
DPFlow: Adaptive Optical Flow Estimation with a Dual-Pyramid Framework

Supplementary Material

1. Training and evaluation details
Table 1 shows the hyperparameters we used during each
training stage.

2. Checkpoint results
We report the results of our model after each of the four
training stages in Tab. 2. These results can be used as a
sanity check to reproduce the training of our model.

3. Model details
Table 3 details different models’ size, time, and memory
costs with input resolutions ranging from 1K to 8K. Due
to deep feature pyramids, DPFlow has low computational
costs and offers relatively low latency, being faster than
most top-performing methods. FlowFormer++ and Match-
Flow can reduce memory consumption using input tiling,
but this strategy increases inference time considerably. RP-
KNet can achieve lower computational costs, but DPFlow
offers a 23% improvement on the KITTI 2015 benchmark.

4. Evaluation details
4.1. Metrics
This section explains how to calculate the metrics we use
for the evaluations in each benchmark. Let F ∈ RN×2 be
the predicted flow and G ∈ RN×2 the groundtruth, where
N = HW for height H and width W . Then, the metrics
are calculated as follows.

End-Point-Error (EPE): consists of the average Eu-
clidean distance between the predicted flow vectors and the
groundtruth ones:

EPE(F,G) =
1

N

N∑
i=1

∥Fi −Gi∥2. (1)

Outlier ratio: represents the percentage of predictions
whose Euclidean distances are beyond a given threshold τ :

Outlier(F,G) =
1

N

N∑
i=1

[∥Fi −Gi∥2 > τ], (2)

where [·] is the Iverson bracket. Each benchmark selects a
specific threshold value and represents its metric by a differ-
ent name. For example, the KITTI benchmark [13] adopts
τ = max (3, 0.05∥Gi∥2) and calls their metric Fl-All. On
the other hand, the Spring benchmark [12] uses τ = 1 and
names their metric as 1px.

Weighted Area Under the Curve (WAUC): used by
the VIPER dataset [17] to integrate over multiple thresholds
and give more importance to more accurate results.

WAUC(F,G) =

100

N
∑100

i=1 wi

100∑
i=1

wi

N∑
j=1

[∥Fj −Gj∥2 ≤ δi],
(3)

where [·] is the Iverson bracket, δi = i
20 and wi = 1− i−1

100 .

4.2. Spring dataset metrics
To improve the evaluation of predictions for very thin struc-
tures, the Spring benchmark [12] proposed to generate
the groundtruth at doubled resolution (image is 2K and
groundtruth is 4K). Therefore, each prediction (at 2K) is
compared with its four corresponding groundtruth values at
4K, and the lowest error is chosen as the metric. We fol-
low the same procedure when evaluating the train results at
2K in Tab. 3 in the main paper. Unlike the study by SEA-
RAFT [22], we also use the images at full resolution instead
of downsampling them to 1K, which explains the difference
in our results.

For the Spring train 4K evaluation in Tab. 3 in the main
paper, we use bicubic interpolation to upsample the images
from 2K to 4K. We also double the flow groundtruth values
since they are originally encoded for a 2K resolution evalu-
ation. Since the upsampling may create artifacts at the mo-
tion boundaries, we create a mask to ignore pixels near the
borders. We create this mask using a strategy similar to the
one the authors proposed for handling thin structures. We
first reduce the 4K groundtruth to 2K resolution by stacking
2 × 2 pixel blocks. Then, we calculate the EPE metric be-
tween all combinations of the four pixels inside each 2× 2
block. If the maximum EPE within a block is greater than
one, we consider this block to lie on a motion boundary and
ignore all four pixels. The Python code describing this pro-
cedure is shown in Listing 1.

5. Choosing the evaluation checkpoint
Here, we include the individual results for each method we
used to calculate the averages presented in Tab. 2 in the
main paper.

5.1. Spring dataset
Due to the large size of the Spring dataset [12], we only use
the first 10% samples from each sequence for this experi-
ment (480 samples). The results are presented in Tab. 4.

Table 1. Hyperparameters for each training stage. Batch sizes ×4 indicate that gradients were accumulated during 4 iterations before
backpropagating. Dataset abbreviations denote C: FlyingChairs [3], T: FlyingThings3D [11], H: HD1K [10], S: Sintel [1], K: KITTI
2015 [13], Sp: Spring [12].

Stage Datasets Batch Iters (Epochs) LR WD GPU hrs.

