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6. Supplementary Overview

We organize our Supplementary Material as follows:
• Sec. 7 provides pseudocode for our compound prompt generation method.
• Sec. 8 extends the noise model analysis from Sec. 3 of the main paper to all datasets and CLIP backbones.
• Sec. 9 shows the per-class performance of our method on all classes from all three datasets.
• Sec. 10 shows expaned results of Rank Fusion ablation with and without the final “merge” step.
• Sec. 11 shows the results of different ablations on the compound prompts in our method, including randomized prompts,

cooccurrence filtration, and compound prompt templates.
• Sec. 12 shows and discusses histograms of 1st-max and 2nd-max scores in order to provide some intuition of why the latter

provides better separation than the former.
• Sec. 13 offers a theoretical justification for use of a “weakened max” and use of an adaptive fusion strategy. This includes

a proof of the theorem that was informally stated at the end of Sec. 3 in the main paper.

7. Compound Prompt Generation Pseudocode

We provide pseudocode for our compound prompt generation method below. Note that it only requires coarse knowledge of
the cooccurrence probabilities, specifically knowledge of which pairs and triplets have low probability of cooccurring.

Algorithm 2 Compound Prompt Generation
Require: Classnames c1, . . . , cN , cooccurrence info P, thresholds ⌧2 and ⌧3, optional LLM �
Ensure: Generated prompt set P

1: Initialize P  ;
2: for i 2 [N � 1] do

3: for j 2 [i+ 1, N ] do

4: if P(j | i) > ⌧2 then

5: P  P [ {”ci and cj”}
6: if maxk2[N ]�{i,j} P(k | i, j) > ⌧3 then

7: k
⇤  argmaxk2[N ]�{i,j} P(k | i, j)

8: P  P [ {”ci, cj , and ck⇤”}
9: Remove redundant triplets (i, j, k) vs (i, k, j) by comparing P(k|i, j) and P(j|i, k)

10: if optional LLM � is provided then

11: P  P [ �(P )
12: return P

8. Expanded Noise Model Results

We use this section to show the results of running the noise model analysis from Tab. 1 on CLIP similarity scores from all
three datasets computed with all nine CLIP backbones. Each colummn of each of Tab. 8, Tab. 9, Tab. 10 represents a separate
fit of the noise models. As in the main paper, we report fraction of variance unexplained (FVU), as well as the fitted � strength
of the static AND-bonus and the lower and upper quartiles of the �i,j strengths of the variable AND-bonus. We see similar
trends to those discussed in the main paper; the OR-only noise model explains significantly more variance than the AND-
only model, and the OR-with-AND-bonus models explain most of the variance gap between the “constant” upper-bound and
“look-up table” lower-bound. Hence, we find that CLIP scores tend to behave like an OR-gate with an AND-gate “bonus”
for many different backbones on multiple datasets.



COCO

Noise Model
ViT-L/14

336px ViT-L/14 ViT-B/16 ViT-B/32 RN50
x64

RN50
x16

RN50
x4 RN101 RN50

constant 0.802 0.812 0.823 0.775 0.809 0.798 0.757 0.771 0.791
only AND 0.535 0.544 0.557 0.517 0.553 0.539 0.501 0.506 0.500
only OR 0.288 0.301 0.292 0.295 0.284 0.281 0.257 0.260 0.280
additive 0.267 0.279 0.276 0.278 0.269 0.264 0.244 0.252 0.263

OR + static
AND-bonus 0.263 0.275 0.271 0.273 0.264 0.260 0.239 0.245 0.257

OR + variable
AND-bonus 0.248 0.257 0.258 0.259 0.245 0.247 0.228 0.233 0.245

look-up table 0.235 0.243 0.244 0.245 0.230 0.233 0.217 0.221 0.231
static bonus strength 0.560 0.558 0.522 0.502 0.560 0.549 0.506 0.445 0.484
variable bonus strength

(lower quartile) 0.422 0.408 0.386 0.366 0.433 0.405 0.389 0.348 0.381

variable bonus strength
(upper quartile) 0.531 0.527 0.503 0.489 0.582 0.666 0.656 0.631 0.583

Table 8. Comparison of fidelity of noise models for scoring pairwise compound prompts on COCO for all CLIP backbones. Notice that
the OR-only model is a significantly better fit than AND-only, and that the OR+AND-bonus models capture nearly all of the fidelity of the
look-up table. Please refer to Tab. 1 for more details on the noise models.

