
Reconstructing People, Places, and Cameras

Supplementary Material

This is the supplementary material for our main paper
“Reconstructing People, Places, and Cameras”. We pro-
vide additional qualitative results (Sec. S.1), including in-
the-wild examples, a discussion of our approach’s limita-
tions (Sec. S.2), ablation studies on the scale initialization
and input views (Sec. S.3), evaluation details (Sec. S.4), im-
plementation detail (Sec. S.5), and additional related work
(Sec. S.6).

S.1. Additional Qualitative Results
In-the-wild demo. We first present HSfM’s reconstruc-
tion results on images captured by two cell phones in Fig-
ures S.1 and S.2. The data was captured using a mini-
mal setup consisting of two cell phones, two tripods, and
the Riverside app1 for straightforward time synchroniza-
tion. Despite this simple setup, our multi-view optimization
algorithm successfully handles challenging scenes, such as
individuals jumping, without relying on any heuristic con-
tact priors and small data-driven motion priors that previous
works [44, 61, 69] use.

Benchmark evaluation. We provide additional qualita-
tive results on EgoExo4D [17] in Figure S.4, showing chal-
lenging scenes such as kitchens, humans interacting with
objects (e.g., playing the piano), and sports activities like
soccer. In Figure S.7, we display further results on EgoHu-
mans [24], demonstrating HSfM reconstructions of multiple
people interacting, such as fencing. Figure S.3 show a scene
from EgoHumans before and after HSfM optimization.

S.2. Discussion
Our goal is to study the mutual benefits of jointly recon-
structing humans, scenes, and cameras. To this end, we
assume that the re-identification of people across camera
views is known, because misidentified individuals can intro-
duce spurious effects, disrupting the optimization process.
Please note that this limitation also applies to UnCaliPose
[57]. To ensure a fair comparison and maintain focus on
the core objectives of this study, we rely on ground-truth
identities in both our approach and UnCaliPose in the main
text.

Since re-identification may not be available at test time
and manual identification is cumbersome, we tested the
feasibility of automating the re-identification process us-
ing the re-identification module of UnCaliPose on the Ego-
Humans dataset [24]. For re-identification, UnCaliPose
solves a constrained clustering optimization problem, as-

1https://riverside.fm/

suming a known number of people in the scene and utiliz-
ing re-identification features extracted by an off-the-shelf
re-identification network [31]. The re-identification pro-
cess achieves an accuracy of 51.22% on EgoHumans. The
main failure mode occurs with individuals wearing uni-
forms (e.g., tennis sequences: 12.04% accuracy, volleyball
sequences: 25.71% accuracy), where appearance features
are difficult to distinguish.

These findings indicate that manual re-identification re-
mains necessary for accurate multi-view reconstruction of
the world, including humans. Fortunately, modern tools
like LabelMe2 simplify this process. Looking ahead, we
anticipate that ongoing advancements in large-scale data-
model paradigms will significantly improve performance in
multi-view re-identification. These advancements may in-
clude robust appearance feature matching [34] and the use
of geometric similarities, such as human pose and loca-
tion [16, 37].

While our method achieves good quantitative results, we
observe a few failure cases stemming from preprocessing
errors in reconstruction and detections. The most common
issues arise from erroneous initial camera estimates gen-
erated by the scene reconstruction-based SfM[53], partic-
ularly in scenes with limited structure, insufficient overlap
between images, or large areas affected by radial distortion.
In instances where DUSt3R[53] fails to detect any cam-
eras, we rely on human-centric camera poses to initialize
the optimization. Another source of error involves miss-
ing or highly inaccurate keypoint detections, which can oc-
cur under conditions of heavy occlusion or poor lighting.
In such cases, our method estimates frame-specific cam-
eras solely based on pixel data, without incorporating hu-
man constraints. Despite these occasional errors, we find
DUSt3R, ViTPose [59], and HMR2.0 [16] to exhibit re-
markable robustness across a wide range of challenging sce-
narios.

