Retrieving Semantics from the Deep: an RAG Solution for Gesture Synthesis

Supplementary Material

We first discuss limitations of our method and provide
details on the perceptual evaluation. Further, we elaborate
on evaluation metrics and provide additional experiments
and analyses. Lastly, we discuss our implementation and
provide analysis and runtime details for it.

1. Limitations

Our method relies on the sparse semantic data which is
extracted from the BEAT2 dataset [9]. This creates a
scarcity of good exemplars which can be used during the
database matching steps. As a result, the LLM-based Ges-
ture Type algorithm sometimes struggles to find good con-
textual matches for each gesture type and word identified
by the LLM.

Secondly, our method combines explicit rule-based al-
gorithms with a neural generation framework. In rare cases,
these algorithms can fail in edge cases and result in an incor-
rect retrieved example. However, our learned framework on
top of the retrieval algorithms mitigates this and ignores out-
of-distribution motion exemplars since it has been trained to
produce only those gestures which match the speech. This
also is affected by the extent of retrieval augmentation.

2. Details on User Study

For the perceptual evaluation of gesture generation capa-
bility, 56 participants were shown a randomly sampled set
of 16 forced-choice questions. Our study consists of four
sections corresponding to four different user studies. First
section focuses on the comparison with the state-of-the-art
approaches. Each question comprises of a side-by-side an-
imation of our method along with one of EMAGE [9], Au-
dio2Photoreal [11], RemoDiffuse [13] or the ground-truth.
Second section is a short section where we compare LLM-
driven gesture generation with discourse-based synthesis.
Third, we perform pair-wise comparisons between results
from one of the RAG baselines (derived from ReMoDif-
fuse [13]) and our method. Lastly, we evaluate different
approaches to perform RAG by controlling its extent.

In first three sections, we try to evaluate naturalness
and appropriateness. Specifically, we ask two questions (a)
“Which of the two gestures look natural?” and (b) “Which
of them looks appropriately aligned to what the person is
saying?”. In the last section, we add an additional ques-
tion which focuses on gauging the semantic appropriateness
in the retrieval window, with a goal of evaluating the RAG
capability. We highlight the identified words from the re-
trieval algorithms and add an additional question: “Which
of the two have better gestures in the highlighted section,

especially at the capitalized word in the prompt?”

3. Evaluation Metrics

FID. We employ the Frechet Inception Distance (FID)
metric inspired by Yoon et al. [12], which is also known
as FGD. We use the autoencoder network provided by
BEAT?2 [9] to get the gesture encodings for FID evaluation
and do not retrain our own network.

Beat Alignment Score. Originally introduced to measure
alignment of music beats to dance motion, Beat Alignment
Score [7] has been adapted for the gesture synthesis task
where it aims to measure the correlation between gesture
beats and audio beats.

L1 Divergence. This metric (also called L1 variance)
measures the distance of all frames in a single generated
sample from their mean. It is helpful in identifying synthe-
sized gestures that are static and unexpressive.

Diversity. It computes the average pairwise Euclidean
distance between the generated gestures from the test set.

Multi-modality. This metric requires sampling different
gesture motions for a single speech input from the gener-
ative model [1]. Then, it computes Euclidean distance be-
tween the diverse generated gestures. It probes the diverse
sampling capabilities of a generative model.

4. Additional Experiments

4.1. Per-speaker Quantitative Comparison with
FID & Multi-modality

To perform a robust evaluation on speaker generalizability
of our framework, we provide per-speaker FID and Multi-
modality metrics for the all-speaker model in Tab. 1. We
observe that our framework achieves best FID for large
number of the speakers, which shows that our method gen-
eralizes well to the speaker specific patterns and idiosyn-
crasies despite taking no seed gestures at input. Overall,
CaMN [8], achieves lower FID because it uses seed input
from the ground truth data which results in lower scores.
Due to the same reason, EMAGE [9] also gets lower FID.
However, CaMN and EMAGE always generate same
gestures for a given speech input, so they perform worse in
terms of Multi-modality, which makes them less ideal for
diverse gesture generation. In contrast, our approach gets



