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Here, we provide additional details and visualizations
regarding Markush structures, the benchmark datasets, the
MarkushGrapher analysis, and the synthetic training set, in-
troduced in Section 1, Section 2, Section 3 and Section 4,
respectively.

1. Markush Structure

Figure 1 illustrates the different components of a Markush
structure. A Markush structure contains two main compo-
nents: a visual definition (referred to as Markush structure
backbone) and a textual definition. The Markush structure
backbone represents the core of the chemical structure tem-
plate. It can identified with a Chemaxon Extended SMILES
(CXSMILES) [1] string. For the Markush structure in Fig-
ure 1, the CXSMILES is:

CXSMILES

[H]C1=C([*])C([*])=C([*])C=C1N(C)C(=O)C1=C
C=CC(=C1)S(=O)(=O)NC1CCCC1.CCO.*[*].*[*]
|$;;;X;;X;;G1;;;;;;;;;;;;;;;;;;;;;;;;;;G2;;G4$,m:29:24.25.
26.27.28,m:32:14.19.15.18.17.16,m:34:24.25.26.27.
28,Sg:n:28:w:ht,Sg:n:30: :ht|

The CXSMILES is composed of two sections. The first sec-
tion holds the SMILES (in black) that identifies the atoms,
the bonds and the connectivity of the structure. The second
section is an extension table. It contains the variable groups
(in red), the position variation indicators (sections starting
with ‘m’, in blue) and the frequency variation indicators
(sections starting with ‘Sg’, in green). The numbers written
in the position variation and frequency variation indicators
correspond to the index of the atoms in the SMILES. More
details can be found in the CXSMILES documentation [1].
As shown in Figure 1, the textual definition of the Markush
structure defines the possible substituents for the different
variable groups and frequency variation labels depicted in
the Markush structure backbone.

2. Benchmark Datasets

2.1. Document Selection

To build M2S, we manually sample documents published
by the US Patent and Trademark Office (USPTO), Euro-
pean Patent Office (EPO) and World Intellectual Property
Organization (WIPO). The selected patents are published
between 1999 and 2023.

To build USPTO-Markush, we sample images published
by the USPTO between 2010 and 2016.

2.2. Visual Examples

Figure 2 illustrates some images randomly sampled from
MarkushGrapher-Synthetic, M2S and USPTO-Markush.

2.3. Statistics

Table 1 shows some statistics on MarkushGrapher-
Synthetic, M2S and USPTO-Markush benchmarks. We ob-
serve that the three benchmarks contain a large fraction
of Markush structures having R-groups. USPTO-Markush
contains about twice as much images with ‘m’ and ‘Sg’ sec-
tions than M2S. Given that MolScribe is unable to predict
‘m’ and ‘Sg’ sections, this clarifies why MolScribe [9] per-
forms worse on USPTO-Markush than on M2S (see Table
1 of the main paper). Besides, the ablation study shown
in Table 4 of the main paper demonstrates that adding the
atom indices in the CXSMILES improves MarkushGrapher
performance on USPTO-Markush substantially more than
on M2S. It suggests that the atom indexing is particularly
useful for predicting the ‘m’ and ‘Sg’ sections. Table 1
also reports the mean number of atoms per sample, reflect-
ing the average size of Markush structure backbones. It is
similar for all three benchmarks. Additionally, Table 1 re-
ports the mean number of variable groups, frequency vari-
ation labels, and substituents. These metrics are correlated
with the average length of textual definitions of Markush
structures. These definitions are on average longer for
MarkushGrapher-Synthetic compared to M2S.
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3. MarkushGrapher Detailed Analysis

3.1. Impact of Input Modalities

Here, we analyze how each input modality contributes to
the MarkushGrapher predictions.