1 C 10 100k (45) 2.5× 10−4 10−4 70
2 T 6 1M (80) 1.25× 10−4 10−4 700
3 T+H+S+K 6× 4 120k (25) 1.25× 10−4 10−5 300
4a K 6 2k (250) 1× 10−4 10−5 6
4b Sp 4× 4 120k (100) 1× 10−4 10−5 360

Table 2. Results after each training stage. Values in parentheses
indicate that the same dataset was used during training.

Stage S. Clean S. Final KITTI 2015

EPE EPE EPE Fl-All

1 2.74 3.91 11.1 32.1
2 1.02 2.26 3.37 11.1
3 (0.55) (0.86) (1.04) (3.18)
4a 0.80 1.24 (0.83) (2.24)
4b 1.37 2.45 6.36 15.7

5.2. VIPER dataset

Due to the large size of the VIPER dataset [17], we only
use the first 10% samples from each sequence for this ex-
periment (473 samples). The results are presented in Tab. 5.

5.3. Middlebury-ST dataset

We use all 23 training samples of the Middlebury-ST
dataset [18] for this experiment. The results are presented
in Tab. 6.

5.4. Kubric-1K dataset

We use all 600 samples at 1K resolution from our proposed
Kubric-NK dataset for this experiment. The results are pre-
sented in Tab. 7.

6. Feature visualization

We study the activation patterns of the CGU cross-gate to
see what type of pattern they focus on. Here, we select the
output feature of the encoder network and save the gate acti-
vations using heatmaps. Figures 1 and 2 show the gate acti-
vations on samples from the Kubric-NK (8K resolution) and
KITTI 2015 (1K), respectively. We observe that some gates
can capture some structural information about the scene.
For example, some channels focus on horizontal and verti-
cal lines, while others separate background from foreground
and encode motion boundaries.

Listing 1. Python code for masking out pixels on the motion
boundaries to calculate the metric for the Spring train 4K evalu-
ation in Tab. 3 in the main paper.

import t o r c h
import t o r c h . nn . f u n c t i o n a l a s F
from e i n o p s import r e a r r a n g e

def c o m p u t e v a l i d m a s k (f low : t o r c h . Tensor) :
f l o w shape i s [B , 2 , H, W]
downsample by s t a c k i n g 2 x2 b l o c k s
f l o w s t a c k = r e a r r a n g e (

flow ,
” b c (h nh) (w nw) −> b (nh nw) c h w” ,
nh =2 ,
nw=2

)
c a l c u l a t e EPE between a l l p a i r s
i n each 2 x2 b l o c k
f l o w s t a c k 4 = f l o w s t a c k . r e p e a t (

1 , 4 , 1 , 1 , 1)
f l o w s t a c k 4 = r e a r r a n g e (

f l o w s t a c k 4 ,
” b (m n) c h w −> b m n c h w” ,
m=4)

d i f f = f l o w s t a c k [: , : , None] − f l o w s t a c k 4
d i f f = r e a r r a n g e (

d i f f ,
” b m n c h w −> b (m n) c h w”

)
d i f f = t o r c h . s q r t (t o r c h . pow (d i f f , 2) . sum (2))
mark p i x e l s as v a l i d o n l y i f t h e maximum
EPE o f t h e i r b l o c k i s below one
m a x d i f f , = d i f f . max (1)
m a x d i f f = F . i n t e r p o l a t e (

m a x d i f f [: , None] ,
s c a l e f a c t o r =2 ,
mode=” n e a r e s t ”

)
v a l i d m a s k = m a x d i f f < 1 . 0
re turn v a l i d m a s k

7. Input downsampling

One popular strategy to avoid handling high-resolution in-
puts consists of first downsampling the inputs and then up-
sampling the predictions back to the original resolution.
Here, we conduct a study to evaluate how this input down-

Table 3. Model details. □ denotes methods that use input tiling [5, 6]. ∗ indicates that the model is running in local correlation mode,
which decreases memory consumption but increases inference time. † results are not available due to running out of memory. Times are
calculated using an NVIDIA RTX3090 GPU.

