccurate
Gaussian positions, also improves local visual quality, see

Fig. 2.

Figure 1. Qualitative Results of offset refine strategy

Figure 2. Qualitative Results of windows size strategy

5.2. More Feed-Forward Inference Qualitative Re-
sults

Our method enables efficient reconstruction and real-time
photorealistic NVS from flexible sparse street view im-
ages. We provide more qualitative results on the KITTI-360
dataset via a feed-forward inference under drop50% setting,
as shown in Fig. 4.

6. Limitions

We present some failure cases in Fig. 3. A key limitation
of the proposed approach is its dependence on the metric
depth estimation. Our method suffers degeneration when
the depth model struggles to provide fine-grained depth es-
timates for thin structures.

Another limitation is that our generalizable hemisphere
background only roughly approximates the geometry of dis-
tant landscapes, leading to artifacts on background region.
However, high-quality rendering of the foreground is gen-
erally more critical for autonomous driving applications. A
potential solution may be to leverage image-based render-
ing techniques to model the background, though this would
reduce rendering efficiency.
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