Figure 3 illustrates MarkushGrapher predictions after
selectively removing components from an example input.
We remove, one at a time, the Markush structure textual
definition from the image, the Markush structure back-
bone from the image, all OCR cells, OCR cells from the
Markush structure textual definition, and OCR cells from
the Markush structure backbone. Inputs 2, 4 and 5 in Fig-
ure 3 suggest that MarkushGrapher predicts the substituents
tables using only OCR cells from the textual definition. The

textual definition image appears unnecessary. According to
input 4 in Figure 3, MarkushGrapher appears to utilize the
image of the Markush structure backbone to predict an ini-
tial structure. This first prediction represents the shape of
the structure, i.e. if all atom types and Markush structure
features were ignored, the prediction would correct. Some
common atoms such as oxygen or nitrogen are occasion-
ally added to this initial structure, while the model does not
have access to the OCR text provided during training. At
this stage, most Markush structure features are ignored (R-
groups and ‘m’ sections) or incomplete (‘Sg’ sections). In-
put 6 in Figure 3 indicates that MarkushGrapher leverages
OCR cells of the textual definition to know which variable
group and frequency variation indicator need to be added

Variable Group
(R-group)

Frequency 
Variation Indicator 

(Sg section)

Position
 Variation Indicator

(m section)

Substituent

Markush structure 
backbone

Markush structure 
textual definition

Frequency 
Variation Label

Variable Group
(R-group)

Figure 1. Markush structure components.. Illustration of the two mains components of a Markush structure: the backbone and the
textual definition. The backbone depicts the core of the chemical structure template: atoms, bonds, connectivity, variable groups (red),
frequency variation indicators (green), and position variation indicators (blue). The textual definition lists substituents (orange) that can
replace their respective variable groups and frequency variation labels in the backbone.

Table 1. Benchmarks statistics. Comparison of the number of samples, the proportion of images containing each Markush structure
features (R-group, ‘m’ section, ‘Sg’ section), the number of atoms, the number of variable groups and frequency variation labels, and the
number of substituents for the different benchmarks.

Benchmarks Number of
samples

Proportion of CXSMILES
with at least one: Mean number

of atoms

Mean number of
variable groups
and frequency
variation label

Mean number
of substituentsR-group ‘m’ section ‘Sg’ section

MarkushGrapher-Synthetic 1000 0.95 0.54 0.39 23 3.9 11
M2S 103 0.97 0.30 0.25 19 2.4 9.2
USPTO-Markush 74 0.91 0.74 0.42 20 4.7 -



M2S

USPTO-Markush 

MarkushGrapher-Synthetic

Figure 2. Benchmarks example images. Example images randomly selected in MarkushGrapher-Synthetic, M2S, and USPTO-Markush.



4. No OCR Cells 5. No textual definition OCR cells 6. No Markush backbone OCR cells

2. No textual definition image 3. No Markush backbone image1. Reference

     MarkushGrapher

     MarkushGrapher 

o 4 12 14 17 18
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Rd HS F
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o 4 12 14 17 18
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Rd HS F

Figure 3. Modalities removal. MarkushGrapher predictions after selectively removing components from a reference (input 1). The input
OCR boxes are highlighted in red, with the corresponding OCR text written in red as well. In input 2, the Markush structure textual
definition is removed from the image. In input 3, the Markush structure backbone is removed from the image. In input 4, all OCR cells
are removed. In input 5, the OCR cells in the Markush structure textual definition are removed. In input 6, the OCR cells in the Markush
structure backbone are removed.



3. Image replacement 2. Image replacement1. Reference
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Figure 4. Image modality replacement.. Examples of MarkushGrapher predictions after replacing input image 1 with either image input
2 or image input 3. The input OCR boxes are highlighted in red, with the corresponding OCR text written in red as well. The OCR cells
remain unchanged.

to the initial structure. Futhermore, input 3 in Figure 3 is
an indication that if no input backbone image is provided,
MarkushGrapher attempts to infer a compact structure that
connects the OCR cells. In this case, said structure respects
the valence constraints of variable groups given by the tex-
tual definition.

Figure 4 shows examples of MarkushGrapher predic-
tions after replacing the input image with alternative im-
ages while keeping the OCR cells unchanged. The inputs
2 and 3 in Figure 4 seem to confirm that MarkushGrapher
uses the image of the Markush structure backbone to pre-
dict the shape of the structure. The model appears to detect
that some regions of this initial structure need to be replaced
using the content of OCR cells. Most of the time, this re-
placement is then done using the closest OCR cell in the
image. For example in input 2, the variable group ‘W5’ is
placed at the closest location where it has 4 connections,
thus correctly respecting the valence constraints given by
the Markush structure textual definition.