VOC

Noise Model
ViT-L/14

336px ViT-L/14 ViT-B/16 ViT-B/32 RN50
x64

RN50
x16

RN50
x4 RN101 RN50

constant 0.640 0.648 0.661 0.616 0.603 0.631 0.619 0.628 0.653
only AND 0.275 0.276 0.275 0.282 0.276 0.299 0.245 0.230 0.242
only OR 0.144 0.150 0.143 0.136 0.137 0.127 0.123 0.122 0.126
additive 0.128 0.133 0.127 0.123 0.119 0.119 0.111 0.112 0.114

OR + static
AND-bonus 0.125 0.130 0.125 0.120 0.118 0.116 0.110 0.111 0.111

OR + variable
AND-bonus 0.120 0.123 0.112 0.113 0.109 0.111 0.105 0.104 0.107

look-up table 0.114 0.116 0.109 0.109 0.104 0.105 0.100 0.099 0.101
static bonus strength 0.427 0.412 0.459 0.408 0.557 0.367 0.356 0.441 0.493
variable bonus strength

(lower quartile) 0.306 0.274 0.296 0.254 0.429 0.257 0.197 0.330 0.361

variable bonus strength
(upper quartile) 0.582 0.555 0.873 0.419 0.680 0.461 0.321 0.833 0.792

Table 9. Comparison of fidelity of noise models for scoring pairwise compound prompts on VOC for all CLIP backbones. Notice that the
OR-only model is a significantly better fit than AND-only, and that the OR+AND-bonus models capture nearly all of the fidelity of the
look-up table. Please refer to Tab. 1 for more details on the noise models.

9. Per-class performance of SPARC vs vanilla ZSCLIP on all datasets

We show in Fig. 5 that SPARC consistently improves performance across all the classes in all three datasets. In fact, we see
that there is only one class out of all the classes in all the datasets (181 classes total) where our method does notably worse
than ZSCLIP. That class is the “earthquake” class of the NUSWIDE dataset. For all other classes, our method is either the
same or (in most cases) notably better than ZSCLIP.



NUSWIDE

Noise Model
ViT-L/14

336px ViT-L/14 ViT-B/16 ViT-B/32 RN50
x64

RN50
x16

RN50
x4 RN101 RN50

constant 0.536 0.531 0.562 0.581 0.565 0.557 0.534 0.534 0.589
only AND 0.330 0.331 0.346 0.358 0.351 0.352 0.344 0.350 0.371
only OR 0.228 0.230 0.234 0.248 0.251 0.239 0.222 0.223 0.256
additive 0.196 0.199 0.200 0.211 0.213 0.207 0.195 0.201 0.226

OR + static
AND-bonus 0.193 0.195 0.196 0.207 0.210 0.204 0.191 0.197 0.222

OR + variable
AND-bonus 0.175 0.177 0.183 0.190 0.187 0.185 0.180 0.186 0.208

look-up table 0.162 0.164 0.170 0.177 0.173 0.171 0.167 0.173 0.194
static bonus strength 0.604 0.603 0.579 0.584 0.637 0.597 0.581 0.556 0.591
variable bonus strength

(lower quartile) 0.488 0.485 0.471 0.457 0.482 0.456 0.435 0.394 0.418

variable bonus strength
(upper quartile) 0.647 0.619 0.626 0.620 0.644 0.624 0.663 0.628 0.609

Table 10. Comparison of fidelity of noise models for scoring pairwise compound prompts on NUSWIDE for all CLIP backbones. Notice
that the OR-only model is a significantly better fit than AND-only, and that the OR+AND-bonus models capture nearly all of the fidelity
of the look-up table. Please refer to Tab. 1 for more details on the noise models.

Use compound Normalize Compound prompt type Rank Fusion Strategy COCO VOC NUSWIDE Avg

X - - 65.9 87.7 45.1 66.2
X X randomized ours 65.9 87.5 45.1 66.2
X X randomized mean 65.9 87.4 45.1 66.1
X X ours ours 68.3 89.2 47.2 68.3

Table 11. Randomized compound prompt ablation confirms the semantic value of compound prompts. Our ablation replaces compound
prompts with prompts that use random characters instead of cooccurrent classes. These prompts offer no benefit over normalized singletons,
suggesting that the gain caused by cooccurrent classes is due to semantics, and not just the statistical properties of an ensemble.

10. Expanded results from Rank Fusion Ablation

We showed in the main paper that our Rank Fusion strategy outperforms various handcrafted alternative fusion strategies.
Fig. 6 shows these results with and without the final “merge” step where the output of maxVariance is added to the singleton
score. We see that this step is critical for performance, pointing to the complementarity of maxVariance and singleton scores.

11. Compound prompt ablation results

We describe some additional ablations on the compound prompts used by our method. We start by comparing the performance
of our compound prompts with “randomized” prompts in which the cooccurrent classes are replaced by random characters.
We do this in light of the findings of WaffleCLIP [5], which found that randomized prompt ensembles could perform as well
as descriptive ones due to the inherent statistical benefits of ensembling. We find that this is not the case for our problem -
randomized compound prompts offer no benefit over normalized singletons. We show our results in Tab. 11.