Model KITTI 2015 Params Time (s) Memory (GB)

(Fl-All) (M) 1K 2K 4K 8K 1K 2K 4K 8K

RAFT [21]∗ 5.10 5.25 0.51 1.36 4.76 † 0.65 1.71 6.40 †
GMA [9] 5.25 5.88 0.18 1.17 † † 1.41 17.3 † †
DIP [26] 4.21 5.37 0.51 2.11 8.60 † 1.59 5.46 20.9 †
SKFlow [20] 4.84 6.27 0.31 1.70 † † 1.17 17.4 † †
FlowFormer++ [19]□ 4.52 16.1 1.17 2.68 9.02 29.9 4.24 4.37 6.10 18.7
MatchFlow [2]□ 4.63 15.4 0.63 1.44 5.82 22.8 1.31 1.61 3.04 20.7
MS-RAFT+ [7]∗ 4.19 16.1 0.74 2.82 † † 2.61 9.34 † †
GMFlow+ [25] 4.49 7.36 0.23 1.69 † † 2.99 20.6 † †
RPKNet [15]∗ 4.64 2.84 0.08 0.28 1.18 5.34 0.56 1.34 4.42 16.8
SEA-RAFT (L) [22]∗ 4.30 19.6 0.24 0.70 2.60 † 0.79 2.02 7.21 †
CCMR+ [8]∗ 3.86 11.5 1.34 5.36 † † 3.19 12.1 † †
DPFlow∗ 3.56 10.0 0.16 0.53 1.98 8.40 0.76 1.90 6.70 20.7

Figure 1. Visualization of cross-gate activations on an 8K sample from the Kubric-NK dataset.

sampling affects the results. We use samples from three
high-resolution datasets: Spring [12] (2K), Middlebury-
ST [18] (3K), and Kubric-NK (8K). For this study, we use
bilinear interpolation to first downsample the inputs to 1K
resolution, and then upsample the predictions back to the
original sizes before computing the accuracy metrics. The

results in Tab. 8 show some interesting observations. Down-
sampling from 2K to 1K in the Spring benchmark nega-
tively impacts all methods except GMFlow+. This result
indicates that most approaches are robust to this input size,
but the global matching strategy from GMFlow+ may have
more bias towards the training sizes. On the Middlebury-

Figure 2. Visualization of cross-gate activations on a 1K sample from the KITTI 2015 dataset.

Table 4. Training stage experiments on the Spring dataset.

Method 1px ↓
Stage 2 Stage 3

PWC-Net 7.18 5.15
IRR 5.46 4.52
VCN 7.53 8.08
RAFT 4.45 3.85
GMA 4.33 3.67
DIP 4.36 4.21
GMFlow 5.92 6.83
FlowFormer 4.16 3.93
SKFlow 4.61 3.93
FlowFormer++ 4.1 4.21
MatchFlow 4.33 4.15
GMFlow+ 5.04 5.07
RPKNet 3.95 3.86
SEA-RAFT (M) 4.37 3.63
RAPIDFlow 4.32 3.94
DPFlow 4.76 3.53

Average 4.92 4.53

ST 3K samples, we observe significant improvements in
methods with fixed structures. On the other hand, adapt-
able methods like DPFlow and RAPIDFlow still benefit
from processing the images at the original resolution. Us-
ing an eight-times downsampling on Kubric-NK benefits al-
most all methods. However, these results may be caused
by the relatively simple shapes and motions generated by
Kubric [4]. Since the objects do not present fine-grained
details, downsampling them does not affect the input con-
tents significantly. A more thorough study of the effects of
downsampling would require a high-resolution dataset with
finer and more complex motion patterns.

Table 5. Training stage experiments on the VIPER dataset.

Method WAUC ↑
Stage 2 Stage 3

PWC-Net 51.2 61.3
IRR 58.1 61.4
VCN 55.6 58.4
RAFT 63.7 67.1
GMA 64 67.7
DIP 66.8 67.7
GMFlow 52.9 52.4
FlowFormer 66.1 68.8
SKFlow 64.4 67.8
FlowFormer++ 66.8 68.6
MatchFlow 66.3 69.0
GMFlow+ 64.8 65.8
RPKNet 66.9 68.7
SEA-RAFT (M) 68.9 71.8
RAPIDFlow 62.7 66.5
DPFlow 70.4 72.7

Average 63.1 65.9

8. Kubric-NK

This section details the Kubric-NK dataset and presents ad-
ditional discussions about the effect of input resolution on
the performance of optical flow methods.

8.1. Dataset samples

Figure 3 shows an image pair and its respective optical flow
annotation for each of the 30 sequences of the Kubric-NK
dataset.

Figure 3. Samples from all 30 sequences from the Kubric-NK dataset. Odd rows show two consecutive images overlayed; even rows show
their respective flow.

Table 6. Training stage experiments on the Middlebury-ST
dataset.

