
Generalized Recorrupted-to-Recorrupted:
Self-Supervised Learning Beyond Gaussian Noise

(Supplemental Materials)

This supplementary material is divided into three parts: (i) proof of the propositions and theorem 1, (ii) additional
information and derivation of the link between GR2R and SURE losses, and (iii) additional results.

1 Proofs

Proof of Proposition 1

Proof. The R2R loss can be re-expressed as

Ey1,y2|y∥f(y1)− y2∥22 = Ey1|y∥f(y1)∥22 + Ey2|y∥y2∥22 − 2

n∑
i=1

Ey1,y2,i|x y2,ifi(y1),

where y2,i ∈ R denotes the ith entry of y2. If the following equality

Ey1,y2,i|x y2,i fi(y1) = xi Ey1|x fi(y1), (1)

holds (below is how to ensure this) for all i = 1, . . . , n, then

Ey1,y2|x∥f(y1)− y2∥22 = Ey1|x∥f(y1)∥22 + Ey2|x∥y2∥22 − 2

n∑
i=1

xiEy1|x fi(y1) (2)

= Ey2|x∥f(y1)− x∥22 − ∥x∥22 + Ey2|x∥y2∥22
= Ey2|x∥f(y1)− x∥22 + const,

where the second line comes from adding and subtracting ||x||2.
A sufficient (but not necessary) condition for (1) to hold is that i) y1 and y2 are independent and ii) Ey2|xy2 = x.

If this conditions hold, we trivially have Ey1,y2,i|xy2,ifi(y1) =
(
Ey2,i|xy2,i

) (
Ey1|xfi(y1)

)
= xiEy1|xfi(y1) for

i = 1, . . . , n. We will analyze the necessary condition (beyond independence) for the case of additive noise where
y = x + ϵ where ϵ is sampled from a symmetric noise distribution that is independent across pixel entries. We
construct pairs y1 = y + ωτ and y2 = y − ω/τ , with τ > 0 and ω sampled from the same distribution as ϵ. Due
to the independence across entries, we will drop the ith indices and define the scalar function fi(·;y1,−i) : R 7→ R,
such that the left-hand side of (1) can be simplified to

Eϵi,ωi(xi + ϵi − ωi/τ︸ ︷︷ ︸
y2,i

)fi(xi + ϵi + τωi︸ ︷︷ ︸
y1,i

;y1,−i) = xi Eϵi,ωifi(xi+ϵi+τωi,y−i)−Eϵi,ωi (ϵi−
ωi

τ
)fi(xi+ϵi+τωi;y1,−i),

(3)
where ωi, xi and ϵi refer to the ith entry, and are thus one-dimensional. In this additive case, showing (3) is
equivalent to showing that

Eϵi,ωi (ϵi −
ωi

τ
)fi(xi + ϵi + τωi;y1,−i) = 0. (4)

Assuming that fi is analytic (that is, is infinitely differentiable and has a convergent Taylor expansion) and per-
forming a Taylor expansion of fi around xi, we obtain

Eϵ−i,ω−iEϵi,ωi (ϵi −
ωi

τ
)fi(xi + ϵi + ωiτ ;y1,−i) = Eϵ−i,ω−iEϵi,ωi (ϵi −

ωi

τ
)
∑
k≥0

1

k!

∂kfi
∂xi

k
(xi;y1,−i) (ϵi + τωi)

k (5)

=
∑
k≥0

1

k!
Eϵ−i,ω−i

{ ∂
kfi

∂xi
k
(xi;y1,−i)}Eϵi,ωi

(ϵi −
ωi

τ
)(ϵi + τωi)

k (6)

where the case k = 0 is removed from the last sum as Eϵi,ωi{ϵi − ωi

τ } = 0 if the two noises have zero mean.
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Proof of Theorem 1

Proof. If the observation model belongs to the natural exponential family (NEF), we can write it as

p(y|x) = h(y) exp(y⊤η(x)− ϕ(x)),

with x,y ∈ Rn, and h : R 7→ R η : R 7→ R and ϕ : R 7→ R elementwise functions which change according to the
distribution. NEF distributions verify the following properties [1]

1. η is an invertible function.