We also consider alternative templates for the formulaic pair prompts. In addition to the “A and B” template used in the
main paper, we also try “A or B”, “A with B”, “A next to B”, “A and not B” (alongside “A and B”), and the combination of
all templates. For simplicity, we remove the triplet and descriptive compound prompts during this analysis. We report the
results in Tab. 12. We find that our original template “A and B” performs the best, although other conjunctive templates do
get quite close, while “A or B” does considerably worse. This latter finding suggests that perhaps CLIP does interpret “and”
and “or” differently, even if it treats “A and B” primarily as an OR-gate.



Figure 5. Per-class APs (averaged over all CLIP backbones) for our method vs vanilla ZSCLIP on all three datasets. Our method consis-
tently improves over ZSCLIP for almost every class in all datasets.



Figure 6. Average mAP for different Rank Fusion strategies, without (top) and with (bottom) the “merge” step demonstrates superiority of
adaptive fusion over fixed strategies and the importance of the “merge” step.

12. A qualitative look at the weakened max - histograms

Fig. 7 shows distributions of singleton, 1st-max, and 2nd-max scores for “cat” in COCO, as well as the uniform average of
singleton and 2nd-max. We see in the second row that 1st-max lifts a considerable number of negative examples, creating
overlap between negatives and positives. Third row shows that 2nd-max causes less overlap, lifting fewer negatives without
adversely impacting positives. The last row shows that fusing 2nd-max with singleton leads to good separation.



Normalize Pair prompt template Triplets + Descriptive COCO VOC NUSWIDE Avg

X - 65.9 87.7 45.1 66.2
X “A and B” 68.1 89.0 47.0 68.0
X “A or B” 67.0 88.4 46.2 67.2
X “A with B” 67.8 89.0 47.0 67.9
X “A next to B” 67.9 88.8 46.7 67.8
X “A and not B” 67.9 88.7 46.5 67.7
X all templates 67.9 88.7 46.7 67.8
X “A and B” X 68.3 89.2 47.2 68.3

Table 12. Ablations on templates used for formulaic pairwise prompts. We find that our original template “A and B” performs best.

Figure 7. Histograms for singleton, 1st max, and 2nd max scores for “cat” in the COCO dataset. We see that 1st max creates overlap
by lifting the scores of some ground-truth negatives. 2nd max does not create these issues and performs well when fused with singleton
scores.



13. Theoretical Explanation for Weakened Max and Adaptive Fusion

13.1. Theory Overview

We introduced a noise model in Sec. 3 to explain the behavior of CLIP scores. We will now use this model to come up with
a theoretical justification for the use of a “weakened max” instead of an outright maximum of compound scores.

We start with a hypothetical scenario where the goal is to predict the presence or absence of target class 0 given a set of m
compound prompts pairing class 0 with each of cooccurring classes 1, ...,m. We introduce this scenario and our assumptions
about it in Sec. 13.2. We find that, given a large enough m, second-max will always have better discriminative performance
than first-max, matching our empirical observation from Sec. 4.4.1. We formally state this finding as Theorem 1, which we
prove in Sec. 13.4.

We make a further claim in Theorem 2, which states that there are settings for which a sufficiently small m will cause the
first-max to outperform the second-max, and that the boundary between “sufficiently large” and “sufficiently small” depends
on data statistics that are unknowable in any practical setting, even one where exact cooccurrence statistics are available. We
prove this theorem in Sec. 13.5. We suspect that we would find similar behavior for other pairs of statistics, such as second-
max vs third-max, third vs fourth, fourth vs median, median vs min, etc. In general, fixed fusion rules are suboptimal for
combining the compound prompt scores.

Together, these theorems justify not only the use of a “weakened max”, but also the use of an adaptive fusion strategy

such as Rank Fusion, which can use the direction of highest variance to figure out which order statistics are most useful for
the setting at hand.

13.2. Preliminaries

Suppose we have target class 0 and cooccurring classes 1, ..,m. These have ground-truth presences y0, y1, ..., ym 2 {0, 1}.
We make some assumptions about their distribution.

Assumption 1. The ground-truth distribution has the following properties:

Pr(yi = 1 | y0 = 1) = ⇢ 8i 2 [m] (7)
Pr(yi = 1 | y0 = 0) = q 8i 2 [m] (8)

1 > ⇢ > q > 0 (9)
yj ? yi | y0 8i 6= j 2 [m] (10)

We also introduce variables ỹ0, ỹ1, ..., ỹm 2 {0, 1} which are “noisy” versions of the ground-truth. Think of these as
indicating whether each object is visible to the VLM. E.g. we might have yi = 1 and ỹi = 0 if object i was occluded, or we
might have yi = 0 and ỹi = 1 if an spurious object in the image resembled i. For each i 2 [m] we have:

ỹi =

(
1� yi with probability ⌫,

yi with probability 1� ⌫.