Method EPE ↓
Stage 2 Stage 3

PWC-Net 35.9 74.3
IRR 15.2 61.4
VCN 44.2 51
RAFT 35.2 51
DIP 16.7 21.2
FlowFormer 19.0 13.8
FlowFormer++ 17.5 15.2
MatchFlow 16.7 19.4
RPKNet 15.0 16.4
SEA-RAFT (M) 65.1 59.2
RAPIDFlow 6.41 7.33
DPFlow 4.82 5.25

Average 24.3 32.9

Table 7. Training stage experiments on the Kubric-1K dataset.

Method EPE ↓
Stage 2 Stage 3

PWC 1.4 1.28
IRR 0.95 1.1
VCN 1.23 1.09
RAFT 0.73 0.69
GMA 0.7 0.67
DIP 0.71 0.68
GMFlow 0.68 0.88
FlowFormer 0.5 0.52
SKFlow 0.69 0.62
FlowFormer++ 0.48 0.46
MatchFlow 0.54 0.54
GMFlow+ 0.48 0.45
MemFlow 0.57 0.55
SEA-RAFT(M) 0.56 0.53
RPKNet 0.61 0.6
RAPIDFlow 0.85 0.81
DPFlow 0.57 0.5

Average 0.72 0.70

8.2. Generalization to different resolutions

Optical flow estimation is fundamentally a point-matching
problem between a pair of images. Therefore, the overall
magnitude of the flow (correspondence) vectors tends to
correlate with the size of the inputs, making it more diffi-
cult for higher-resolution inputs. There are two main opti-
cal flow estimation approaches: global and local matching.

Global matching can theoretically handle changes in the in-
put size and large motions. However, the cost of global
search increases quadratically according to the input size,
which makes it unfeasible for larger inputs. Local matching
only searches for correspondences within a limited window
(typically 9 × 9) around the origin point. This approach,
however, requires the corresponding points to be within the
range of the search window. This causes a problem for most
local methods because they adopt an encoder with a fixed
structure, which makes the size of the feature directly deter-
mined by the input resolution. Figure 4 illustrates how the
increase in input size affects the matching procedure and
how DPFlow’s recurrent encoder alleviates this problem.

8.2.1. Training bias
Besides the problems caused by the limited search range,
the training distribution also heavily affects the performance
of non-adaptive models to different inputs. We demonstrate
the effect of training bias with two studies based on the
open-source models Flow1D [24] and CroCo [23].

Flow1D provides an additional model variant trained us-
ing a dataset with high-resolution samples. We compare
the performance of Flow1D on Kubric-NK using the stan-
dard (trained for MPI-Sintel) and high-resolution training
in Tab. 9. The results demonstrate that high-resolution train-
ing is effective and necessary to produce stable predictions
at 4K resolution. However, we also observe that it neg-
atively affects the results at the lower 1K resolution, thus
clearly showing the effect of the training bias.

Our second study evaluates the performance of the
CroCo model on the training split of the Middlebury v3
stereo-matching benchmark [18]. This benchmark contains
15 image pairs ranging from 1K to 3K resolution inputs.
Since stereo-matching can be viewed as a subset of opti-
cal flow (matching only on the horizontal axis), optical flow
models can be used for this task by zeroing the y-axis pre-
diction. We chose the CroCo model because it provides
trained variants for stereo and optical flow tasks using a
common backbone network. The only differences between
these variants are the number of output prediction heads (1
for stereo vs. 2 for optical flow) and the training samples.

Table 10 shows how using these two variants affects
the Middlebury v3 training benchmark results. Although
optical flow and stereo matching are both similar match-
ing problems, directly transferring the optical flow-trained
model for stereo estimation results in a noticeable degrada-
tion. Since both variants share the same architecture, these
results further illustrate the effect of the training bias.

These studies demonstrated that the problems of han-
dling different inputs can be mitigated with specialized
training. In particular, training different variants for particu-
lar input resolutions can result in significant improvements.
Nonetheless, this strategy is only palliative since it can only
shift the problem to another resolution range. Moreover,

Table 8. Results on high-resolution benchmarks with and without downsampling the inputs. The @1K columns indicate that the inputs are
downsampled to 1K resolution and the predictions are upsampled back to the original sizes. † results are not available due to running out
of memory.