2. ϕ is strictly convex.

3. Given ϕ and η, h is given by the Laplace transform h(y) =
∫
exp

(
−s⊤y + ϕ(η−1(s))

)
ds.

4. The mean of each entry is given by

E{yi|xi} =
∂ϕ

∂xi
(xi)/

∂η

∂xi
(xi) = xi, (7)

for i = 1, . . . , n.

We look for the decomposition y = (1− α)y1 + αy2 such that y1 and y2 also belong to the NEF, i.e.,

p1(y1|x) = h1(y1) exp
(
y⊤
1 η1(x)− ϕ1(x)

)
, (8)

and
p2(y2|x) = h2(y2) exp

(
y⊤
2 η2(x)− ϕ2(x)

)
, (9)

for some α ∈ (0, 1). Hence, the element-by-element functions of y1, y2 are related to those of y as ϕ1(x) = (1 −
α)ϕ(x), ϕ2(x) = αϕ(x), η1(x) = (1− α)η(x), η2(x) = αη(x), h1(y1) =

∫
exp

(
−s⊤y1 + (1− α)ϕ

(
η−1( s

1−α )
))

ds

and h2(y2) =
∫
exp

(
−s⊤y2 + αϕ

(
η−1( sα )

))
ds.

We first verify that this choice gives the right distribution for y:

p(y|x) =
∫

p1(y1|x)p2(
1

α
y − 1− α

α
y1|x)dy1

= exp
(
y⊤η(x)− ϕ(x)

) ∫
h1(y1)h2(

1

α
y − 1− α

α
y1)dy1,

where the second line uses the fact that

p1(y1|x)p2(
1

α
y − 1− α

α
y1|x) = h1(y1) exp

(
(1− α)y⊤

1 η(x)− (1− α)ϕ(x)
)
h2(

1

α
y − 1− α

α
y1)× (10)

exp

(
α

(
1

α
y − 1− α

α
y1

)⊤

η(x)− αϕ(x)

)
(11)

= exp
(
y⊤η(x)− ϕ(x)

)
h1(y1)h2(

1

α
y − 1− α

α
y1). (12)

We can obtain the conditional distribution of y1 given y as

p(y1|y,x) =
1

p(y|x)
p(y|y1,x)p1(y1|x),

due to Bayes theorem. Using the fact that p(y|y1,x) = p2(
1
αy − 1−α

α y1|x) we obtain

p(y1|y,x) =
1

p(y|x)
p1(y1|x)p2(

1

α
y − 1− α

α
y1|x)

=
h1(y1)h2(y − y1)

h(y)
,

(13)
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where we use again (12). Thus we have that p(y1|y,x) does not depend on the unknown parameter x, that is
p(y1|y,x) = p(y1|y). Consequently, since y1 and y2 are independent conditional on x and Ey2|x{y2 − x} =
E{y2|x} − x = 0, we have that

Ey1,y2|x∥f(y1)− y2∥22 = Ey1|x∥f(y1)− x∥22 + 2Ey1,y2|x{(f(y1)− x)⊤(x− y2)}+ Ey2|x∥x− y2∥22

= Ey1|x∥f(y1)− x∥22 + 2Ey1|x{f(y1)}⊤Ey2|x{y2 − x} − 2Ey2|x{x
⊤(x− y2)}+

nV{y2|x}︷ ︸︸ ︷
Ey2|x∥x− y2∥22︸ ︷︷ ︸

const

= Ey1|x∥f(y1)− x∥22 + const.