3.2. Qualitative Evaluation
Qualitative examples. Figure 5 provides examples of
MarkushGrapher predictions on real-world data. Notably,
MarkushGrapher correctly predicts long tables (see input
1 in Figure 5). MarkushGrapher can also correctly recog-
nize multi-modal Markush structures with drawing styles
from the different patent offices. (In Figure 5, input 1 is
published by EPO, input 2 is published by WIPO, and in-

put 3 is published by USPTO.) MarkushGrapher also han-
dle Markush structures backbones having a large number of
variable groups (see input 9 in Figure 5), a large number of
position variation indicators on the same cycle (see input 4
in Figure 5), a large number of frequency variation indica-
tors (see input 5 in Figure 5), and function groups connected
to cycles (see input 6 in Figure 5). Additionally, the model
recognizes Markush backbones even when atom indices are
displayed (see input 4 in Figure 5).

Failure cases. Figure 6 illustrates examples of failure cases
of MarkushGrapher on the M2S benchmark. Input 1 in Fig-
ure 6 shows an inversion between a solid wedge bond and a
double bond. Input 2 in Figure 6 shows an incorrect variable
group label. While the OCR text correctly contains ‘R2a’,
MarkushGrapher only predicts ‘R2’. It is probably due to
the OCR cells augmentations used during training (see Sec-
tion 4) and the abundance of ‘R2’ as a variable group label.
Input 3 in Figure 6 highlights an incorrect prediction for a
frequency variation indicator. In this example, the bound-
ing box of the frequency variation indicator label is near to a
carbon atom, and then incorrectly associated with this atom.
Similary, input 4 in Figure 6 presents an incorrect prediction
for a position variation indicator. Here, a complex substruc-
ture is attached to a cycle. The model struggles with this
because, during training, it only encounters R-groups and
functional groups connected to cycles. The input 5 in Fig-
ure 6 shows an incorrect abbreviation prediction. The input
image contains the abbreviation ‘OG’ (oxygen atom con-



3. M2S2. M2S1. M2S

4. USPTO-Markush 5. USPTO-Markush 6. USPTO-Markush

8. SciAssess 9. SciAssess7. SciAssess

     MarkushGrapher

     MarkushGrapher 

     MarkushGrapher 

Rd,Rc hydrogen cyano halogen
Rd,Rc hydroxy C1-C4 alkyl
Rd,Rc C2-C4alkenyl C2-C4alkynyl C1-C4alkoxy
Rd,Rc C3-C7cycloalkyl heterocyclyl heteroaryl
Rd,Rc heterocyclyl C1-C4alkyl C1-C4alkyl aryl
Rd,Rc C1-C4alkyl heterocyclyl C1-C4alkyl heteroaryl
Rd,Rc C1-C4alkoxy aryl C1-C4alkoxy heterocyclyl
Rd,Rc C1-C4alkoxy heteroaryl C1-C4alkoxy heteroaryl
Rd,Rc C1-C4alkoxy substituted 

with hydroxy 
amino and mono- and 
di-C1-C4alkylamino

C1-C4 alkoxy
Z,E as defined in claim 1
R11,R12,R13,R21 as defined in claim 3 R2,R3 hydrogen C1-C24 alkyl

Figure 5. Qualitative evaluation. Examples of MarkushGrapher predictions are shown on real-world data: M2S (inputs 1, 2 and 3),
USPTO-Markush (inputs 4, 5 and 6), SciAssess (inputs 7, 8 and 9).



4. Position variation indicator 5. Abbreviation 6. Mixed substituents definition

2. Variable group 3. Frequency variation indicator1. Solid wedge bond

     MarkushGrapher

     MarkushGrapher 

G C N
R8 metryl
R9 methyl etyhl
s 1-

R2 hydrogen fluoro
R3 hydrogen fluoro
A an optionally substituted alkyl or aryl radical ethyl
q 1 2

