
RoboTwin: Dual-Arm Robot Benchmark with Generative Digital Twins

Supplementary Material

A. Task Description for RoboTwin

We provide detailed descriptions of all tasks involved in the
benchmarks and real-world experiments, as shown in Ta-
ble 5, totaling 15 tasks. The initial positions of target ob-
jects in all tasks are randomized. Some tasks must be com-
pleted using both arms, such as Shoes Place. Other tasks
have both dual-arm and single-arm versions, like Container
Place and Empty Cup Place. For these dual-arm versions,
the appropriate arm is selected based on the object’s ini-
tial position. Tasks like Block Handover and Mug Hang-
ing involve handoffs between the left and right arms. More
challenging tasks, such as Shoes Place, require high coor-
dination between both arms.

B. Implementation Details for Simulation Ex-
periments

B.1. Baseline Introduction and Setup
Diffusion Policy [14] is a novel approach in robot learn-
ing that models the robot’s visuomotor policy as a condi-
tional denoising diffusion process. It learns the gradient of
the action-distribution score function and iteratively opti-
mizes with respect to this gradient field during inference
via a series of stochastic Langevin dynamics steps. This
methodology enables the robot to generate diverse and high-
dimensional action distributions, effectively handling multi-
modal behaviors and high-dimensional action spaces. The
input to the Diffusion Policy is a sequence of visual ob-
servations, and the output is a sequence of actions predicted
over a fixed duration, facilitating robust and temporally con-
sistent action generation.

Building upon the Diffusion Policy, the 3D Diffusion
Policy (DP3) [73] integrates 3D visual representations into
the diffusion framework, enhancing the robot’s ability to
generalize across various tasks and environments. DP3 em-
ploys a compact 3D visual representation extracted from
sparse point clouds using an efficient point encoder. The
input to DP3 is a 3D scene representation, and the output is
a sequence of 3D end-effector poses, including both trans-
lations and rotations, predicted over a fixed duration. This
approach allows the robot to perform complex manipula-
tion tasks with high precision and generalization capabili-
ties, even with limited demonstrations.

We outline all the key hyper-parameters for DP [14] and
DP3 [73] in Table 6. These hyper-parameters were adopted
directly from the original DP and DP3 papers to ensure
consistent performance and enable fair comparison with the
published results.

For the camera settings, we utilize a 2D observation with
an image resolution of (320, 240) and perform FPS down-
sampling on the point cloud obtained from the image to
1024 points for 3D observation.

C. Sim2Real Experiment Setup
Our real-world experiments aim to verify whether the gen-
erated simulation data can effectively aid in policy learning,
enabling high performance in real-world testing despite ex-
posure to only limited real-world data.

C.1. Simulation vs. Real Scene Visualization
We present the comparison images of the real and simula-
tion for the same task in Fig. 9. The RoboTwin-generated
data demonstrates exceptional visual fidelity to real-world
scenarios across all tasks. The simulated environment
achieves near photo-realistic quality, accurately capturing
lighting, shadows, and object textures. This high-fidelity
simulation shows great promise for robot learning by effec-
tively bridging the sim-to-real gap.

C.2. Details of Sim2Real Fine-Tuning
To better align real-world and simulation images, and con-
sidering that brighter environments facilitate better policy
learning and feature extraction, we enhanced the typically
darker real-world observations. We applied the following
brightness adjustment code, where the alpha parameter can
be fine-tuned based on specific lighting conditions:

cv2.convertScaleAbs(src, alpha=1.5, beta=0)

Step 1: We pretrain a Diffusion Policy network using
300 sets of RoboTwin-generated simulation data. This sim-
ulation data provides a rich foundation for learning basic
manipulation skills. The pretraining phase follows the hy-
perparameter settings detailed in Tab. 7.

Step 2: Following the pretraining phase, we implement
a highly efficient fine-tuning approach using only 20 sets of
real-world robot data. This minimal data requirement sig-
nificantly reduces the burden of real-world data collection
while still enabling effective domain adaptation. The fine-
tuning process builds upon the pretrained policy network
from Step 1, adjusting the network parameters to bridge the
sim-to-real gap. All fine-tuning hyperparameters are care-
fully selected and documented in Tab. 7 to ensure optimal
transfer learning performance.

This two-stage training strategy effectively combines the
advantages of abundant simulation data with minimal real-
world data requirements, demonstrating an efficient ap-
proach to robot skill acquisition and transfer.

