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1. Training Details

In this section, we provid the model configurations,
learning rates, and training schedules used for training each
model. All three models of Co-op are based on CroCo [19].
Each model takes two images as input and extracts features
using a ViT [4] encoder with shared weights. The ViT de-
coder then processes these two sets of features together and
estimates the required outputs through each model’s respec-
tive head. We implemented our method using PyTorch [18]
and the Panda3D renderer [5]. All models are trained using
eight NVIDIA A100 GPUs, and we used AdamW [13] as
the optimizer.

1.1. Coarse Model

For the coarse model, we use ViT-Large for the encoder
and ViT-Base for the decoder. We train the model with a
batch size of 64 over 450 epochs, where each epoch consists
of 1,800 iterations. The learning rate decreases from 2.0 ×
10−5 to 2.0×10−6 after 250 epochs, with a warm-up period
during the first 50 epochs. Training the coarse model takes
approximately two days.

1.2. Refiner Model

The refiner model uses the same encoder and decoder ar-
chitecture as the coarse model. During training, the batch
size is 32, and we use the same learning rate and training
schedule as the coarse model. Unlike the coarse model,
we use gradient clipping to prevent excessively large gra-
dients caused by unstable correspondences during the early
training stages. The gradient clipping value is set to 10−2.
Training the refiner model takes approximately three days.
Pose Loss To train the refiner model, we need a pose loss
Lpose in addition to the Lcert and Lflow losses described
in the main paper. We define Lpose as a disentangled point
matching loss, the same as in GenFlow [14].

Given the estimated pose P = [R | [tx, ty, tz]T ] and
the ground truth pose Pgt = [R̄ | [t̄x, t̄y, t̄z]T ], Lpose is
defined as follows:

Lpose = D([R|[t̄x, t̄y, t̄z]T],Pgt)

+D([R̄|[tx, ty, t̄z]T],Pgt)

+D([R̄|[t̄x, t̄y, tz]T],Pgt).

(1)

Here, D is the average L1 distance between two sets of
3D points obtained by transforming the 3D points on the
object’s surface using the poses P and Pgt, respectively.

1.3. Selection Model

The selection model uses a smaller encoder and de-
coder architecture compared to the coarse and refiner mod-
els. Specifically, we use ViT-Base for the encoder and ViT-
Small for the decoder. We train the model for 200 epochs
with a batch size of 16, where each epoch consists of 7,200
iterations. The learning rate is 2.0 × 10−5, and similar to
the other models, we have a warm-up period during the first
50 epochs to stabilize the training process. Training the se-
lection model takes approximately 1.5 days.

1.4. Data Augmentation

During model training, we apply random perturbations
to the training RGB images to enhance robustness against
domain shifts. We employ the same data augmentation
techniques as MegaPose [9], which include Gaussian blur,
contrast adjustment, brightness adjustment, and color filter-
ing using the Pillow library [1].

2. Additional Experiments

2.1. BOP Benchmark Results Using RGB-D

Although Co-op was trained for object pose estimation
using single RGB image inputs, it can also be applied to
pose estimation using RGB-D inputs. This is because it es-
timates the pose based on correspondences between two im-
ages. To achieve this, in the coarse estimation stage, we use
semi-dense correspondences and employ the Kabsch algo-
rithm [7] instead of PnP [10] for pose estimation. In the
refinement stage, instead of returning the estimated pose
from the differentiable PnP layer, we estimate the pose us-
ing the model’s outputs: dense correspondences and cer-
tainty. Certainty represents the degree to which the flow
from the rendered image reaches the object surface of the
query image; therefore, we use only correspondences with
a certainty of 0.5 or higher, thereby excluding the influence
of occluded correspondences. To obtain the final pose, we
utilize MAGSAC++ [2] in our implementation.

Table 1 presents our pose estimation results on the seven
core datasets of the BOP challenge using RGB-D inputs.
GenFlow [14], the best overall method in the 2023 BOP
challenge, reported results only for CNOS [15] detection,
while FoundationPose [20] reported results solely for SAM-
6D [11] detection. To ensure a fair comparison, we con-
ducted separate experiments for each detection method and
reported our results individually. Additionally, we included
the submission results that achieved the highest scores
among various experimental settings for each compared



# Method Detection / Segmentation LM-O T-LESS TUD-L IC-BIN ITODD HB YCB-V Mean Time(sec)

1 MegaPose [9]

CNOS [15]

62.6 48.7 85.1 46.7 46.8 73.0 76.4 62.8 141.965
2 SAM-6D [11] 65.1 47.9 82.5 49.7 56.2 73.8 81.5 65.3 1.254
3 GenFlow [14] 63.5 52.1 86.2 53.4 55.4 77.9 83.3 67.4 34.578
4 GigaPose [16] + GenFlow [14] 67.8 55.6 81.1 56.3 57.5 79.1 82.5 68.6 11.140
5 FreeZe [3] 68.9 52.0 93.6 49.9 56.1 79.0 85.3 69.3 13.474
6 Co-op (Coarse) 70.0 64.2 87.9 56.4 56.6 84.2 85.3 72.1 0.978
7 Co-op (1 Hypotheses) 71.5 64.6 90.5 57.5 58.2 85.7 87.4 73.6 2.331
8 Co-op (5 Hypotheses) 73.0 66.4 90.5 59.7 61.3 87.1 88.7 75.2 7.162