We make some assumptions about the distribution of these variables.

Assumption 2. The distribution of ỹ0, ỹ1, ..., ỹm has the following properties:

ỹi depends only on yi (11)

⌫ <
1

2
(12)

As mentioned on the main paper, we assume that the score for the prompt “{0} and {i}” is distributed as follows:

s0,i = max(ỹ0, ỹi) + �min(ỹ0, ỹi) + " (13)

where � is the strength of the “AND-bonus” described in the main paper, and " ⇠ W(�) is symmetric, zero-centered,
additive noise whose scale is controlled by �.



From the set {s0,1, ..., s0,m} we compute order statistics r1, r2, which are the first and second highest elements,
respectively.

Now, suppose we independently draw a ground-truth positive sample with y
+
0 = 1 and a ground-truth negative sample

with y
�
0 = 0 and compute order statistics r

+
1 , r

+
2 and r

�
1 , r

�
2 . We define ”win” events W1 and W2 as the events where

r
+
1 > r

�
1 and r

+
2 > r

�
2 , respectively.

We will now make an assumption about " ⇠W(�) in order to simplify our analysis. In order to state our assumption, we
will need a bit more notation.

s̄0,i = max(ỹ0, ỹi) + �min(ỹ0, ỹi) (14)
r̄1, r̄2 are the first and second highest elements of {s̄0,1, ..., s̄0,m} (15)

We are now ready to state our assumption.

Assumption 3. Assume that � is small enough for the following to approximately hold for each k 2 {1, 2}

Pr(Wk) ⇡

8
><

>:

1 if r̄
+
k
> r̄

�
k
,

0 if r̄
+
k
< r̄

�
k
,

1
2 if r̄

+
k
= r̄

�
k
,

We have now stated all of our assumptions.

Before making our formal theorem statements, we define some shorthand that we will use throughout the proof. First, we
note that if we hold ỹ0 fixed, then r̄1 and r̄2 can each take on one of two values. For example, if ỹ0 = 0 then the possible
values are {0, 1}, and if ỹ0 = 1 then the possible values are {1, 1 + �}. As such, we define pairs of complementary events
(H1, L1) and (H2, L2) to denote that r̄1 or r̄2 took the higher or lower of its possible values.

We define some additional shorthand:

⇢
0 := (1� ⌫)⇢ + ⌫(1� ⇢) (16)
q
0 := (1� ⌫)q + ⌫(1� q) (17)
a := 1� ⇢

0 (18)

� :=
1� q

1� ⇢0
(19)

A := m(1� a)am�1 (20)

G := m(1� �a)(�a)m�1 (21)

We are now ready to formally state our theorems.

13.3. Formal Theorem Statements

Theorem 1. Given the assumptions above, plus the additional assumption that Pr(ỹ+0 6= y
+
0

W
ỹ
�
0 6= y

�
0 ) > 0, we can

guarantee that Pr(W2) > Pr(W1) for sufficiently large m.

Theorem 2. There are values of ⇢, q, ⌫ and distributions of (ỹ+0 , ỹ
�
0 ) which satisfy all the requirements of Theorem 1, for

which Pr(W2) < Pr(W1) for sufficiently small m. In fact, the value of m at which the inequality reverses depends on

label-flip probability ⌫.

13.4. Proof of Theorem 1

We start by proving that ⇢0 > q
0, i.e. Pr(ỹi = 1 | y0 = 1) > Pr(ỹi = 1 | y0 = 0).

Lemma 1. 1 > ⇢
0
> q

0
> 0 given the above assumptions on ⇢, q, and ⌫.



Proof. We can use some algebra to prove this from Assumptions 1 and 2.

⇢
0 = ⇢+ ⌫ � 2⌫⇢ (22)
q
0 = q + ⌫ � 2⌫q (23)

⇢
0 � q

0 = 2(
1

2
� ⌫)(⇢� q) (24)

> 0 (25)

It is trivial to show that ⇢0, q0 2 (0, 1) because they are both mixtures of quantities in that range.

Our next lemma will derive some probability differences that will be important for our proof.