Number of Demonstrations 20 50 100 20 50 100

Block Hammer Beat Block Handover
DP3 (XYZ) 47.7 ± 7.4 58.3 ± 6.5 49.7 ± 8.1 DP3 (XYZ) 82.7 ± 6.1 85.0 ± 15.6 67.3 ± 7.0
DP3 (XYZ+RGB) 44.7 ± 3.8 79.0 ± 2.0 77.3 ± 7.5 DP3 (XYZ+RGB) 88.7 ± 5.0 94.3 ± 7.2 86.0 ± 15.1
DP 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 DP 0.0 ± 0.0 0.0 ± 0.0 0.7 ± 1.2

Bottle Adjust Container Place
DP3 (XYZ) 55.7 ± 1.5 70.7 ± 2.5 72.7 ± 10.1 DP3 (XYZ) 52.7 ± 4.5 74.0 ± 5.6 89.0 ± 7.5
DP3 (XYZ+RGB) 28.3 ± 12.9 27.7 ± 16.5 35.7 ± 12.5 DP3 (XYZ+RGB) 38.0 ± 7.9 58.3 ± 5.9 73.3 ± 6.5
DP 13.0 ± 11.8 24.7 ± 13.8 31.0 ± 6.6 DP 5.3 ± 4.2 16.3 ± 2.5 35.0 ± 4.4

Empty Cup Place Mug Hanging (Easy)
DP3 (XYZ) 33.0 ± 6.2 70.3 ± 7.2 71.3 ± 20.4 DP3 (XYZ) 7.3 ± 2.9 14.0 ± 3.6 14.7 ± 3.5
DP3 (XYZ+RGB) 26.3 ± 10.4 71.3 ± 4.0 78.7 ± 7.4 DP3 (XYZ+RGB) 1.0 ± 1.0 2.0 ± 2.0 2.0 ± 3.5
DP 0.3 ± 0.6 14.7 ± 6.0 58.0 ± 11.8 DP 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Mug Hanging (Hard) Pick Apple Messy
DP3 (XYZ) 12.7 ± 0.6 11.0 ± 6.1 12.7 ± 2.3 DP3 (XYZ) 5.7 ± 4.5 10.7 ± 4.0 11.7 ± 5.5
DP3 (XYZ+RGB) 0.0 ± 0.0 2.0 ± 2.0 0.3 ± 0.6 DP3 (XYZ+RGB) 6.7 ± 2.3 28.7 ± 9.5 68.7 ± 6.8
DP 0.0 ± 0.0 0.3 ± 0.6 0.0 ± 0.0 DP 3.3 ± 1.5 6.0 ± 5.0 7.0 ± 4.6

Put Apple Cabinet Dual Bottles Pick (Easy)
DP3 (XYZ) 60.7 ± 23.0 89.3 ± 10.8 74.7 ± 42.2 DP3 (XYZ) 37.0 ± 4.6 60.3 ± 7.1 32.0 ± 4.6
DP3 (XYZ+RGB) 5.7 ± 4.0 96.0 ± 3.5 97.0 ± 2.6 DP3 (XYZ+RGB) 29.7 ± 3.5 67.3 ± 9.3 69.0 ± 23.5
DP 1.3 ± 1.2 8.3 ± 2.5 34.0 ± 21.2 DP 1.3 ± 1.5 26.7 ± 3.1 79.0 ± 3.5

Dual Bottles Pick (Hard) Diverse Bottles Pick
DP3 (XYZ) 33.0 ± 2.6 48.0 ± 5.2 57.3 ± 4.0 DP3 (XYZ) 13.3 ± 5.5 34.7 ± 6.7 33.7 ± 5.9
DP3 (XYZ+RGB) 23.0 ± 2.0 46.3 ± 7.8 56.7 ± 3.5 DP3 (XYZ+RGB) 0.7 ± 0.6 5.3 ± 2.1 9.7 ± 2.9
DP 2.0 ± 1.7 32.3 ± 5.9 51.7 ± 5.1 DP 0.0 ± 0.0 0.3 ± 0.6 6.0 ± 1.0

Shoe Place Dual Shoes Place
DP3 (XYZ) 37.0 ± 10.5 65.7 ± 11.5 54.0 ± 10.4 DP3 (XYZ) 5.7 ± 0.6 10.0 ± 2.6 12.0 ± 2.0
DP3 (XYZ+RGB) 19.7 ± 6.4 44.7 ± 4.0 54.3 ± 2.5 DP3 (XYZ+RGB) 1.7 ± 2.9 3.7 ± 0.6 7.7 ± 2.1
DP 0.0 ± 0.0 6.3 ± 2.5 27.0 ± 16.1 DP 0.0 ± 0.0 3.0 ± 1.7 5.3 ± 2.9

Table 4. Benchmarking imitation learning algorithms for dual-arm manipulation under L515 camera setting. We tested on 14
tasks with 20, 50, and 100 expert demonstrations on DP3 (XYZ), DP3 (XYZ+RGB), and DP, and reported the success rate and standard
deviation.