FID|

Multimodalityt

CaMN  EMAGE  Audio2Photoreal ReMoDiffuse | Ours (w/ Discourse)  Ours (w/ LLM & Gesture Type)
wayne 123 2.06 2.32 3.58 1.49 1.59
scott 0.83 117 1.02 1.76 0.78 0.83
solomon 1.22 1.42 1.93 245 0.92 0.86
lawrence | 0.98 1.39 1.13 3.16 0.69 0.66
stewart 0.65 1.26 1.62 1.76 1.49 1.49
carla 0.81 1.40 133 295 1.63 1.49
sophie 0.92 1.67 1.85 2.76 1.76 1.74
miranda 0.58 0.87 1.10 1.86 1.09 1.34
kieks 1.30 2.62 1.90 7.65 1.74 1.63
nidal 0.40 0.65 0.72 1.74 0.67 0.64
zhao 1.66 2.70 1.96 3.37 1.37 1.32
Tu 1.40 273 1.92 223 1.27 1.16
carlos 0.78 1.47 1.71 2.47 1.95 2.56
jorge 1.49 2.57 1.97 3.55 1.89 1.93
itoi 0.93 1.61 1.34 228 1.07 1.32
daiki 0.78 1.78 1.66 3.04 091 1.19
li 1.10 1.74 1.17 2.06 0.71 0.79
ayana 1.19 2.03 1.96 4.35 2.09 213
lugi 1.25 222 1.67 521 1.38 1.86
hailing 0.53 1.20 7.53 572 2.35 2.79
kexin 1.07 1.70 1.19 1.87 0.92 0.95
goto 0.84 132 2.01 2.51 1.45 2.09
yingging | | 1.67 2.50 2.00 434 1.82 1.74
tiffnay 0.81 1.35 1.09 2.67 0.92 111
katya 1.10 2.09 1.57 2.65 1.15 1.23

CaMN EMAGE  Audio2Photoreal ReMoDiffuse | Ours (w/ Discourse)  Ours (w/ LLM & Gesture Type)
n/a n/a 1.1 3.4 3.1 37
n/a n/a L5 17 53 5.4
n/a n/a 0.5 35 4.3 4.5
n/a n/a 19 6.9 5.6 6.3
n/a n/a 0.3 0.7 24 3.0
n/a n/a 0.4 1.3 1.4 il.55
n/a n/a 0.69 33 2.7 3.2
n/a n/a 0.4 0.9 17 19
n/a n/a 1.0 2.1 3.6 4.1
n/a n/a 0.7 1.9 2.6 3.1
n/a n/a 1.3 32 33 34
n/a n/a 0.7 1.7 24 2.6
n/a n/a 0.2 2.5 29 31
n/a n/a 03 1.7 1.9 2.1
n/a n/a 0.8 1.8 3.0 Sl
n/a n/a 0.3 2.3 23 2.7
n/a n/a 0.6 39 2.7 3.0
n/a n/a 0.4 1.8 1.9 2.1
n/a n/a 0.7 1.7 22 2.5
n/a n/a 0.3 1.0 203 2.6
n/a n/a 03 1.8 1.6 19
n/a n/a 0.3 2% 2.0 24
n/a n/a 1.1 B5) 3.0 37
n/a n/a 03 1.3 1.2 1.6
n/a n/a 0.6 29 23 2.6

Table 1. Per Speaker FID/Multimodality

Multi-modality
CaMN EMAGE Audio2Photoreal RemoDiffuse Ours (w/ Discourse) Ours (w/ LLM)
n/a n/a 16.9 66.5 69.1 76.7

Table 2. Overall Multi-modality for All-Speaker Model

the best results showing diverse gesture generation capabil-
ities of our model ( Tab. 2).