Proof of Proposition 2

Proof. We can write the GR2R-MSE loss as

Lα
GR2R−MSE(y; f) = Ey2|y ∥f(y − y2α

1− α
)− y2∥22 (14)

= Ey2|y ∥f(y − y2α

1− α
)− y − (y2 − y)∥22 (15)

= Ey2|y ∥f(y − y2α

1− α
)− y∥22 − Ey2|y 2

n∑
i=1

(y2,i − yi) fi(
y − y2α

1− α
) + const. (16)

Since by assumption f is analytic, we can apply a Taylor expansion to the second term, i.e., fi(
y−y2α
1−α ) =∑

k≥0
1
k!

∂kfi
∂yk

i

(
y−y2,−iα

1−α ) (−1)kαk

(1−α)k
yki,2, where y2,−i ∈ Rn has the ith entry equal to zero and the rest equal to y2.

Thus we obtain:

Lα
GR2R−MSE(y; f) ∝ Ey2|y

(
∥f(y − y2α

1− α
)− y∥22 − 2

n∑
i=1

∑
k≥1

1

k!

∂kfi
∂yki

(
y − y2,−iα

1− α
)

(−1)k

(1− α)k
(y2,i − yi)(αy2,i)

k
)
,

where we used the fact that for k = 0 we have E{y2,i − yi|yi} = 0. Taking the limit α → 0, we obtain1

lim
α→0

Lα
GR2R−MSE(y; f) ∝ lim

α→0
Ey2|y ∥f(y − y2α

1− α
)− y∥22

− 2

n∑
i=1

∑
k≥1

1

k!
Ey2,−i|y

{
∂kfi
∂yki

(
y − y2,−iα

1− α
)

}
(−1)k

(1− α)k
Ey2,i|yi

(y2,i − yi)(αy2,i)
k

∝ ∥f(y)− y∥22 + 2

n∑
i=1

∑
k≥1

(−1)k+1 1

k!

∂kfi
∂yki

(y) lim
α→0

E{(y2,i − yi)(αy2,i)
k|yi, α}

where the last line uses the fact that ak(yi) = limα→0 Ey2,i|yi,α{(y2,i− yi)(αy2,i)
k} converges for all positive integer

k. Replacing the definition of ak in the previous formula, we obtain the desired result:

lim
α→0

Lα
GR2R−MSE(y; f) ∝ ∥f(y)− y∥22 + 2

n∑
i=1

∑
k≥1

(−1)k+1ak(yi)
1

k!

∂kfi
∂yki

(y).

1We have that for g : Rn 7→ R, the expectation Ey2|yg(αy2) = g(0) as p(αy2|y) → δy2=0 as α → 0.
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Proof of Proposition 3

Proof. The Lα
GR2R(y; f) is defined as

Ey1,y2|x − log p2 (y2|x̂ = f(y1)) = Ey1,y2|x
{
−αy⊤

2 η (f(y1)) + αϕ (f(y1))− log h2(y2)
}

(17)

= −α
(
Ey2|x y⊤

2

)
Ey1|x η (f(y1)) + Ey1|xαϕ (f(y1))− Ey2|x log h2(y2) (18)

= −αx⊤Ey1|x η (f(y1)) + Ey1|x αϕ (f(y1))− Ey2|x log h2(y2) (19)

= −Ey1|x{αx
⊤η (f(y1))− αϕ (f(y1)) + log h2(y2)}+ const (20)

= Ey1|x − log p2 (x|x̂ = f(y1)) + const. (21)

We now prove that E{x|y1} = argminf Lα
GR2R(y; f). We can write this minimization as

min
f

Ex,y1
{η (f(y1))

⊤
x− ϕ (f(y1))} = min

f
Ey1

{η (f(y1))
⊤ E{x|y1} − ϕ (f(y1))} (22)

= Ey1
{min

f
η (f(y1))

⊤ E{x|y1} − ϕ (f(y1))}, (23)

where the last equality swaps the integration with the minimization since the minimizer exists for every fixed y1.
Defining z := f(y1), we can minimize the term inside the expectation w.r.t. to

argmin
z

E{x|y1} η(z)− ϕ (z) . (24)