Block Handover

Container Place

Dual Bottles Pick Easy

Block Hammer Beat

Figure 9. Visualization of real-world and RoboTwin-generated data. For each task, real-world collected data is shown in the top row,
with RoboTwin-generated data displayed in the bottom row.

Task Description

Block Hammer Beat There is a hammer and a block in the middle of the table. If the block is closer
to the left robotic arm, it uses the left arm to pick up the hammer and strike the
block; otherwise, it does the opposite.

Block Handover A long block is placed on the left side of the table. The left arm grasps the upper
side of the block and then hands it over to the right arm, which places the block
on the blue mat on the right side of the table.

Bottle Adjust A bottle is placed horizontally on the table. The bottle’s design is random and
does not repeat in the training and testing sets. When the bottle’s head is facing
left, pick up the bottle with the right robot arm so that the bottle’s head is facing
up; otherwise, do the opposite.

Container Place Random containers (cups, bowls, etc.) are placed randomly on the table. The
robotic arm moves the containers into a fixed plate.

Diverse Bottles Pick A random bottle is placed on the left and right sides of the table. The bottles’
designs are random and do not repeat in the training and testing sets. Both left and
right arms are used to lift the two bottles to a designated location.

Dual Bottles Pick (Easy) A red bottle is placed randomly on the left side, and a green bottle is placed ran-
domly on the right side of the table. Both bottles are standing upright. The left and
right arms are used simultaneously to lift the two bottles to a designated location.

Dual Bottles Pick (Hard) A red bottle is placed randomly on the left side, and a green bottle is placed ran-
domly on the right side of the table. The bottles’ postures are random. Both left
and right arms are used simultaneously to lift the two bottles to a designated loca-
tion.

Dual Shoes Place One shoe is placed randomly on the left and right sides of the table. The shoes are
the same pair with random designs that do not repeat in the training and testing
sets. Both left and right arms are used to pick up the shoes and place them in the
blue area, with the shoe heads facing the left side of the table.

Empty Cup Place An empty cup and a cup mat are placed randomly on the left or right side of the
table. The robotic arm places the empty cup on the cup mat.

Mug Hanging (Easy) A mug is placed randomly on the left side of the table, and a mug rack is placed
on the right side (fixed). The left arm moves the mug to a suitable position in the
middle of the table, and then the right arm hangs the handle of the mug on the
mug rack.

Mug Hanging (Hard) A mug is placed randomly on the left side of the table, and a mug rack is placed
randomly on the right side. The left arm moves the mug to a suitable position in
the middle of the table, and then the right arm hangs the handle of the mug on the
mug rack.

Pick Apple Messy Apples and four random items are placed randomly on the table. The robotic arm
picks up the apple and lifts it.

Put Apple Cabinet Initially, an apple is placed randomly. The robotic arm uses the left arm to open
the cabinet and the right arm to pick up the apple and place them inside.

Shoe Place Shoes are placed randomly on the table, with random designs that do not repeat
in the training and testing sets. The robotic arm moves the shoes to a blue area in
the center of the table, with the shoe head facing the left side of the table.

Table 5. Task descriptions for RoboTwin platform.

Parameter DP [14] DP3 [73]

horizon 8 8
n obs steps 3 3

n action steps 6 6
num inference steps 100 10
dataloader.batch size 128 256

dataloader.num workers 0 8
dataloader.shuffle True True

dataloader.pin memory True True
dataloader.persistent workers False False

optimizer. target torch.optim.AdamW torch.optim.AdamW
optimizer.lr 1.0e-4 1.0e-4

optimizer.betas [0.95, 0.999] [0.95, 0.999]
optimizer.eps 1.0e-8 1.0e-8

optimizer.weight decay 1.0e-6 1.0e-6
training.lr scheduler cosine cosine

training.lr warmup steps 500 500
training.num epochs 300 3000

training.gradient accumulate every 1 1
training.use ema True True

Table 6. Hyper-parameter Settings for Training and Deployment of DP and DP3 Algorithms.

Parameter Pre-training Fine-tuning

horizon 8 8
n obs steps 3 3

n action steps 6 6
num inference steps 100 100
dataloader.batch size 128 128

dataloader.num workers 0 0
dataloader.shuffle True True

dataloader.pin memory True True
dataloader.persistent workers False False

optimizer. target torch.optim.AdamW torch.optim.AdamW
optimizer.lr 1.0e-4 5e-5

optimizer.betas [0.95, 0.999] [0.95, 0.999]
optimizer.eps 1.0e-8 1.0e-8

optimizer.weight decay 1.0e-6 1.0e-6
training.lr scheduler cosine cosine

training.lr warmup steps 500 500
training.num epochs 300 300

training.gradient accumulate every 1 1
training.use ema True True

training.rollout every 50 50

Table 7. Hyper-parameter Settings for Pretraining with RoboTwin-generated Data and Finetuning with Limited Real-world Data.