Lemma 2. Consider the following probability differences:

d
HH := Pr(H+

2 , H
�
2 )� Pr(H+

1 , H
�
1 ) (26)

d
HL := Pr(H+

2 , L
�
2 )� Pr(H+

1 , L
�
1 ) (27)

d
LH := Pr(L+

2 , H
�
2 )� Pr(L+

1 , H
�
1 ) (28)

d
LL := Pr(L+

2 , L
�
2 )� Pr(L+

1 , L
�
1 ) (29)

We claim that, regardless of the values or distribution of ỹ
+
0 and ỹ

�
0 , the following is true:

d
HH = AG� (1� a

m)G� (1� (�a)m)A (30)

d
HL = (1� a

m)G�AG� (�a)mA (31)

d
LH = (1� (�a)m)A�AG� a

m
G (32)

d
LL = AG+ a

m
G+ (�a)mA (33)

Proof. We start by noting that dHH
, d

HL
, d

LH
, d

LL do not depend on ỹ
+
0 , ỹ

�
0 . Although ỹ

+
0 and ỹ

�
0 affect the specific

values that r̄+1 , r̄
+
2 , r̄

�
1 , r̄

�
2 can take, they do not affect the probabilities of events H+

1 , L
+
1 , H

+
2 , L

+
2 , H

�
1 , L

�
1 , H

�
2 , L

�
2 . This

is because these events only depend on ỹ
+
1 , ..., ỹ

+
m

and ỹ
�
1 , ..., ỹ

�
m

, which in turn depend on ground truths y
+
1 , ..., y

+
m

and
y
�
1 , ..., y

�
m

, which all depend on y
+
0 and y

�
0 , which are fixed, so there is no dependency on ỹ

+
0 or ỹ�0 .

We also note that we can factor out the joint probabilities in d
HH

, d
HL

, d
LH

, d
LL because the positive and negative

samples were drawn independently, hence:

d
HH = Pr(H+

2 )Pr(H�
2 )� Pr(H+

1 )Pr(H�
1 ) (34)

d
HL = Pr(H+

2 )Pr(L�
2 )� Pr(H+

1 )Pr(L�
1 ) (35)

d
LH = Pr(L+

2 )Pr(H�
2 )� Pr(L+

1 )Pr(H�
1 ) (36)

d
LL = Pr(L+

2 )Pr(L�
2 )� Pr(L+

1 )Pr(L�
1 ) (37)

We can work out the probability for event H+
1 , which occurs iff at least one of ỹ+1 , ..., ỹ+m is 1:

Pr(H+
1 ) = 1� (1� ⇢

0)m (38)
= 1� a

m (39)

By similar reasoning, we can say:

Pr(H�
1 ) = 1� (�a)m (40)

Next, we work out the probability for the event H+
2 , which which occurs iff at least two of ỹ+1 , ..., ỹ+m are 1:

Pr(H+
2 ) = 1� (1� ⇢

0)m �m⇢
0(1� ⇢

0)m�1 (41)

= 1� a
m �m(1� a)am�1 (42)

= 1� a
m �A (43)



Similar reasoning can be used for H�
2 :

Pr(H�
2 ) = 1� (�a)m �m(1� �a)(�a)m�1 (44)

= 1� (�a)m �G (45)

Putting these all together, we get:

d
HH = Pr(H+

2 )Pr(H�
2 )� Pr(H+

1 )Pr(H�
1 ) (46)

= (1� a
m �A)(1� (�a)m �G)� (1� a

m)(1� (�a)m) (47)
= (1� a

m)(1� (�a)m)� (1� a
m)G� (1� (�a)m)A+AG� (1� a

m)(1� (�a)m) (48)
= AG� (1� a

m)G� (1� (�a)m)A (49)

d
HL = Pr(H+

2 )Pr(L�
2 )� Pr(H+

1 )Pr(L�
1 ) (50)

= (1� a
m �A)((�a)m +G)� (1� a

m)(�a)m (51)
= (1� a

m)(�a)m + (1� a
m)G� (�a)mA�AG� (1� a

m)(�a)m (52)
= (1� a

m)G�AG� (�a)mA (53)

d
LH = Pr(L+

2 )Pr(H�
2 )� Pr(L+

1 )Pr(H�
1 ) (54)

= (am +A)(1� (�a)m �G)� (am)(1� (�a)m) (55)
= (am)(1� (�a)m) + (1� (�a)m)A� a

m
G�AG� (am)(1� (�a)m) (56)

= (1� (�a)m)A�AG� a
m
G (57)

d
LL = Pr(L+

2 )Pr(L�
2 )� Pr(L+

1 )Pr(L�
1 ) (58)

= (am +A)((�a)m +G)� (am)(�a)m (59)
= (am)(�a)m + a

m
G+ (�a)mA+AG� (am)(�a)m (60)

= AG+ a
m
G+ (�a)mA (61)

Now that we have derived these probability differences, we can use them to work out Pr(W2) � Pr(W1) for the four
possible settings of (ỹ+0 , ỹ

�
0 ). We address these case-by-case.