The problem is separable across entries, so it can be

argmin
zi

E{xi|y1,i} η(zi)− ϕ (zi) , (25)

for i = 1, . . . , n. Since the problem is strongly convex w.r.t. zi, we can find the solution by setting its derivative to
zero

E{xi|y1,i}
∂η

∂zi
(ẑi)−

∂ϕ

∂zi
(ẑi) = 0 (26)

∂η

∂zi
(ẑi)/

∂ϕ

∂zi
(ẑi) = E{xi|y1,i} (27)

ẑi = E{xi|y1,i}, (28)

for i = 1, . . . , n, where the second line uses property (7), and thus f̂(y1) = E{x|y1}.

2 Additional information

Table 1 summarizes the NEF distributions p(y|x) used in the main document. This was used to create the
recoruptions used in the main document. Specifically, the formulas to construct y1 in terms of y and the extra
noise ω can be derived from replacing h(y), h1(y1) and h2(y2) from Table 1 in Equation (13) for its respective NEF
distribution; this is left as an exercise for the reader.

Model y ∼ N (x, σ2) y ∼ P( x
γ
) y ∼ G(ℓ, x/ℓ) y ∼ Bin(ℓ, x)

η(x) x/σ2 log(x) −ℓ/x log(x/(1− x))
ϕ(x) x2/(2σ2) x/γ ℓ log(x) ℓ log(1− x)

h(y)
√
2πσ exp(y2/(2σ2)) (γyy!)−1 ℓℓyℓ−1/Γ(ℓ)

(ℓ
y

)
h1(y1)

√
2π σ√

1−α
exp(y21/(2

σ2

1−α
)) ((1− α)(1−α)y1+1γ(1−α)y1 ((1− α)y1)!)−1 ℓ(1−α)ℓ((1−α)y1)

(1−α)ℓ−1

(1−α)Γ((1−α)ℓ)
1

1−α

( (1−α)ℓ
(1−α)y1

)
h2(y2)

√
2π σ√

α
exp(y21/(2

σ2

α
)) (ααy2+1γαy2 (αy2)!)−1 ℓαℓ(αy2)

αℓ−1

αΓ(αℓ)
1
α

( αℓ
αy2

)
Table 1: Examples of one-dimensional natural exponential family distributions p(y|x) and their respective de-
compositions. These can be extended to higher dimensions by considering separable distributions p(y|x) =∏n

i=1 p(yi|xi), by η(x) =
∑n

i=1 η(xi), ϕ(x) =
∑n

i=1 ϕ(xi), h(y) =
∏n

i=1 h(yi), h1(y1) =
∏n

i=1 h1(y1,i) and
h2(y2) =

∏n
i=1 h2(y2,i).
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Equivalence with SURE as α → 0

lim
α→0

Lα
GR2R−MSE(y; f) = ∥f(y)− y∥22 + 2

n∑
i=1

∑
k≥1

(−1)k+1ak(yi)
1

k!

∂kfi
∂yki

(y) + const. (29)

where
ak(yi) = lim

α→0
Ey2,i|yi,α(y2,i − yi)(αy2,i)

k. (30)

Gaussian case. Based on the proposed re-corruption procedure for the Gaussian case, we have that the re-
corruption of y2 in terms of y and the extra noise ω as

y2 = y −
√

1− α

α
ω (31)

Analyze for k = 1
a1(yi) = lim

α→0
Ey2,i|yi,α{(y2,i − yi)(αy2,i)