D. Prompts

In the process of generating expert demonstration data, we structure prompts for large language models with three compo-
nents: 1) Task Information and General Prompt; 2) Introduction to Available APIs, detailing usable programming interfaces
and libraries; 3) Function Examples that demonstrate implementation patterns.

D.1. Task Information and General Prompt

You need to generate relevant code for some robot tasks in a robot simulation environment based on the
provided API.
In this environment, distance 1 indicates 1 meter long. Pose is representated as 7 dimention, [x, y, z,
qw, qx, qy, qz]. For a 7-dimensional Pose object, you can use Pose.p to get the [x, y, z] coordinates and
Pose.q to get the [qw, qx, qy, qz] quaternion orientation.
All functions which has parameter actor_data, and all of actor_data should be in the actor_data_dic.
In the world coordinate system, the positive directions of the xyz coordinate axes are right, front, and
upper respectively, so the direction vectors on the right, front, and upper sides are [1,0,0], [0,1,0],
[0,0,1] respectively. In the same way, we can get the unit vectors of the left side, back side and down
side.

Task Discription:
Use the gripper to pick up block1 and move block 1 to the target position. Then pick up block 2 and place
it on the block 1, and finally pick up block3 and place it on the block2. If block1’s x coordinate (dim
0) is greater than 0, use right arm to stack the block1, else use the left arm. And same for the block2
and block3.
Note:
1. You need to call the get_avoid_collision_pose function to avoid collisions when the left and right
arms move alternately.
2. For example, if the previous action uses the left arm and the next action uses the right arm, you need
to move the left arm after release gripper to avoid collisions, vice versa.
3. The pre-dis of stacked blocks may be smaller.

Available Constants:
self.world_direction_dic: {

’left’: [0.5, 0.5, 0.5, 0.5],
’front_left’: [0.65334811, 0.27043713, 0.65334811, 0.27043713],
’front’ : [0.707, 0, 0.707, 0],
’front_right’: [0.65334811, -0.27043713, 0.65334811, -0.27043713],
’right’: [0.5, -0.5, 0.5, 0.5],
’top_down’: [0, 0, 1, 0],

}
The world_direction_dic is a dict of different approach directions.
The Actor Name List: [’block1’, ’block2’, ’block3’, ’block1_target_pose’]
The Actor Data List: [’block1_data’, ’block2_data’, ’block3_data’, ’block1_target_pose’]

The Actor Points Discription: {
’block1’:{

’contact_points’:[]
’target_points’: ["The top surface center of the block."],
’functional_points’: ["Point0: The center point on the bottom of the block, and functional axis

is vertical bottom side down"]
’actor_orientation’: []

},
’block2’:{

’contact_points’:[]
’target_points’: ["The top surface center of the block."],
’functional_points’: ["Point0: The center point on the bottom of the block, and functional axis

is vertical bottom side down"]
’actor_orientation’: []

},
’block3’:{

’contact_points’:[]
’target_points’: ["The top surface center of the block."],
’functional_points’: ["Point0: The center point on the bottom of the block, and functional axis

is vertical bottom side down"]
’actor_orientation’: []

}
}

Current Code:
‘‘‘python
class gpt_{dual_bottles_pick_hard}({dual_bottles_pick_hard}):

def play_once(self):
pass

‘‘‘

D.2. Introduction of Available APIs

Available API:
"open_left_gripper": Open the left gripper to a specified position.,
"close_left_gripper": Close the left gripper to a specified position.,
"open_right_gripper": Open the right gripper to a specified position.,
"close_right_gripper": Close the right gripper to a specified position.,
"together_open_gripper": Open both left and right grippers to specified positions.,
"together_close_gripper": Close both left and right grippers to specified positions.,

"left_move_to_pose_with_screw":
def left_move_to_pose_with_screw(pose).
Plan and execute a motion for the left arm using screw motion interpolation.
No Return.
Args:
pose: list [x, y, z, qw, qx, qy, qz], the target pose of left end-effector,

"right_move_to_pose_with_screw":
def right_move_to_pose_with_screw(pose).
Plan and execute a motion for the right arm using screw motion interpolation.
No Return.
Args:
pose: list [x, y, z, qw, qx, qy, qz], the target pose of right end-effector,

"together_move_to_pose_with_screw":
def together_move_to_pose_with_screw(left_target_pose, right_target_pose).
Plan and execute motions for both left and right arms using screw motion interpolation.
No Return.
Args:
left_target_pose: list [x, y, z, qw, qx, qy, qz], the target pose of left end-effector
right_target_pose: list [x, y, z, qw, qx, qy, qz], the target pose of right end-effector,