Case 1: (ỹ+0 , ỹ
�
0 ) = (0, 0) We can think of this as the “TN-vs-FN” case, where object 0 is not visible in either of the

ground-truth positive or ground-truth negative images. In this case, we can derive the following expression:

Lemma 3. If (ỹ+0 , ỹ
�
0 ) = (0, 0) then Pr(W2)� Pr(W1) =

1
2 (G�A).

Proof. In this case, we have r̄
+
1 , r̄

+
2 , r̄

�
1 , r̄

�
2 2 {0, 1}, so we can say:

Pr(W1) =
1

2
Pr(H+

1 , H
�
1 ) +

1

2
Pr(L+

1 , L
�
1 ) + Pr(H+

1 , L
�
1 ) (62)

=
1

2

⇣
Pr(H+

1 )Pr(H�
1 ) + Pr(L+

1 )Pr(L�
1 ) + 2Pr(H+

1 )Pr(L�
1 )

⌘
(63)

Pr(W2) =
1

2

⇣
Pr(H+

2 )Pr(H�
2 ) + Pr(L+

2 )Pr(L�
2 ) + 2Pr(H+

2 )Pr(L�
2 )

⌘
(64)

Hence, we can express the win-rate difference using d
HH

, d
HL

, d
LH

, d
LL as follows:

Pr(W2)�Pr(W1) =
1

2

⇣
d
HH + 2dHL + d

LL

⌘
(65)

=
1

2

⇣
AG�(1�am)G�(1�(�a)m)A+ 2((1�am)G�AG�(�a)mA) +AG+a

m
G+(�a)mA

⌘
(66)

=
1

2
(G�A) (67)

We note that this quantity is positive for sufficiently large m because G

A
= 1��a

1�a
�
m�1 = q

0

⇢0 (
1�q

0

1�⇢0 )m�1, which grows with m

because ⇢
0
> q

0 per Lemma 1.



Case 2: (ỹ+0 , ỹ
�
0 ) = (1, 1) We can think of this as the “TP-vs-FP” case, where object 0 is visible (correctly or spuriously)

in both the ground-truth positive and ground-truth negative images. This leads to the same win-rate difference as the previous
case.

Lemma 4. If (ỹ+0 , ỹ
�
0 ) = (1, 1) then Pr(W2)� Pr(W1) =

1
2 (G�A).

Proof. In this case, we have r̄
+
1 , r̄

+
2 , r̄

�
1 , r̄

�
2 2 {1, 1 + �}, so we can say:

Pr(W1) =
1

2

⇣
Pr(H+

1 )Pr(H�
1 ) + Pr(L+

1 )Pr(L�
1 ) + 2Pr(H+

1 )Pr(L�
1 )

⌘
(68)

Pr(W2) =
1

2

⇣
Pr(H+

2 )Pr(H�
2 ) + Pr(L+

2 )Pr(L�
2 ) + 2Pr(H+

2 )Pr(L�
2 )

⌘
(69)

Hence, the win-rate difference is the same as before, via the same steps as the previous lemma (Lemma 3):

Pr(W2)� Pr(W1) =
1

2
(G�A) (70)

Case 3: (ỹ+0 , ỹ
�
0 ) = (0, 1) We can think of this as the “FP-vs-FN” case, where object 0 is occluded or obscured in the

ground-truth positive image and spuriously visible in the ground-truth negative image. This is the most “difficult” case to
rectify.

Lemma 5. If (ỹ+0 , ỹ
�
0 ) = (0, 1) then Pr(W2)� Pr(W1) =

1
2G

⇣
1� a

m�1(1� ⇢
0 +m⇢

0 + ⇢
0 1�q

0

q0 )
⌘

.

Proof. In this case, we have r̄
+
1 , r̄

+
2 2 {0, 1} and r̄

�
1 , r̄

�
2 2 {1, 1 + �}. The best we can hope for is a tie, where the positive

example takes on its higher value and the negative example takes on its lower value. Hence:

Pr(W1) =
1

2
Pr(H+

1 , L
�
1 ) =

1

2
Pr(H+

1 )Pr(L�
1 ) (71)

Pr(W2) =
1

2
Pr(H+

2 , L
�
2 ) =

1

2
Pr(H+

2 )Pr(L�
2 ) (72)

Hence, we can express the win-rate difference as:

Pr(W2)� Pr(W1) =
1

2
d
HL (73)

=
1

2

⇣
(1� a

m)G�AG� (�a)mA

⌘
(74)

=
1

2
G

⇣
(1� a

m)�A� (�a)m
A

G

⌘
(75)

=
1

2
G

⇣
(1� a

m)�A� a
m
�
1� a

1� �a

⌘
(76)

=
1

2
G

⇣
(1� a

m)�m(1� a)am�1 � a
m
�
1� a

1� �a

⌘
(77)

=
1

2
G

⇣
1� a

m�1(a+m(1� a) + a�
1� a

1� �a
)
⌘

(78)

=
1

2
G

⇣
1� a

m�1(1� ⇢
0 +m⇢

0 + ⇢
0 1� q

0

q0
)
⌘

(79)

We once again note that this quantity is positive for sufficiently large m because a
m�1(1�⇢0+m⇢

0+⇢
0 1�q0

q0 ) = o(ma
m)

since a = (1� ⇢
0) < 1 (per Lemma 1).