1} (32)

for one element y2, y

lim
α→0

Ey2|y,α{(y2 − y)(αy2)} = lim
α→0

Eω|y,α{α(y −
√

1− α

α
ω − y)(y −

√
1− α

α
ω)}

= lim
α→0

Eω|y,α{−α

√
1− α

α
ω(y −

√
1− α

α
ω)}

= lim
α→0

Eω|y,α{−α

√
1− α

α
ωy + α

1− α

α
ω2)}

= lim
α→0

Eω|y,α{−
√
α(1− α)ωy + (1− α)ω2}

= lim
α→0

(1− α)σ2 = σ2

(33)

analyzing for k > 1 we have that ak(y) → 0 since the αk−1 term dominates in the expression

ak(y) = lim
α→0

Eω|y,α

{
(−
√

α(1− α)ωy + (1− α)ω2)(y −
√

1− α

α
ω)k−1αk−1

}
(34)

finally, substituting ak(yi) in (29) for the Gaussian case we have that

lim
α→0

Lα
GR2R−MSE(y; f) = ∥f(y)− y∥22 + 2σ2

n∑
i=1

∂kfi
∂yki

(y) + const. (35)

Poisson case. Starting from Lα
GR2R-MSE with y1 constructed in terms of y,y2 and α as y1 = (y− y2α)/(1−α)

we have that

Lα
GR2R−MSE(y; f) = Ey2|y ∥f(y − y2α

1− α
)− y∥22 − Ey2|y 2

n∑
i=1

(y2,i − yi) fi(
y − y2α

1− α
) + const, (36)

evaluating limα→0 Lα
GR2R−MSE(y; f)

lim
α→0

Lα
GR2R−MSE(y; f) ∝ lim

α→0
Ey2|y ∥f(y − y2α

1− α
)− y∥22 − lim

α→0
Ey2|y 2

n∑
i=1

(y2,i − yi) fi(
y − y2α

1− α
)

∝ ∥f(y)− y∥22 + 2 lim
α→0

Ey2|y

( n∑
i=1

yifi(
y − y2α

1− α
)− y2,ifi(

y − y2α

1− α
)
)

∝ ∥f(y)− y∥22 + 2

n∑
i=1

(
yifi(y)− lim

α→0
Ey2|yy2,ifi(

y − y2α

1− α
)
)

(37)
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Recall that y = γz and y2 = γω/α with ω ∼ Bin(z, α). Defining the function gi,α : ωi 7→ fi(
y−γω
1−α ), we have

that the second term is

lim
α→0

Ey2|yy2,ifi(
y − y2α

1− α
) = lim

α→0
Eω−i|yi

Eωi|yi
γ
ωi

α
fi(

y − γω

1− α
) (38)

= lim
α→0

zi∑
k=1

γ

(
zi
k

)
αk−1(1− α)zi−kkEω−i|yi

gi,α(k) (39)

= lim
α→0

(
γzi (1− α)zi−1Eω−i|zigi,α(1) +

zi∑
k=2

γ

(
zi
k

)
αk−1(1− α)zi−kkEω−i|yi

gi,α(k) (40)

∝ lim
α→0

(
γzi (1− α)zi−1Eω−i|yi

gi,α(1) +O(α)
)

(41)

∝ γzi lim
α→0

Eω−i|yi
gi,0(1) (42)

∝ yifi(y − γei), (43)

where ei ∈ Rn is the vector with i-th entry in 1 and with all others in 0. Thus, plugging in this result, we have

lim
α→0

Lα
GR2R−MSE(y; f) = ∥f(y)− y∥22 + 2

n∑
i=1

yi

(
fi(y)− fi(y − γei)

)
+ const. (44)

Gamma case. Based on the proposed re-corruption procedure for the Gamma case, we have that the re-
corruption of y2 in terms of y and the extra noise ω ∼ Beta(ℓα, ℓ(1− α)) as

y2 =
ω

α
y (45)

then, replacing in the expression of ak(yi) for one element y2, y

ak(y) = lim
α→0

Ey2|y,α{(y2 − y)(αy2)
k} = lim

α→0
Eω|y,α{(

ω

α
y − y)(ωy)k}

= lim
α→0

Eω|α{
ωk+1

α
yk+1 − ωkyk+1}

= yk+1 lim
α→0

( 1
α
Eω|α{ωk+1} − Eω|α{ωk}

) (46)

