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UniPhy: Learning a Unified Constitutive Model for Inverse Physics Simulation

Supplementary Material

1. Implementation Details001

Teacher Forcing: The baseline, NCLaw [4] uses a teacher-002
forcing scheme that restarts the predicted simulation from003
ground truth state periodically. The ground truth state in-004
cludes the position x, velocity v, affine velocity C, and de-005
formation gradient F. This period starts from 25 steps and006
is increased to 200 by a cosine annealing scheduler. This007
introduces the privileged information of position, velocity,008
affine velocity, and deformation gradient from the simula-009
tor during inference. Since the privileged information and010
access to the simulator may not be available during infer-011
ence, we evaluate our method with the baseline NCLaw on012
the setting of without teacher-forcing and report the results013
in Table 1 and Table 2 of the main paper and show the visu-014
alizations in the webpage attached in the supplementary.015

2. Algorithm016

We detail our training and inference algorithm in Algo-017
rithm 1 and Algorithm 2 respectively where i is the trajec-018
tory index, p represents the particle index and t represents019
the time.020

3. Analytical Constitutive Laws021

In this section, we discuss the constitutive model and the022
deformation gradient projection/mapping function for the023
materials that are used to simulate the trajectories used in024
training.025

In Material Point Method (MPM), each particle has a026
deformation gradient F which is projected on to the yield027
surface using a return mapping G. This projected deforma-028
tion gradient is then used by the constitutive law to compute029
the internal forces experienced by the particle given as the030
Cauchy stress S.031
Elastic: As there is no plasticity in elastic materials, the de-032
formation gradient projection is an identity function defined033
as:034

G(F ) = F (1)035

We use the neo-Hookean elasticity model for elastic ma-036
terials. The Cauchy stress for the elastic material is calcu-037
lated as:038

JS(F) = µ(FF⊤) + (λ log(J)− µ)I (2)039

where µ and λ are the Lamé parameters of the Young’s040
modulus and Poisson ratio. The Young’s modulus defines041
the stiffness of the material and Poisson ratio defines the042

ability of the object to preserve its volume under deforma- 043
tion. 044

For elastic materials, we have a range of [350.0, 045
2595196.0] for µ and a range of [500.0, 2580120.0] for λ. 046

Newtonian: The stress for the newtonian fluid is com- 047
puted as: 048

κ =
2

3
µ+ λ (3) 049

JS(F) = κI(J − 1

J6
) +

1

2
µ
(
∇v +∇v⊤) (4) 050

where ∇v is the affine velocity of the particle C, µ repre- 051
sents the velocity change opposition and κ is volume preser- 052
vation ability. 053

For newtonian materials, we have a range of [50.0, 1e3] 054
for µ and a range of [30.0, 5e5] for λ. 055

Plasticine: For plasticine materials, we use the von- 056
Mises plastic return mapping for deformation gradient. The 057
SVD of F can be defined as F = UΣV where ϵ = log(Σ) 058
is the Hencky strain. The von Mises yield condition is de- 059
fined as: 060

δγ = ∥ϵ̂∥−τY
2µ

(5) 061

where ϵ is the normalized Hencky strain, τY is the yield 062
stress determining the plastic flow and the stress required 063
for causing permanent deformation/yielding behavior. In 064
the above yielding condition, if δγ > 0, then the defor- 065
mation gradient breaks the yield constraint and is projected 066
back into the elastic region via the following mapping: 067

G(F) =

{
F δγ ≤ 0

U exp
(
ϵ− δγ ϵ̂

∥ϵ̂∥

)
V⊤ δγ > 0

068

To calculate stress, we use the St.Venant-Kirchhoff 069
(StVK) constitutive model. 070

JS(F) = U(2µϵ+ λTr(ϵ))U⊤ (6) 071

For plasticine materials, we have a range of [1e4, 1e6] 072
for µ, a range of [1e4, 3e6] for λ and a range of [5e3, 1e4] 073
for τY . 074

Sand: To simulate sand particles, we use the Drucker- 075
Prager [3] yield criteria as follows: 076

tr(ϵ) > 0, or δγ = ∥ϵ̂∥F+α
(3λ+ 2µ) tr(ϵ)

2µ
> 0.