9 SAM-6D [11]

SAM-6D [11]

69.9 51.5 90.4 58.8 60.2 77.6 84.5 70.4 4.367
10 FreeZe [3] 71.6 53.1 94.9 54.5 58.6 79.6 84.0 70.9 11.473
11 FoundationPose [20] 75.6 64.6 92.3 50.8 58.0 83.5 88.9 73.4 29.317
12 Co-op (Coarse) SAM-6D [11] 70.0 65.4 89.2 56.6 58.4 83.7 85.5 72.7 0.911
13 Co-op (1 Hypotheses) 71.6 65.8 91.5 57.6 60.1 85.1 87.7 74.2 2.265
14 Co-op (5 Hypotheses) 73.0 67.8 91.5 59.8 63.1 87.5 88.9 75.9 7.236

Table 1. BOP Benchmark Results Using RGB-D Results on the seven core datasets of the BOP challenge using RGB-D inputs.
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1 Ours (Proposed) 65.5 64.8 72.9 54.2 49.0 84.9 68.9 65.7
2 Ours (Same as GenFlow) 65.0 64.7 73.0 53.5 48.7 84.8 69.0 65.5
3 GenFlow [14] 65.1 64.5 72.6 53.0 47.5 84.7 69.0 65.2

Table 2. Selection Model Ablation Study. Ablation study on
the impact of positive rotation thresholds and backbone in pose
selection models.

method. Specifically, we cite MegaPose [9] results using
10 hypotheses and Teaser++ [22], and GenFlow results us-
ing 16 hypotheses.

2.2. Pose Selection Ablation

To enhance the pose selection model’s ability to identify
poses close to the ground truth, we used a smaller rotation
threshold when defining positives and negatives. We con-
ducted comparative experiments to verify this approach, as
shown in Table 2.

GenFlow reuses the coarse estimation model for pose se-
lection, employing a rotation threshold of 15 degrees. For
comparison, we trained a pose selection model with a Con-
vNeXt [12] architecture, following GenFlow’s settings (row
3). We also trained our model using the same configura-
tion as GenFlow (row 2). Comparing these models with our
proposed pose selection model (row 1), we confirm that a
tighter positive threshold improves accuracy in precise pose
estimation.

3. Qualitative Results

3.1. Coarse Estimation

Fig. 1 presents the qualitative results of the coarse es-
timation. From left to right, the first and second columns
display the query image and the template with the highest

similarity score, respectively. The third and fourth columns
display the segmentation mask from CNOS [15] and the
patches that our model did not classify as ”no match.” From
the fifth to the final columns, we present the semi-dense cor-
respondences between the query image and the most simi-
lar template, along with the estimated poses derived from
them. We can observe that our proposed method accurately
estimates correspondences across various datasets, includ-
ing YCB-V [21], which consists of texture-rich objects, and
T-LESS [6], which consists of low-texture objects.

As demonstrated in the third and fourth rows, our pro-
posed method is robust to detection errors. Segmenta-
tion masks from CNOS or SAM-6D [11] rely on SAM
[8], which does not consider object information, leading
to over-segmentation (see row 5) or under-segmentation
(see row 8). As reported in the ablation experiments
of FoundPose [17], such segmentation errors can signif-
icantly affect pose estimation accuracy. In contrast, our
model—similar to detector-free methods in correspondence
estimation—jointly considers the query image and the tem-
plate. This approach allows our model to estimate poses
robustly against detection errors.

3.2. Pose Refinement

Fig. 2 presents a visualization of the pose refinement
process. From left to right, the first two columns display
the query image and the rendered image of the initial pose,
respectively. The third and fourth columns show the visual-
ization of flow and confidence, which are inputs to the dif-
ferentiable PnP layer. The fifth to seventh columns show
the flow probability, certainty, and sensitivity, which are
used to calculate the confidence. The last column shows
the model’s output—the refined pose of the object.

As seen in the fifth and sixth rows, the flow probability
lowers the confidence in ambiguous areas such as the ob-
ject’s self-occlusion. Similarly, the certainty reduces confi-
dence in areas where it is difficult to trust correspondences
because of occlusions. Conversely, the sensitivity increases



confidence in regions with rich texture (see the eighth row)
or at the object’s edges (see the sixth row) to achieve accu-
rate pose refinement.
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Figure 1. Qualitative Results of Coarse Estimation. The first two columns on the left display the model’s query image and the template
with the highest similarity score to the query image. The third and fourth columns compare the CNOS [15] segmentation mask with patches
that the model did not classify as ’no-match’. From the fifth to the last columns, the correspondences between the query image and the
template, as well as the resulting pose estimation results, are shown.



Figure 2. Qualitative Results of Pose Refinement. From left to right: query image, initial pose rendering, flow, confidence, flow
probability, certainty, sensitivity, and the refined pose (legend: 0.0 1.0 ). The flow probability and certainty reduce confidence
in ambiguous or occluded areas, while sensitivity increases confidence in textured regions and object edges to improve pose refinement.
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