"get_actor_functional_pose":
def get_actor_functional_pose(actor, actor_data),
Get the functional pose of the actor in the world coordinate system.
Returns: pose: list [x, y, z, qw, qx, qy, qz].
Args:
actor: Object(self.actor), the object of actor in render.
actor_data: dict(self.actor_data), the actor_data match with actor.,

"get_grasp_pose_to_grasp_object":
def get_grasp_pose_to_grasp_object(self, endpose_tag: str, actor, actor_data = DEFAULT_ACTOR_DATA,

pre_dis = 0),
This function is used to grasp actor from the labeled contact points of the actor, and return the

most suitable pose of the end-effector.
Returns: pose: list [x, y, z, qw, qx, qy, qz].
Args:

endpose_tag: str, the endpose tag of the actor, can be ’left’ or ’right’.
actor: Object(self.actor), the object of actor in render.
actor_data: dict(self.actor_data), the actor_data match with actor.
pre_dis: float, the distance between grasp pose and target actor pose.,

"get_grasp_pose_from_goal_point_and_direction":
def get_grasp_pose_from_goal_point_and_direction(self, actor, actor_data, endpose_tag: str,

actor_functional_point_id, target_point, target_approach_direction, actor_target_orientation = None,
pre_dis):

This function is used to move the actor’s point of action to the target point when the direction of
the end-effector is given, return the pose of the end-effector.

The actor refers to an object being grasped by robotic grippers. actor_target_orientation is the
orientation of the actor after grasping.

Returns: pose: list [x, y, z, qw, qx, qy, qz].
Args:
actor: Object(self.actor), the object of actor in render.
actor_data: dict(self.actor_data), the actor_data match with actor.
endpose_tag: str, the endpose tag of the actor, can be ’left’ or ’right’.
actor_functional_point_id: int, the index of the functional point of the actor.
target_point: list [x, y, z], the target point pose which the actor’s target_pose expected to move to.
target_approach_direction: list [qw, qx, qy, qz], the approach direction which the actor’s expected

approach direction at the target point.
The target approach direction can use self.world_direction_dic[’left’, ’front_left’, ’front’,

’fron_right’, ’right’, ’top_down’].
actor_target_orientation: list [x, y, z], the orientation of the actor after grasping. The positive

directions of the xyz axis are right, front, and up respectively. You can give a direction vector to
specify the target direction of the object. like [0, 0, 1] means the actor’ orientation is up and [0, 1,
0] means the actor’s orientation is front.

pre_dis: float, the distance on approach direction between actor’s point of action and target point.,

"get_avoid_collision_pose":
def get_avoid_collision_pose(self, avoid_collision_arm_tag: str),

This function can obtain the safe position of the specified robot arm to avoid collision when both
arms need to move at the same time.

Returns: pose: list [x, y, z, qw, qx, qy, qz].
Args:
avoid_collision_arm_tag: str, ’left’ or ’right’.,

"get_actor_goal_pose":
def get_actor_goal_pose(self, actor, actor_data, id),
This function is used to get the target pose point of an actor in world axis.
Returns: pose: list [x, y, z].
Args:
actor: Object(self.actor), the object of actor in render.
actor_data: dict(self.actor_data), the actor_data match with actor.
id: int, the id of the actor, if the actor has multiple target points. And default is 0.,

D.3. Function Example

Function Example:
You can retrieve the actor object by the actor’s name:
‘‘‘python
actor = self.actor_name_dic[’actor_name’]
‘‘‘
You can retrieve the actor_data object by the actor_data’s name:
‘‘‘python
actor_data = self.actor_data_dic[’actor_data_name’]
‘‘‘

Here are some APIs and examples of grasping objects:
If you want to get the gripper pose to grasp the actor, you typically execute the following code:
‘‘‘python
grasp_pose = self.get_grasp_pose_to_grasp_object(endpose_tag = "left", self.actor, self.actor_data,
pre_dis = 0.09) # endpose_tag can be "left" or "right"
‘‘‘

If you want to pick up an actor, you can refer to the following sample code:
‘‘‘python
pre_grasp_pose = self.get_grasp_pose_to_grasp_object(endpose_tag = "left", self.actor, self.actor_data,
pre_dis = 0.09) # endpose_tag can be "left" or "right"
target_grasp_pose = self.get_grasp_pose_to_grasp_object(endpose_tag = "left", self.actor,
self.actor_data, pre_dis = 0) # endpose_tag can be "left" or "right"
self.left_move_to_pose_with_screw(pre_grasp_pose) # left arm move to the pre grasp pose
self.left_move_to_pose_with_screw(target_grasp_pose) # left arm move to the grasp pose
self.close_left_gripper() # close left gripper to grasp the actor
self.left_move_to_pose_with_screw(pre_grasp_pose) # lift the actor up
‘‘‘
The code for grasping with the right arm or both arms is similar to the above code.