Method Spring (1px ↓) Mbury-ST (EPE ↓) Kubric-NK (EPE ↓)

2K @1K 3K @1K 8K @1K

RAFT [21] 3.85 4.52 35.2 8.01 82.7 5.09
GMA [9] 3.75 4.53 † 8.23 † 4.91
DIP [26] 3.64 3.87 16.7 8.01 † 5.42
SKFlow [20] 3.79 4.20 † 6.88 † 4.72
FlowFormer++ [19] 3.76 4.21 17.5 6.93 24.4 3.39
MatchFlow [2] 3.97 4.21 16.7 7.18 29.0 3.89
GMFlow+ [25] 5.72 4.00 † 5.67 † 4.43
RPKNet [15] 3.28 4.12 15.0 6.74 18.2 4.59
SEA-RAFT (M) [22] 3.47 3.53 65.1 6.71 51.8 4.07
RAPIDFlow [14] 3.73 5.06 6.41 8.99 5.96 5.99
DPFlow 3.06 3.57 5.09 5.63 4.13 3.88

Table 9. Flow1D results using standard-resolution stage 3 training
(for MPI-Sintel benchmark) and after high-resolution re-training.

Train resolution Kubric-NK (EPE ↓)

1K 2K 4K

Standard (Sintel) 0.85 1.80 32.7
High-res. 0.88 1.42 4.49

Table 10. Results of evaluating CroCo [23] variants trained on
stereo and optical flow samples on the Middlebury v3 stereo
matching benchmark.

Variant Middlebury v3 (training)

EPE ↓ 1px ↓ 2px ↓
CroCo-Stereo 0.37 3.86 1.93
CroCo-Flow 7.17 29.7 20.1

training multiple variants of each model is expensive, es-
pecially with high-resolution inputs. One advantage of the
proposed DPFlow is that it significantly reduces the input
resolution gap by changing its pyramids on the fly without
requiring additional training.

8.3. Additional qualitative results

This section shows some additional qualitative results of
DPFlow on some high-resolution inputs. We demonstrate
results on samples at 4K resolution from DAVIS [16]
in Fig. 5, 3K from Middlebury-ST [18] in Fig. 6, and 1K
to 8K from Kubric-NK in Figs. 7, 8, 9.

References
[1] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A

naturalistic open source movie for optical flow evaluation.
In ECCV, pages 611–625, 2012. 2

[2] Qiaole Dong, Chenjie Cao, and Yanwei Fu. Rethinking opti-
cal flow from geometric matching consistent perspective. In
CVPR, pages 1337–1347, 2023. 3, 7

[3] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip
Hausser, et al. FlowNet: learning optical flow with convolu-
tional networks. In ICCV, pages 2758–2766, 2015. 2

[4] Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch,
et al. Kubric: A scalable dataset generator. In CVPR, pages
3739–3751, 2022. 4

[5] Zhaoyang Huang, Xiaoyu Shi, Chao Zhang, Qiang Wang,
et al. FlowFormer: A transformer architecture for optical
flow. In ECCV, pages 668–685, 2022. 3

[6] Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac,
Carl Doersch, et al. Perceiver IO: a general architecture for
structured inputs & outputs. In ICLR, 2022. 3

[7] Azin Jahedi, Maximilian Luz, Marc Rivinius, Lukas Mehl,
and Andrés Bruhn. MS-RAFT+: High resolution Multi-
Scale RAFT. IJCV, 2023. 3

[8] Azin Jahedi, Maximilian Luz, Marc Rivinius, and Andrés
Bruhn. CCMR: High resolution optical flow estimation via
coarse-to-fine context-guided motion reasoning. In WACV,
2024. 3

[9] Shihao Jiang, Dylan Campbell, Yao Lu, Hongdong Li, and
Richard Hartley. Learning to estimate hidden motions with
global motion aggregation. In ICCV, pages 9752–9761,
2021. 3, 7

[10] Daniel Kondermann, Rahul Nair, Katrin Honauer, Karsten
Krispin, et al. The HCI benchmark suite: Stereo and flow
ground truth with uncertainties for urban autonomous driv-
ing. In CVPR Workshops, pages 19–28, 2016. 2

[11] N. Mayer, E. Ilg, P. Häusser, P. Fischer, et al. A large
dataset to train convolutional networks for disparity, optical

(a) Local search with fixed encoder

(b) DPFlow’s adaptable encoder

Figure 4. Simple example of the local matching procedure on typ-
ical optical flow models. (a) The spatial size of the feature map
extracted by an encoder with a fixed structure is determined by the
encoder’s total stride k (e.g., 8 times smaller than the input). When
the input resolution increases, the matched points are beyond the
local window’s range, causing a mismatch. (b) DPFlow adopts a
recurrent encoder that can be dynamically unfolded to change the
number of encoding levels and control the size of the initial feature
map. This alleviates the window range problem.