(7) 077

1



CVPR
#17117

CVPR
#17117

CVPR 2025 Submission #17117. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Algorithm 1 UniPhy: Training

1: Input: Dataset of trajectories D = {F,Fproj , C,S}
2: Output: ϕ, θ, z
3: for iteration = 1, 2, . . ., N do
4: Batch of n samples, B = (Fp,t

i ,Fp,t
proj,i,S

p,t
i ,Cp,t

i , zi)

5: Fp,t
i

SVD
= UΣV T

6: ∆ = gϕ(Fp,t
i , U , V T , zi)

7: F̂p,t
i = Fp,t

i + ∆
8: F = Fp,t

proj,i

9: Fmax = max(F[:, 0, 0], 1e− 6)

10: F
SVD
= UprojΣprojVproj

11: R = UprojV
T
proj

12: S1 = fθ(Σ,FTF,det(F ), log(det(F )),Fmax, log(Fmax),C
p,t
i , zi)

13: Ŝp,t
i = 1

2

(
S1 + ST

1

)
14: min

θ,ϕ,z

(
L(F̂p,t

i ,Fp,t
proj,i) + L(Ŝp,t

i ,Sp,t
i ) + 1

σ2 ∥zi∥2
)

15: Optimize ϕ, θ, z
16: end for

Algorithm 2 UniPhy: Inference using Differentiable Material Point Method (MPM)

1: Input: x, z, fθ, gϕ
2: Output: ẑ
3: for epoch = 1, 2, . . .,N do
4: for iteration = 1, 2, . . .,t do
5: Transfer mass and momentum of particles to grid nodes
6: Fp,t+1 = (I +∆t ∗Cp,t) ∗ Fp,t

7: Fp,t+1 SVD
= UΣV T

8: ∆ = gϕ(F
p,t+1,U,VT , zi)

9: Fp,t+1
proj = Fp,t+1 +∆

10: Fp,t+1
proj

SVD
= UprojΣprojVproj

11: Rproj = UprojV
T
proj

12: S1 = fθ(Σ,FTF,det(F ), log(det(F )),Fmax, log(Fmax),C
p,t
i , zi)

13: Ŝp,t
i = 1

2

(
S1 + ST

1

)
14: Update momentum and velocity of grid node
15: Transfer momentum and velocity from grid node to particle
16: Advect particles x̂t+1 = xt +∆tvt+1

17: end for
18: ẑ = min

z
L (x̂, x)

19: Optimize ẑ
20: end for

where α =
√

2
3

2 sin θfric
3−sin θfric

and θfric is the friction angle078

determining the slope of the sand pile. Then, we use the079
deformation gradient projection function as follows:080 G(F) =


UV⊤ tr(ϵ) > 0

F δγ ≤ 0& tr(ϵ) ≤ 0

U exp
(
ϵ− δγ ϵ̂

∥ϵ∥

)
V⊤ δγ > 0& tr(ϵ) ≤ 0

(8) 081
For sand materials, we have a range of [2400.0, 9e6] for 082

µ, a range of [2400.0, 9e6] for λ and a range of [0.01, 0.4] 083
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for θfric .084
Non-newtonian: To model non-newtonian materi-085

als [1], we use the viscoplastic model [2, 5] and von-Mises086
criteria to define the elastic region. Having the viscoplastic087
model prevents the deformation from being directly mapped088
back onto the yield surface. Non-newtonian materials have089
yield stress as well. We define the deformation gradient re-090
turn mapping as follows:091

µ̂ =
µ

d
Tr

(
Σ2

)
(9)092

s = 2µϵ̂ (10)093

ŝ = ∥s∥− δγ

1 + η
2µ̂∆t

(11)094

Z(F) =

{
F δγ ≤ 0

U exp
(

ŝ
2µ ϵ̂+

1
d Tr(ϵ)1

)
V⊤ δγ > 0

(12)095

For non-newtonian materials, we have a range of [1e3,096
2e6] for µ, a range of [1e3, 2e6] for λ, a range of [1e3, 2e6]097
for τY and a range of [0.1, 100.0] for η.098
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