For the grasping of a certain actor, the movement of the end-effector typically executes the following
codes:
‘‘‘python
actor_pose = self.get_actor_goal_pose(self.actor, self.actor_data)

if actor_pose[0] > 0: # if the actor in the right side, use right arm to grasp the actor
grasp actor with right arm

else: # if the actor in the left side, use left arm to grasp the actor
grasp actor with left arm

‘‘‘

Here are some examples of gripper control:
‘‘‘python
self.close_left_gripper(pos = 0.02) # Close half of the left gripper
self.close_left_gripper(pos = -0.01) # Tighten the left gripper.
self.open_left_gripper(pos = 0.02) # Open half of the left gripper
self.close_right_gripper(pos = 0.02) # Close half of the right gripper
self.close_right_gripper(pos = -0.01) # Tighten the right gripper.
self.open_right_gripper(pos = 0.02) # Open half of the right gripper
self.together_close_gripper(left_pos = 0.02,right_pose = 0.02) # Together close half of grippers
‘‘‘
Note:
For grabbing some objects, you may need to close the clamping jaws tightly to grab them. You can adjust
this through the ’pos’ parameter, like ’pos = -0.01’.
By default ’pos’ is 0, when close gripper.

Here are some APIs and examples of moving objects:
Note: The drop height of the actor depends on the distance of the actor that was lifted up the previous
action.
To move an object to the target point, the ’get_grasp_pose_from_goal_point_and_direction()’ is often
called first to obtain the target’s gripper posture.

If you want to move the point of actor which is grasped by the gripper action to the target point, you
typically execute the following code:
‘‘‘python
pre_grasp_pose = self.get_grasp_pose_from_goal_point_and_direction(self.actor, self.actor_data,
endpose_tag = "left", actor_functional_point_id = 0, target_pose, target_approach_direction, pre_dis =
0.09)
target_grasp_pose = self.get_grasp_pose_from_goal_point_and_direction(self.actor, self.actor_data,
endpose_tag = "left", actor_functional_point_id = 0, target_pose, target_approach_direction, pre_dis = 0)
self.left_move_to_pose_with_screw(pre_grasp_pose) # left arm move to the pre grasp pose
self.left_move_to_pose_with_screw(target_grasp_pose) # left arm move to the grasp pose
self.open_left_gripper() # open left gripper to place the target object
You also can move right arm
‘‘‘
Note:
1. The target_approach_direction is the approach direction which the actor’s expected approach direction
at the target point.
2. actor_functional_point_id is the index of the functional point of the actor, You can choose based on
the given function points information.
3. For the parameter target_approach_direction, you can use self.world_direction_dic[’left’,
’front_left’, ’front’, ’fron_right’, ’right’, ’top_down’].
4. The target pose can be obtained by calling the ’get_actor_goal_pose()’ function.

If you also have requirements for the target orientation of the object, you can specify the
actor_target_orientation parameter through the direction vector to determine the final orientation of the
object:
‘‘‘python
the actor target orientation is front, the direction vector is [0,1,0]
The positive directions of the direction vector xyz axis are right, front, and up respectively.
pre_grasp_pose = self.get_grasp_pose_from_goal_point_and_direction(self.actor, self.actor_data,
endpose_tag = "left", actor_functional_point_id = 0, target_pose, actor_target_orientation = [0,1,0],
target_approach_direction, pre_dis = 0.09)
target_grasp_pose = self.get_grasp_pose_from_goal_point_and_direction(self.actor, self.actor_data,
endpose_tag = "left", actor_functional_point_id = 0, target_pose, actor_target_orientation = [0,1,0],
target_approach_direction, pre_dis = 0)
self.left_move_to_pose_with_screw(pre_grasp_pose) # left arm move to the pre grasp pose
self.left_move_to_pose_with_screw(target_grasp_pose) # left arm move to the grasp pose
self.open_left_gripper() # open left gripper to place the target object
‘‘‘