R1 halo OH -CH2CH2F -O-CO-C6alkyl
R2 halo OH -CH2CH2F2 -O-CO-O-
x 2 3

R1,R2,R3,X as described hereinabove
W halogen sulfonate

m 1 2 3
n 1 2 3
Q hydrogen methyl phenyl phenoxy

X CH N
R1 -CH3 -CH2F -CF3 -CH2CH3 -CH2CF3
R1 -CH2CHR2 -CH2CH2F -CF(CH3)2 -CF2CH3 -OCH3
R2 -H -CH2OCH3

Figure 6. Failure cases. Example of failure cases of MarkushGrapher on real-world data from M2S. The errors are highlighted with red
boxes. Typical failure cases include solid wedge bond (input 1), incorrect variable group label (input 2), incorrect frequency variation
indicator (inputs 3 and 4), incorrect position variation indicator (input 4), unsupported abbreviation (input 5) and unsupported substituents
definition (input 6).



nected to variable group G) but MarkushGrapher predicts
a variable group ‘G0’, as it does not currently support ab-
breviations. On the same image, the frequency variation
indicators represented with brackets are also only partially
predicted. Input 6 in Figure 6 shows a substituent defini-
tion that combines text and interleaved chemical structure
drawings. This challenging setup is currently not supported
by MarkushGrapher. Additionally, we observe that the pre-
dicted substituent table occasionally contain additional la-
bels, which are not in the input (see input 1 in Figure 6), as
well as missing labels (see input 4 in Figure 6).

Besides, It is worth noting that MarkushGrapher is
trained to predict ‘m’ sections which connect to all atoms
in a cycle. Strictly speaking, this could be seen as incorrect,
as some connections violate valence constraints. However,
the MarkushGrapher output contains all information needed
to reconstruct only the valid connections.

3.3. Model robustness
Despite being trained on synthetic data, MarkushGra-
pher generalizes well to real-world datasets like M2S and
USPTO-M. To further validate this, we tested the model
on augmented versions of these benchmarks, simulating

Table 2. MarkushGrapher robustness. Exact match accuracy is
reported on augmented (A) versions of the real-world benchmark.

Method M2S-100-A USPTO-Markush-A
CXSMILES Table CXSMILES

MarkushGrapher 31 28 32

low-quality inputs such as scanned documents, using the
same augmentations applied during training (see examples
of augmentations in Figure 7). Table 2 shows that Markush-
Grapher maintains strong performance in these challenging
scenarios.

3.4. Inference on real-data
MarkushGrapher currently relies on ground-truth OCR cells
as input. To enhance usability, OCR cells should be ob-
tained through an OCR model. One possible approach is
to use the abbreviation recognition approach introduced in
MolGrapher [8]. In this method, text cells are extracted
from chemical images using rule-based processing and Pad-
dleOCR [4]. Candidate text positions are identified by fil-
tering connected components based on size, followed by
character detection and recognition with PaddleOCR. Post-
processing then corrects common chemical symbol inver-

 1.     2.     3.    

 4.     5.     6.    

Figure 7. Examples of training images. Randomly selected training images augmented by applying shifting (used in examples 1 to 6),
scaling (used in examples 1 to 6), downscaling (used in examples 1 to 6), gaussian blur (used in examples 1 to 6), adding random pepper
patches (used in example 2) and random lines (used in example 5).



sions. Using this approach, we annotated 100 images
from the standard USPTO benchmark. Manual inspection
showed that 95% of predicted text cells were correct. To
further improve OCR quality, training a dedicated OCR
model for Markush structure images would be necessary.

4. Synthetic Training Set Details
4.1. Visualization and Image Augmentation
Figure 7 shows randomly selected training images. A small
portion of training images are standard chemical structure
images (see example 1 in Figure 7). Some training samples
contain short (see example 2 in Figure 7) or long (see ex-
ample 6 in Figure 7) textual definitions. Training images
are generated using synthetic CXSMILES. To create them,
we use SMILES from the PubChem [6] database and aug-
ment them using the RDKit [7] library. Based on predefined
probabilities, we randomly:
• Replace atom labels by variable groups (except for atoms

with charges),
• Add parentheses on atoms,
• Add brackets on pairs of atoms (except for atoms in

rings),
• Connect [R-*] fragments to atoms in rings,
• Connect [R-*] fragments to rings,
• Connect functional groups to rings.
RDKit’s sanitization ensures that the generated structures
are chemically valid. Then, images are augmented by ap-
plying shifting, scaling, downscaling, gaussian blur, adding
random pepper patches and random lines. The generated
structures are chemically correct but can be probably un-
likely, due to the automatic generation of substituent def-
initions. For example, the image 6 in Figure 7 gives for
the variable group ‘R47’ the possible substituent ‘Germa-
nium’. It would be chemically unlikely given to the rest of
the molecule.