The kth moment of ω can be expressed recursively as

E{ωk+1} =
ℓα+ k − 1

ℓ+ k − 1
E{ωk} (47)
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then

lim
α→0

( 1
α
Eω|α{ωk+1} − Eω|α{ωk}

)
= lim

α→0
Eω|α{ωk}

( 1
α

ℓα+ k − 1

ℓ+ k − 1
− 1
)

(48)

= lim
α→0

Eω|α{ωk}ℓα+ k − 1− α(ℓ+ k − 1)

α(ℓ+ k − 1)
(49)

= lim
α→0

Eω|α{ωk} (k − 1)(1− α)

α(ℓ+ k − 1)
(50)

= lim
α→0

(

k−1∏
r=0

αℓ+ r

ℓ+ r
)
(k − 1)(1− α)

α(ℓ+ k − 1)
(51)

= lim
α→0

(

k−1∏
r=1

αℓ+ r

ℓ+ r
)
αℓ

ℓ

(k − 1)(1− α)

α(ℓ+ k − 1)
(52)

= lim
α→0

(

k−1∏
r=1

αℓ+ r

ℓ+ r
)
(k − 1)(1− α)

(ℓ+ k − 1)
(53)

= (

k−1∏
r=1

r

ℓ+ r
)

(k − 1)

(ℓ+ k − 1)
(54)

=
(k − 1)! Γ(ℓ)

Γ(ℓ+ k)

ℓ(k − 1)

(ℓ+ k − 1)
(55)

(56)

Finally, substituting ak(yi) in (29) for the Gamma case we have that

lim
α→0

Lα
GR2R−MSE(y; f) = ∥f(y)− y∥22 + 2

n∑
i=1

∑
k≥1

ℓ(k − 1)

k(ℓ+ k − 1)

(−yi)
k+1Γ(ℓ)

Γ(ℓ+ k)

∂kfi
∂yki

(y) + const. (57)

3 Experimental details

The maximum-entropy sampling strategy, detailed below, is employed to generate noise that ensures the third
moment is preserved in the experiment described in Section 4.1. Non-Gaussian Additive Noise, in the main paper.

3.1 Maximum-entropy sampling

Consider a random variable z with µi = E zi the desired moments of order i = 1, . . . , k. We obtain maximum
entropy samples verifying the desired moments up to order k by minimizing [2]

argmin
z

k∑
i=0

∥ 1
n

∑
j=1

zij − µi∥22 (58)

via gradient descent where we initialize z ∼ N (µ11, I(µ2 − µ2
1)). The optimization is stopped when the relative

error is small, i.e.,
1
n |
∑

j=1 z
i
j − µi|

|µi|
< 0.1

for all i = 1, . . . , k.
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4 Additional Simulations and Results

4.1 Effect of the re-corruption hyper-parameter α.

We evaluate the performance of the proposed GR2R loss on the PSNR metric when examining the effect of the re-
corruption parameter α on three noise distributions: Poisson, Gamma, and Gaussian. Specifically, the experimental
setup consists of training the DnCNN model architecture by minimizing the proposed loss Lα

GR2R-MSE for different
values of α on the DIV2K dataset. All experiments share the same training configuration: Adam optimizer, with
an initial learning rate of 1e-4 and 250 training epochs. For the noise model parameters, we set γ = 0.5 for the
Poisson experiment, ℓ = 5 for the Gamma experiment, and σ = 0.1 for the Gaussian experiment.

We test the GR2R loss for α values in the interval [0.1, 3.5] for Poisson and Gamma and in the interval [0.1,
0.9] for Gaussian. A scatter plot is shown in Figure 1 for all noise distributions tested, with the trends highlighted
by polynomial fitting. A trade-off between the value of α and the PSNR score can be observed, where low values
of α indicated less SNR in y1 and higher SNR in y2. For the Poisson and Gamma distributions, the optimal values
of the re-corruption parameter α appear to be approximately α = 0.12, while for the Gaussian distribution, the
preferred value seems to be α = 0.3. Furthermore, although the performance of the GR2R loss is sensitive to the
choice of the re-corruption parameter α. The disparity between the highest and lowest PSNR scores is less than
0.2 dB for the Gamma and Gaussian distributions and less than 0.6 dB for Gaussian noise.