If you need to align the functional axis of the grabbed object with the functional axis of the target
object, you can use the following code:
‘‘‘python
target_actor_functional_pose = self.get_actor_functional_pose(self.actor, self.actor_data,
actor_functional_point_id = 0)
target_actor_point = target_actor_functional_pose[:3]
target_approach_direction = target_actor_functional_pose[3:]
pre_grasp_pose = self.get_grasp_pose_from_goal_point_and_direction(self.actor, self.actor_data,
endpose_tag = "left", actor_functional_point_id = 0, target_point = target_actor_point,
target_approach_direction = target_approach_direction, pre_dis = 0.09)
target_grasp_pose = self.get_grasp_pose_from_goal_point_and_direction(self.actor, self.actor_data,
endpose_tag = "left", actor_functional_point_id = 0, target_point = target_actor_point,
target_approach_direction = target_approach_direction, pre_dis = 0)
self.left_move_to_pose_with_screw(pre_grasp_pose) # left arm move to the pre grasp pose
self.left_move_to_pose_with_screw(target_grasp_pose) # left arm move to the grasp pose
self.open_left_gripper() # open left gripper to place the target object
‘‘‘
Note:
1. The parameter actor in get_grasp_pose_from_goal_point_and_direction() should be grasp actor, not the
target actor.
2. self.world_direction_dic is a dict of different approach directions.
3. This situation usually occurs when hanging objects or performing some delicate operations.
4. actor_functional_point_id is the index of the functional point of the actor, You can choose based on
the given function points information.

Some tasks involve simultaneous operations of the left and right arms, which may require calling the
collision avoidance function:
1. There is no need to avoid collision at the end of the task.
2. If both arms have moved at the same time before, and the next step needs to be to move the left arm
first to place the target object, You can first obtain the pose of the right arm that can avoid
subsequent collisions, and then move both arms at the same time:

‘‘‘python
Get left and right arm target pose
Here, the direction in which the object contacts the target point is vertically top_down as an example.
The actor target orientation is left, the direction vector is [-1,0,0].
left_pre_pose = self.get_grasp_pose_from_goal_point_and_direction(left_actor, left_actor_data,
endpose_tag="left", actor_functional_point_id = 0, target_point=point1,
target_approach_direction=self.world_direction_dic[’top_down’], actor_target_orientation=[-1, 0, 0],
pre_dis=0.05)
left_target_pose = self.get_grasp_pose_from_goal_point_and_direction(left_actor, left_actor_data,
endpose_tag="left", actor_functional_point_id = 0, target_point=point1,
target_approach_direction=self.world_direction_dic[’top_down’], actor_target_orientation=[-1, 0, 0],
pre_dis=0)
right_pre_pose = self.get_grasp_pose_from_goal_point_and_direction(right_actor, right_actor_data,
endpose_tag="right", actor_functional_point_id = 0, target_point=point2,
target_approach_direction=self.world_direction_dic[’top_down’], actor_target_orientation=[-1, 0, 0],
pre_dis=0.05)
right_target_pose = self.get_grasp_pose_from_goal_point_and_direction(right_actor, right_actor_data,
endpose_tag="right", actor_functional_point_id = 0, target_point=point2,
target_approach_direction=self.world_direction_dic[’top_down’], actor_target_orientation=[-1, 0, 0],
pre_dis=0)
right arm avoid collision pose
right_avoid_collision_pose = self.get_avoid_collision_pose(avoid_collision_arm_tag = ’right’)
move left arm to the pre pose and right arm to the avoid collision pose
self.together_move_to_pose_with_screw(left_pre_pose, right_avoid_collision_pose)
put down the actor on left gripper
self.left_move_to_pose_with_screw(left_target_pose)
self.open_left_gripper() # open left gripper to place the target object
left arm avoid collision pose
left_avoid_collision_pose = self.get_avoid_collision_pose(avoid_collision_arm_tag = ’left’)
move right arm to the target pose and left arm to the avoid collision pose
self.together_move_to_pose_with_screw(left_avoid_collision_pose, right_pre_pose)
put down the actor on right gripper
self.right_move_to_pose_with_screw(right_target_pose)
self.open_right_gripper() # open right gripper to place the target object
avoid_collision_arm_tag: ’left’ or ’right’
direction: ’left’, ’right’, ’front’, ’back’, ’up’, ’down’
‘‘‘
Note:
1. If the move_arm_tag is ’left’, the direction also not be ’right’, and same for ’right’.
2. Collision avoidance may only be necessary if both arms have been moved.

D.4. Sample Code for Blocks Stack Hard Task

class gpt_blocks_stack_hard(blocks_stack_hard):
def play_once(self):

Retrieve actor objects
block1 = self.actor_name_dic[’block1’]
block2 = self.actor_name_dic[’block2’]
block3 = self.actor_name_dic[’block3’]
block1_target_pose = self.actor_name_dic[’block1_target_pose’]

Retrieve actor data objects
block1_data = self.actor_data_dic[’block1_data’]
block2_data = self.actor_data_dic[’block2_data’]
block3_data = self.actor_data_dic[’block3_data’]
block1_target_pose_data = self.actor_data_dic[’block1_target_pose’]