4.2. Textual Definition Augmentation
Markush structure textual definition are generated using
manually-created templates. A fraction of these definitions
is then paraphrased with Mistral-7B-Instruct-v0.3 [5], using
the prompt:

Prompt

I want you to augment a text description. Para-
phrase it without changing its semantic meaning,
but only its formulation. Do not add or remove
any information. Use the writing style of patents
in the chemistry domain. To help you preserving
the semantic meaning of the description, a dictio-
nary is also provided. Its keys and values should not
be modified in the augmented text description. Di-

rectly answer with one augmented text description,
and nothing else. Do not give any dictionary output.
Text description (to be paraphrased): Description.
Dictionary input (for context only): Substituent ta-
ble.

The variables ‘description’ and ‘substituent table’ are re-
placed for each textual definition to be augmented. For ex-
ample, if the initial description is:

Description

in which M31 or Rj are lower alkyl, an alkenyl,
CH(CH3)2, and heteroarylcarbonyl, and Ry is se-
lected from the group consisting of N-alkyl, oxy-
gen, a hydrocarbon group or optional, and Rp is se-
lected from CH, C or N, and R4 is selected from
a hydrocarbon group and N-aryl, and T9 represents
C2-C6-alkenylcarbamoyl, and M4 represents a Ni-
trogen atom, and E is selected from the group con-
sisting of NH, sulfur, hydrocarbon group or -O-CO-
, and W1 is a Beryllium atom.

And the substituent table is:

Substituent table

{
’M31’: [

’lower alkyl’, ’an alkenyl’, ’CH(CH3)2’,
’heteroarylcarbonyl’

],
’Rj’: [

’lower alkyl’, ’an alkenyl’, ’CH(CH3)2’,
’heteroarylcarbonyl’

],
’Ry’: [

’N-alkyl’, ’oxygen’, ’a hydrocarbon group’,
’optional’

],
’Rp’: [

’CH’, ’C’, ’N’
],
’R4’: [

’a hydrocarbon group’, ’N-aryl’
],
’T9’: [

’C2-C6-alkenylcarbamoyl’
],
’M4’: [

’a Nitrogen atom’
],



’E’: [
’NH’, ’sulfur’, ’hydrocarbon group’, ’-O-CO-’

],
’W1’: [

’a Beryllium atom’
]

}

The resulting paraphrased description is:

Paraphrased description

In said composition, M31 or Rj may encompass
lower alkyl, alkenyl, CH(CH3)2, and heteroarylcar-
bonyl, while Ry may be chosen from the group con-
sisting of N-alkyl, oxygen, a hydrocarbon group,
or an optional group. Rp may be selected from
CH, C, or N, and R4 may be chosen from a hy-
drocarbon group or N-aryl. T9 represents C2-C6-
alkenylcarbamoyl, and M4 represents a Nitrogen
atom. E may be selected from the group consist-
ing of NH, sulfur, a hydrocarbon group, or -O-CO-,
and W1 denotes a Beryllium atom.

4.3. OCR Cells Augmentation
Using our synthetic generation pipeline, we can generate
multi-modal Markush structure images along with OCR
cells of all text in the image. During training, we apply
augmentations to the OCR cells by shifting the position of
OCR boxes, and modifying the OCR text by simulating
OCR errors. These text augmentations include character
substitution, character insertion, character deletion, charac-
ters transposition and case alteration.

5. Limitations and Future Works
Currently, we made the choice to not handle abbreviations
in MarkushGrapher. As future work, we aim to train an
OCR dedicated to the detection and recognition of text in
multi-modal Markush structures images. We plan to ap-
ply MarkushGrapher at scale to build a large scale database
of Markush structures and make it searchable by extending
Markush structures encoding techniques [2, 3].
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