4.2. Comparison of RAG with Motion Blending

Linear motion blending can be considered as an alternative
for exemplar insertion in the generated motions. There-
fore, we explore this alternative by pasting semantic exam-
ples onto the retrieval windows and blending motion at the
window boundaries. We observe smoothing artifacts with
motion blending where motion looks unnatural and ges-
ture beats are smoothened around window boundaries due
to interpolation. Compared to this, motion naturalness and
speech-to-gesture alignment are preserved by using the pro-
posed retrieval insertion method, which “blends” motion in
the diffusion latent space. Video results can be seen in the
supplementary video (@12:54).

4.3. Ablation on single speaker training

We observe high FID for the single-speaker setting. There-
fore, we analyze this further in Tab. 3 by comparing single-
speaker model with Non-RAG version (to check underfit-
ting), and also with an RAG version which uses larger all-
speaker database but same model trained on a single speaker
(to check if smaller database causes worse performance).
We observe the same trend as the ablative analysis, that
RAG versions of the model perform better. Interestingly,
usage of larger DB performs slightly better due to bet-
ter example matching. However, FID remains higher than
CaMN/EMAGE and metrics show little difference between

FID| BeatAlign— LI1Div— Diversity—

GT 0.703 11.97 127
No RAG 0.911 0.727 12.78 130
RAG with all-speaker DB (w/ Discourse)  0.872 0.727 12.53 127
RAG with 1-speaker DB (w/ Discourse) 0.879 0.730 12.62 129

Table 3. Quantitative Ablation with 1-speaker training.

1-speaker model and “No RAG” model, which shows un-
derfitting due to small data size. Our experiments concur
that diffusion models are more data-hungry and train bet-
ter with larger data. Moreover, we observe that determinis-
tic models (CaMN/EMAGE) that use seed motion, perform
better with the smaller data by overfitting and predicting
samples closer to GT (Sec. 4.1).

5. Implementation Details & Analysis

5.1. Input Representations

Representing speech and its transcription is highly impor-
tant aspect of diffusion-based gesture modelling process. In
our experiments, we found that changing the structure of
text embeddings affects gesture understanding during the
learning process, which consequently is reflected during the
synthesis phase as well. To construct our text representa-
tion, we build a per-frame embedding with corresponding
word embeddings residing on each frame. To extract dis-
course connectives, we pass text transcriptions of speech
samples through discopy [6] and store resulting outputs
along with dataset samples. We compute the word embed-
dings by aggregating sub-word token activations from last
4 layers of BERT model [2].

5.2. Decoupled gesture encoding

We utilize time-aware VAE architecture by Mughal et
al. [10]. This architecture utilizes seperate encoders for



frame window chunks of original motion to encode each
chunk into an encoding. Then, it jointly decodes all of the
chunks together to reconstruct the original motion. We use
N = 150 representing 10 seconds of motion at 15 frames
per second. Moreover, the frame chunk length of our time-
aware VAE is 15, making each chunk encoding correspond
to 1 second of motion. This results in a chunked gesture
encoding of length 10 for each body part. Finally, we con-
catenate all 4 body part encodings along the time axis with
separators in between them, resulting in M = 40+ 3 = 43.

We train the VAE on the reconstruction task by utilizing
a set of losses to optimize the model. We apply Geodesic
Loss on rotation matrices and standard MSE losses on 6D,
axis-angle and joint position representation of the motion.
Moreover, we also apply additional MSE losses to optimize
velocity/acceleration of motion [4]. Lastly, we apply loss
on foot contact predictions during VAE training to reduce
foot sliding [5, 14].

5.3. RAG-driven Gesture Diffusion model

To optimize our diffusion model, we utilize Adam [3] with
a learning rate of le — 4. We utilize “scaled linear” as our
Bt schedule and use 1000 steps while training. For infer-
ence, we use spaced 50 steps with DDIM scheduler. The
transformer network contains 16 attention heads and 8 de-
coder layers. To better disambiguate body parts in our ges-
ture encoding, we also add a separate sinusoidal positional
encoding for body parts.