Define pre-dis for grasping and placing
pre_dis = 0.08

Function to grasp and place a block
def grasp_and_place(block, block_data, target_pose, target_pose_data, pre_dis):

Determine which arm to use based on the block’s x coordinate
block_pose = self.get_actor_goal_pose(block, block_data)
if block_pose[0] > 0:

arm_tag = "right"
move_function = self.right_move_to_pose_with_screw
close_gripper_function = self.close_right_gripper
open_gripper_function = self.open_right_gripper

else:
arm_tag = "left"
move_function = self.left_move_to_pose_with_screw

close_gripper_function = self.close_left_gripper
open_gripper_function = self.open_left_gripper

Get the grasp pose
pre_grasp_pose = self.get_grasp_pose_to_grasp_object(endpose_tag=arm_tag, actor=block,

actor_data=block_data, pre_dis=pre_dis)
target_grasp_pose = self.get_grasp_pose_to_grasp_object(endpose_tag=arm_tag, actor=block,

actor_data=block_data, pre_dis=0)

Move to the pre-grasp pose
move_function(pre_grasp_pose)

Move to the grasp pose
move_function(target_grasp_pose)

Close the gripper to grasp the block
close_gripper_function()

Lift the block up
move_function(pre_grasp_pose)

Get the target pose for placing the block
target_point = self.get_actor_goal_pose(target_pose, target_pose_data)
target_approach_direction = self.world_direction_dic[’top_down’]
pre_place_pose = self.get_grasp_pose_from_goal_point_and_direction(block, block_data,

endpose_tag=arm_tag, actor_functional_point_id=0, target_point=target_point,
target_approach_direction=target_approach_direction, pre_dis=pre_dis)

target_place_pose = self.get_grasp_pose_from_goal_point_and_direction(block, block_data,
endpose_tag=arm_tag, actor_functional_point_id=0, target_point=target_point,
target_approach_direction=target_approach_direction, pre_dis=0)

Move to the pre-place pose
move_function(pre_place_pose)

Move to the place pose
move_function(target_place_pose)

Open the gripper to place the block
open_gripper_function()

Lift the arm up
move_function(pre_place_pose)

Grasp and place block1
grasp_and_place(block1, block1_data, block1_target_pose, block1_target_pose_data, pre_dis)

Avoid collision if necessary
if self.get_actor_goal_pose(block1, block1_data)[0] > 0:

avoid_collision_pose = self.get_avoid_collision_pose(avoid_collision_arm_tag=’left’)
self.left_move_to_pose_with_screw(avoid_collision_pose)

else:
avoid_collision_pose = self.get_avoid_collision_pose(avoid_collision_arm_tag=’right’)
self.right_move_to_pose_with_screw(avoid_collision_pose)

Grasp and place block2 on top of block1
grasp_and_place(block2, block2_data, block1, block1_data, pre_dis)

Avoid collision if necessary
if self.get_actor_goal_pose(block2, block2_data)[0] > 0:

avoid_collision_pose = self.get_avoid_collision_pose(avoid_collision_arm_tag=’left’)
self.left_move_to_pose_with_screw(avoid_collision_pose)

else:
avoid_collision_pose = self.get_avoid_collision_pose(avoid_collision_arm_tag=’right’)
self.right_move_to_pose_with_screw(avoid_collision_pose)

Grasp and place block3 on top of block2
grasp_and_place(block3, block3_data, block2, block2_data, pre_dis)

Avoid collision if necessary
if self.get_actor_goal_pose(block3, block3_data)[0] > 0:

avoid_collision_pose = self.get_avoid_collision_pose(avoid_collision_arm_tag=’left’)
self.left_move_to_pose_with_screw(avoid_collision_pose)

else:
avoid_collision_pose = self.get_avoid_collision_pose(avoid_collision_arm_tag=’right’)
self.right_move_to_pose_with_screw(avoid_collision_pose)

	Introduction
	Related Work
	Datasets and Benchmarks for Robotics
	Dual-arm Manipulation
	Robot Manipulation Learning Methods
	LLM for Robotic Code Generation.

	Bridging Physical and Digital Worlds for Diverse Robot Behavior Generation
	Generation of Diverse Digital Assets
	Spatial Annotation Framework for 3D Assets
	Expert Data Generation

	Benchmark
	Experiment on RoboTwin Benchmark
	Baselines and Experimental Setup
	Experimental Results
	Real World Experiment

	Conclusion
	Task Description for RoboTwin
	Implementation Details for Simulation Experiments
	Baseline Introduction and Setup

	Sim2Real Experiment Setup
	Simulation vs. Real Scene Visualization
	Details of Sim2Real Fine-Tuning

	Prompts
	Task Information and General Prompt
	Introduction of Available APIs
	Function Example
	Sample Code for Blocks Stack Hard Task