Figure 1: Effect of α parameter for different noise distributions. he results indicate that the optimal α parameter
consistently lies within the range of 0.1 to 0.3 across all tested scenarios.

4.2 Log-Rayleigh Noise
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Figure 2: Histogram of noise estimations.

In addition to the numerical comparisons presented in the main
manuscript between R2R (matching second-order moment) and
the proposed GR2R (matching third-order moment), presented in
Section 4.1 in the main document, this section offers further elab-
oration on the experimental setups, as well as visual analyses of
the noise estimation compared to the restored images. The train-
ing configuration consists of the DnCNN model along 100 epochs
with a batch size of 15 with an initial learning rate of 5e-4 with
the Adam optimizer in the DIV2K dataset. Figure 2 displays a
histogram comparing the original Log-Rayleigh noise, which was
utilized to corrupt the images, with the estimated additional noise
provided by R2R and GR2R. It can be observed that extending the
moment matching to the third moment significantly enhances the
accuracy of the noise distribution estimation compared to match-
ing only until the second moment. Restored images are presented
in Figure 3, which demonstrate the effect of matching the third
moment for the image denoising task.
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20.01dB 26.45dB 30.95dB 31.50dB

Noisy Image R2R GR2R Supervised Reference

20.00dB 26.38dB 30.48dB 30.80dB

20.01dB 26.71dB 30.70dB 31.18dB

20.00dB 25.75dB 29.62dB 29.97dB

20.00dB 24.22dB 26.97dB 27.56dB

Figure 3: Visual Results for a Log-Rayleigh Noise with a standard deviation of σ = 0.1.
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4.3 Additional Results

The following subsections present results of the PSNR mean and standard deviation obtained for the different
methods for Poisson, Gamma, and Gaussian distributions. Each subsection also shows additional visual results.

4.3.1 Poission Noise

Table 2: PSNR results on Poisson noise. GR2R-NLL stands for the proposed GR2R with Negative Log-Likelihood.
Poisson Noise Methods
Noise Level (γ) PURE [3] Neigh2Neigh [4] GR2R-NLL (ours) GR2R-MSE (ours) Supervised-MSE

0.01 32.69±2.13 33.37±2.20 33.90±2.26 33.92±2.20 33.96±2.23
0.1 24.37±1.89 28.27±2.60 28.30±2.65 28.35±2.64 28.39±2.65
0.5 22.98±1.53 24.90±2.68 25.07±2.71 24.69±2.74 25.32±2.75
1.0 17.94±1.13 23.56±2.67 23.69±2.70 23.49±2.71 23.85±2.72

7.57dB 19.02dB 20.64dB 20.91dB 20.61dB

Noisy Image PURE Neigh2Neigh GR2R-NLL Supervised Reference

7.72dB 20.65dB 21.64dB 21.59dB 21.28dB

6.53dB 21.94dB 24.23dB 24.93dB 24.61dB

8.12dB 23.04dB 24.37dB 24.40dB 24.32dB

5.29dB 27.65dB 30.31dB 30.94dB 30.99dB
Figure 4: Poisson Denoising in DIV2K Dataset.
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4.3.2 Gamma Noise

Table 3: PSNR results on Gamma noise. GR2R-NLL stands for the proposed GR2R with Negative Log-Likelihood.
Gaussian Noise Methods
Number of looks (ℓ) Neigh2Neigh [4] GR2R-NLL (ours) GR2R-MSE (ours) Supervised-MSE

30 30.34±1.60 30.43±1.61 31.58±1.72 31.86±1.73
15 28.56±1.58 28.71±1.59 29.55±1.68 29.76±1.70
5 25.71±1.53 25.79±1.49 26.35±1.57 26.72±1.62
1 22.19±1.40 22.19±1.34 22.38±1.40 22.56±1.44