flow, and scene flow estimation. In CVPR, pages 4040–4048,
2016. 2

[12] Lukas Mehl, Jenny Schmalfuss, Azin Jahedi, Yaroslava Nali-
vayko, and Andrés Bruhn. Spring: A high-resolution high-
detail dataset and benchmark for scene flow, optical flow and

stereo. In CVPR, pages 4981–4991, 2023. 1, 2, 3
[13] Moritz Menze and Andreas Geiger. Object scene flow for

autonomous vehicles. In CVPR, pages 3061–3070, 2015. 1,
2

[14] Henrique Morimitsu, Xiaobin Zhu, Roberto M. Cesar-Jr, Xi-
angyang Ji, and Xu-Cheng Yin. RAPIDFlow: Recurrent
Adaptable Pyramids with Iterative Decoding for efficient op-
tical flow estimation. In ICRA, 2024. 7

[15] Henrique Morimitsu, Xiaobin Zhu, Xiangyang Ji, and Xu-
Cheng Yin. Recurrent partial kernel network for efficient
optical flow estimation. In AAAI, pages 4278–4286, 2024. 3,
7

[16] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Ar-
beláez, et al. The 2017 DAVIS challenge on video object
segmentation. ArXiv, 2017. 7, 9

[17] Stephan R. Richter, Zeeshan Hayder, and Vladlen Koltun.
Playing for benchmarks. In ICCV, pages 2232–2241, 2017.
1, 2

[18] Daniel Scharstein, Heiko Hirschmüller, York Kitajima, Greg
Krathwohl, et al. High-resolution stereo datasets with
subpixel-accurate ground truth. In GCPR, pages 31–42.
Springer, 2014. 2, 3, 6, 7, 10

[19] Xiaoyu Shi, Zhaoyang Huang, Dasong Li, Manyuan Zhang,
et al. FlowFormer++: Masked cost volume autoencoding for
pretraining optical flow estimation. In CVPR, pages 1599–
1610, 2023. 3, 7

[20] Shangkun Sun, Yuanqi Chen, Y. Zhu, Guodong Guo, and
Gezhong Li. SKFlow: Learning optical flow with super ker-
nels. In NeurIPS, 2022. 3, 7

[21] Zachary Teed and Jia Deng. RAFT: recurrent all-pairs field
transforms for optical flow. In ECCV, pages 402–419, 2020.
3, 7

[22] Yihan Wang, Lahav Lipson, and Jia Deng. SEA-RAFT: Sim-
ple, Efficient, Accurate RAFT for optical flow. In ECCV,
2024. 1, 3, 7

[23] Philippe Weinzaepfel, Thomas Lucas, Vincent Leroy,
Yohann Cabon, et al. CroCo v2: Improved cross-view com-
pletion pre-training for stereo matching and optical flow. In
ICCV, pages 17969–17980, 2023. 6, 7

[24] Haofei Xu, Jiaolong Yang, Jianfei Cai, Juyong Zhang, and
Xin Tong. High-resolution optical flow from 1D attention
and correlation. In ICCV, pages 10478–10487, 2021. 6

[25] Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, et al.
Unifying flow, stereo and depth estimation. TPAMI, 45(11):
13941–13958, 2023. 3, 7

[26] Zihua Zheng, Ni Nie, Zhi Ling, Pengfei Xiong, et al. DIP:
Deep inverse patchmatch for high-resolution optical flow. In
CVPR, pages 8915–8924, 2022. 3, 7

Figure 5. Qualitative results on 4K samples from the DAVIS dataset [16].

Figure 6. Qualitative results on 3K samples from the Middlebury-ST dataset [18].

Figure 7. Qualitative results on 1K to 8K samples from our Kubric-NK dataset.

Figure 8. Qualitative results on 1K to 8K samples from our Kubric-NK dataset.

Figure 9. Qualitative results on 1K to 8K samples from our Kubric-NK dataset.

	Training and evaluation details
	Checkpoint results
	Model details
	Evaluation details
	Metrics
	Spring dataset metrics

	Choosing the evaluation checkpoint
	Spring dataset
	VIPER dataset
	Middlebury-ST dataset
	Kubric-1K dataset

	Feature visualization
	Input downsampling
	Kubric-NK
	Dataset samples
	Generalization to different resolutions
	Training bias

	Additional qualitative results