Retrieved Motion Insertion. In order to insert the re-
trieved gestures into the query latents, we only consider
latents for upper body and hands. The encodings of these
body parts are transferred from retrieval to query sample be-
cause speech has the most amount of semantic significance
on these two body regions in terms of co-verbal gestures.

In the current setup, the insertion of retrieved gestures
happens at ¢ = 7" where the latents are fully noised. How-
ever, our implementation also allows to arbitrarily choose a
timestamp ¢ = K for retrieval insertion. Consequently, one
can then perform Retrieval Guidance for steps ¢t < K.

5.4. Details on LLM Prompting

We utilize OpenAl’s gpt-4o-mini model for semantic ges-
ture type prediction. We provide a system prompt contain-
ing a brief explanation of gesture types and a user prompt
which contains text from the test dataset and the question.

System Prompt. “You are an expert in human gestures.
You need to identify words that may elicit semantically
meaningful gestures(deictic, iconic, metaphoric) and their
types: (a) Metaphoric Gesture: Represents abstract ideas
or concepts physically, creating a vivid mental image. (b)
Iconic Gesture: Mimics the shape or action of the object

FID| BeatAlign— LI1Div— Diversity—

GT 0.477 7.29 110
I-word  0.483 0.486 9.38 115
2-word  0.487 0.514 9.94 118
3-word 0.510 0.536 10.26 120

Table 4. Quantitative Comparison using different quantities of
identified words in LLM prompt.

or concept being described. (c) Deictic Gesture: Points to
or indicates a person, object, or location. Format your re-
sponse as a python list of python tuples of (word, type). For
example: [(Chello’, "beat’), Cworld’, *iconic’)]”.

User Prompt. Identify at most 2 important words which
are more likely to elicit semantically meaningful gestures
and what are types of those gestures in following text:
“SAMPLE TEXT”.

Effect of Word Number in Prompt. As shown above,
the user prompt contains a maximum number of words for
which LLM needs to predict gesture types. As this num-
ber of words is a hyperparameter, we perform quantitative
comparison for different quantities in Tab. 4. Results show
slight variation in metrics and even smaller difference in
terms of perceptual quality. Therefore, we conclude that
retrieval algorithm is flexible enough to be used with any
configuration.

5.5. Baseline Retraining Details

To be consistent with single speaker evaluation on BEAT?2
dataset, we utilize released model weights by EMAGE [9].
For other approaches (including ours), we retrain the
method on single speaker data belonging to the speaker
“Scott”. Since there are no available models for the cho-
sen baselines which have been trained on all speakers
in BEAT2 dataset, we train all the methods on complete
dataset through their provided codebases. Methods which
do not contain speaker specific generalizations like Au-
dio2Photoreal [11], are modified to include a speaker em-
bedding along with text and speech embeddings. Moreover,
Audio2Photoreal is adapted to support the skeletal format of
BEAT2. Lastly, ReMoDiffuse, originally released for text-
to-motion task, is modified for gesture synthesis and their
retrieval process is implemented using text feature similar-
ity method.

For the comparison of our approach with training-based
RAG (Sec. 4.3), we further modify the ReMoDiffuse ar-
chitecture and train it using our gesture encodings instead
of raw motion. Importantly, we implement retrieval merg-
ing strategy of SemanticGesticulator [15] to incorporate
the output of our proposed retrieval algorithms into this



training-based approach. We perform this experiment by
training it on all speakers and utilizing Discourse-based re-
trieval algorithm.

5.6. Runtime Information:

Retrieval algorithms involve multiple ranking and filter-
ing steps, each contributing to a certain computation time.
Specifically, Discourse-based algorithm takes 0.03s to run
on 1 data sample. LLM-based algorithm also includes
an API call along with ranking steps and therefore, total
time taken is increased to 1.52s which includes 0.95s for
API call. RAG-driven inference for the diffusion model
takes 26.93s on NVIDIA RTX3090 for a batch size of
32.
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