13.11dB 24.95dB 25.11dB 25.61dB 25.94dB

13.73dB 25.70dB 25.68dB 26.09dB 26.58dB

12.63dB 25.41dB 25.54dB 26.43dB 26.76dB

15.73dB 27.83dB 27.49dB 28.41dB 28.94dB

13.21dB 23.74dB 23.72dB 24.03dB 24.33dB

Figure 5: Gamma Denoising in SARDataset.
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4.3.3 Gaussian Noise

Table 4: PSNR results for Gaussian noise. For this case, the MSE and NLL variants of GR2R are the same.
Gaussian noise Methods
Noise Level (σ) Noise2Score [5] SURE [6] Neigh2Neigh [4] GR2R (ours) Supervised-MSE

0.05 34.42±1.16 35.31±1.43 35.07±1.41 35.38±1.47 35.41±1.47
0.1 31.02±0.74 32.76±1.22 32.57±1.22 33.03±1.29 33.14±1.28
0.2 29.34±0.62 29.77±1.02 29.73±1.05 30.24±1.05 30.38±1.05
0.5 22.94±0.65 25.52±1.02 25.61±0.99 25.81±0.97 25.93±0.94

19.59dB 33.63dB 33.42dB 33.79dB 33.95dB

Noisy Image SURE Neigh2Neigh GR2R Supervised Reference

19.57dB 33.92dB 33.67dB 34.12dB 34.28dB

19.86dB 32.85dB 32.62dB 32.95dB 33.15dB

19.94dB 33.40dB 33.14dB 33.49dB 33.62dB

19.89dB 33.32dB 33.11dB 33.45dB 33.60dB

Figure 6: Gaussian Denoising in MRI Dataset.
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5 General Inverse Problems

This section extends the results of the self-supervised inpainting (Section 5 of the main paper ) for Poisson, Gamma,
and Gaussian using DIV2K Dataset.

Table 5: PSNR/SSIM results for different noise models on inpainting in DIV2K dataset.
Methods

Noise Model EI [7] REI [8] GR2R (ours) Supervised-MSE

Poisson γ = 0.5 22.53/0.627 27.05/0.777 27.41/0.791 28.42/0.832

Gamma ℓ = 5 17.06/0.467 - 26.81/0.784 27.12/0.802

Gaussian σ = 0.1 23.68/0.671 29.53/0.853 29.58/0.854 29.93/0.866

10.95dB 20.51dB 29.21dB 30.31dB 30.57dB

Noisy Image EI REI GR2R Supervised Reference

15.16dB 21.99dB 23.67dB 24.22dB 26.30dB

15.57dB 22.18dB 23.13dB 23.49dB 24.88dB

16.18dB 25.00dB 27.86dB 29.19dB 29.98dB

14.62dB 23.60dB 28.44dB 29.78dB 30.34dB

Figure 7: Inpaiting with Poisson noise in DIV2K Dataset.
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8.53dB 13.48dB 28.74dB 28.41dB

Noisy Image EI GR2R Supervised Reference

13.33dB 17.78dB 23.82dB 25.01dB

14.29dB 18.85dB 23.03dB 23.88dB

14.82dB 19.50dB 28.97dB 29.13dB

12.76dB 17.51dB 28.68dB 28.79dB

Figure 8: Inpaiting with Gamma noise in DIV2K Dataset.
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12.28dB 22.73dB 32.64dB 32.70dB 32.74dB

Noisy Image EI REI GR2R Supervised Reference

15.91dB 23.65dB 26.58dB 26.59dB 27.49dB

16.57dB 22.90dB 25.64dB 25.61dB 26.20dB

16.79dB 25.01dB 30.68dB 30.73dB 31.16dB

15.60dB 24.30dB 31.87dB 31.93dB 32.03dB

Figure 9: Inpaiting with Gaussian noise in DIV2K Dataset.
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