Case 4: (ỹ+0 , ỹ
�
0 ) = (1, 0) We can think of this as the “TP-vs-TN” case, where there is no occlusion or spurious cue for

object 0 in either image. This is the “easiest” case to deal with, and it turns out to be the one case where a first-max is actually
better than a second-max.

Lemma 6. If (ỹ+0 , ỹ
�
0 ) = (1, 0) then Pr(W2)� Pr(W1) =

1
2A

⇣
G+ a(1� q

0)m�1( q
0

⇢0 +
1�q

0

1�⇢0 )� 1
⌘

.

Proof. In this case, we have r̄
+
1 , r̄

+
2 2 {1, 1 + �} and r̄

�
1 , r̄

�
2 2 {0, 1}. The worst thing that can happen is a “tie”, in the

event that the positive example gets its lower value and the negative example gets its higher one, otherwise we get an outright
“win”. Hence:

Pr(W1) = Pr(H+
1 , H

�
1 ) + Pr(H+

1 , L
�
1 ) +

1

2
Pr(L+

1 , H
�
1 ) + Pr(L+

1 , L
�
1 ) (80)

= 1� 1

2
Pr(L+

1 , H
�
1 ) (81)

= 1� 1

2
Pr(L+

1 )Pr(H�
1 ) (82)

Pr(W2) = 1� 1

2
Pr(L+

2 )Pr(H�
2 ) (83)

Hence, we can express the win-rate difference as:

Pr(W2)� Pr(W1) = �
1

2
d
LH (84)

= �1

2

⇣
(1� (�a)m)A�AG� a

m
G

⌘
(85)

=
1

2

⇣
AG+ a

m
G� (1� (�a)m)A

⌘
(86)

=
1

2
A

⇣
G+ a

m
G

A
� (1� (�a)m)

⌘
(87)

=
1

2
A

⇣
G+ a

m
1� �a

1� a
�
m�1 + (�a)m � 1

⌘
(88)

=
1

2
A

⇣
G+ a(�a)m�1(

1� �a

1� a
+ �)� 1

⌘
(89)

=
1

2
A

⇣
G+ a(1� q

0)m�1(
q
0

⇢0
+

1� q
0

1� ⇢0
)� 1

⌘
(90)

We note that in this particular case, Pr(W2) � Pr(W1) actually becomes negative as m grows large, because both G and
a(1� q

0)m�1( q
0

⇢0 +
1�q

0

1�⇢0 ) shrink exponentially with m, and so 1
2A is eventually multiplied by a negative number. However,

we will soon see that this negative win-rate difference is outweighed by the positive ones from Lemmas 3, 4, and 5, leading
to an overall positive difference.

We have now worked out the win-rate differences for all four possible values of (ỹ+0 , ỹ
�
0 ). We are finally ready to prove

our main theorem, which we restate below.

Theorem 1 (restated). If Pr(ỹ+0 6= y
+
0

W
ỹ
�
0 6= y

�
0 ) > 0, then Pr(W2) > Pr(W1) for sufficiently large m.

Proof. We start by defining a distribution over (ỹ+0 , ỹ
�
0 ):

⇡
(0,0) := Pr(ỹ+0 = 0, ỹ�0 = 0) (91)

⇡
(1,1) := Pr(ỹ+0 = 1, ỹ�0 = 1) (92)

⇡
(0,1) := Pr(ỹ+0 = 0, ỹ�0 = 1) (93)

⇡
(1,0) := Pr(ỹ+0 = 1, ỹ�0 = 0) (94)



We can combine the results of Lemmas 3, 4, 5, and 6, to get the overall win-rate difference:

Pr(W2)� Pr(W1) =
1

2
(⇡(0,0) + ⇡

(1,1))(G�A) (95)

+
1

2
⇡
(0,1)

G

⇣
1� a

m�1(1� ⇢
0 +m⇢

0 + ⇢
0 1� q

0

q0
)
⌘

(96)

+
1

2
⇡
(1,0)

A

⇣
G+ a(1� q

0)m�1(
q
0

⇢0
+

1� q
0

1� ⇢0
)� 1

⌘
(97)

We can lower-bound the last term of this sum with �A to get:

Pr(W2)� Pr(W1) � 1

2
(⇡(0,0) + ⇡

(1,1))(G�A) (98)

+
1

2
⇡
(0,1)

G

⇣
1� a

m�1(1� ⇢
0 +m⇢

0 + ⇢
0 1� q

0

q0
)
⌘

(99)

�1

2
⇡
(1,0)

A (100)

If we pick m > 1 +
log(2)+log(1�⇢

0+m⇢
0+⇢

0 1�q0
q0 )

� log(1�⇢0) then we can lower-bound the second term to get:

Pr(W2)� Pr(W1) � 1

2
(⇡(0,0) + ⇡

(1,1))(G�A) (101)

+
1

4
⇡
(0,1)

G (102)

�1

2
⇡
(1,0)

A (103)

which simplifies to:

Pr(W2)� Pr(W1) �
1

2

⇣
(⇡(0,0) + ⇡

(1,1) +
1

2
⇡
(0,1))G� (⇡(0,0) + ⇡

(1,1) + ⇡
(1,0))A

⌘
(104)

=
1

2

⇣
(⇡(0,0) + ⇡

(1,1) +
1

2
⇡
(0,1))G� (1� ⇡

(0,1))A
⌘

(105)

We note that ⇡(0,0) + ⇡
(1,1) + 1

2⇡
(0,1)

> 0 due to our assumption that Pr(ỹ+0 6= y
+
0

W
ỹ
�
0 6= y

�
0 ) > 0. Hence, we can do

some rearrangement to get:

Pr(W2)� Pr(W1) �
1

2
(⇡(0,0) + ⇡

(1,1) +
1

2
⇡
(0,1))G

⇣
1� (

1� ⇡
(0,1)

⇡(0,0) + ⇡(1,1) + 1
2⇡

(0,1)
)(
A

G
)
⌘

(106)

=
1

2
(⇡(0,0) + ⇡

(1,1) +
1

2
⇡
(0,1))G

⇣
1� (

1� ⇡
(0,1)

⇡(0,0) + ⇡(1,1) + 1
2⇡

(0,1)
)(

1� a

1� �a
)��(m�1)) (107)

=
1

2
(⇡(0,0) + ⇡

(1,1) +
1

2
⇡
(0,1))G

⇣
1� (

1� ⇡
(0,1)

⇡(0,0) + ⇡(1,1) + 1
2⇡

(0,1)
)(
⇢
0

q0
)(
1� ⇢

0

1� q0
)m�1) (108)

We can make this expression positive by picking m > 1 +
log(⇢0)�log(q0)+log(1�⇡

(0,1))�log(⇡(0,0)+⇡
(1,1)+ 1

2⇡
(0,1))

log(1�q0)�log(1�⇢0) .

Thus, the second-max will be advantageous over the first-max as long as m satisfies the following lower bounds:

m > 1 +
log(2) + log(1� ⇢

0 +m⇢
0 + ⇢

0 1�q
0

q0 )

� log(1� ⇢0)
(109)

m > 1 +
log(⇢0)� log(q0) + log(1� ⇡

(0,1))� log(⇡(0,0) + ⇡
(1,1) + 1

2⇡
(0,1))

log(1� q0)� log(1� ⇢0)
(110)

In fact, in the special case where ⇡(1,0) = 0, these bounds are “tight” in the sense that an m that violates both bounds will
lead to the first-max being advantageous over the second-max. Theorem 2 gives further insight into this dependency on m.



Figure 8. Pr(W2)� Pr(W1) via Eq. (95) for different values of m, proving by example that first-max can be advantageous for sufficiently
small m, and that the point of advantage depends on label-flip probability ⌫.

13.5. Proof of Theorem 2

Proof. We prove Theorem 2 by example. We give two example settings that fulfill the requirements of Theorem 1 and
for which Pr(W2) < Pr(W1) for sufficiently small m. Furthermore, these two example settings differ only by ⌫ and have
different values of m at which the inequality reverses, and so we know that this reversal point depends on ⌫. Some further
examples show that the reversal point also depends on other setting variables such as ⇢, q,⇡(0,0)

,⇡
(1,1)

,⇡
(0,1)

,⇡
(1,0), but we

limit our analysis to ⌫ for the sake of brevity.
Our two example settings share ⇢ = 0.15, q = 0.01, ⇡

(1,0) = 0.552, ⇡
(0,1) = (1 � 0.55)2, and ⇡

(0,0) = ⇡
(1,1) =

0.55 · (1 � 0.55). They differ only in their values of ⌫ which are 0.05 and 0.2. We evaluate Pr(W2) � Pr(W1) via Eq. (95)
for multiple values of m under these settings and plot the resulting probability differences in Fig. 8. We see that the claims
in Theorem 2 follow from these examples.
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