S.3. Additional Ablation Studies
We analyze the effect of different scale initializations to
validate the superiority of the human-centric scaling intro-
duced in Section 4.1 in Table S.1. Without scale initializa-
tion (↵ = 1.0), where we directly use the raw DUSt3R [53]
scene and camera pose outputs as input to our optimization,
the W-MPJPE is 11.89m, whereas ours is 1.04m. Addition-
ally, the high metric-scale camera translation errors, such
as 6.42m TE, and extremely low RRA values, demonstrate
the necessity of proper initialization. This error occurs be-

2https://github.com/wkentaro/labelme



Human Metrics Camera Metrics
W-MPJPE# GA-MPJPE# PA-MPJPE# TE# s-TE# AE# RRA@10" RRA@15" RTA@10" RTA@15" s-RTA@10" s-RTA@15"

S1: ↵ = 1.0 11.89 0.85 0.09 6.42 5.50 121.88 0.01 0.01 0.01 0.02 0.01 0.05
S2: ↵ = 100.0 1.94 0.22 0.06 2.17 1.11 15.00 0.68 0.82 0.31 0.45 0.68 0.83
S3: HSfM (Ours) 1.04 0.21 0.05 2.09 0.75 9.35 0.72 0.89 0.32 0.46 0.75 0.91

2 Cam. HSfM (init) 3.73 0.42 0.06 1.53 - 9.81 0.41 0.87 0.08 0.12 - -
2 Cam. HSfM (Ours) 2.63 0.26 0.05 0.39 - 10.37 0.41 0.91 0.48 0.68 - -
4 Cam. HSfM (init) 4.26 0.51 0.06 2.36 1.14 10.96 0.52 0.79 0.26 0.38 0.49 0.74
4 Cam. HSfM (Ours) 1.15 0.27 0.06 2.00 0.71 8.92 0.68 0.88 0.35 0.50 0.78 0.93
8 Cam. HSfM (init) 5.06 0.53 0.06 2.36 0.96 7.61 0.71 0.87 0.25 0.40 0.65 0.88
8 Cam. HSfM (Ours) 1.00 0.19 0.05 1.97 0.90 7.41 0.76 0.90 0.41 0.54 0.72 0.88

Table S.1. Ablation on the number of input view cameras. We evaluate the performance of HSfM by varying the number of input view
cameras and assessing human reconstruction and camera pose estimation in the world coordinate frame. The experiments are conducted
on EgoHumans, excluding samples without ground truth camera poses for all views in the specified combinations (2, 4, and 8). Compared
to the initialization, our joint optimization improves all human pose and camera pose metrics, regardless of the number of input cameras.
We do not report the scaled version of camera translation errors for the 2-camera cases, as the predictions become identical to the ground
truth camera translations after scale alignment.

(a) Input images
(c) Our results, with reconstructed human meshes

(b) Our results, without reconstructed human meshes

Figure S.1. Qualitative results in the wild. We show reconstructions on in-the-wild images taken with two smartphones (a), demon-
strating the reconstruction of humans and scenes. Unlike previous works [61, 71], which adopt human-scene contact priors that hinder
generalization to scenarios without ground foot contact, HSfM recovers accurate world locations of the human meshes that are coherent
with the static scene structure. The use of humans in our framework (c) not only serves as a reliable initialization for 3D structure in the
SfM formulation but also provides more faithful and complete information about people in the world, which a noisy human point cloud (b)
cannot offer. For visualization purposes, the human point cloud is removed using SAM2 [38].

cause the raw camera and scene outputs have a significantly
smaller scale than the real world due to their scale normal-
ization during training.

Choosing a large scale value (↵ = 100) generally cov-
ers the real-world capture scene sufficiently but does not
perform as well as our human-centric scaling approach (W-
MPJPE: 1.94m vs. 1.04m). The camera metrics are also
worse than ours (e.g., RRA values are 5–7% lower than
ours). This implies that, without proper scaling, the opti-

mization is prone to failure due to poor initialization and
local minima problems.

One common local minimum observed was humans be-
ing placed behind the camera while still reprojecting to the
correct pixel locations. To address this, we increased the
scale ↵ until all humans were placed in front of all cameras,
ensuring positive depth values in all camera coordinate sys-
tems. While this initialization produced similar quantitative
results in successful cases, it completely failed for 2% of



Figure S.2. Qualitative results in the wild. We show reconstructions on in-the-wild images taken with two cell phones and the recon-
struction of humans and scene. Our method places people in the world and reconstructs accurate human-scene contact, e.g. between the
person’s right foot and box.



Figure S.3. Qualitative result of HSfM reconstruction. Top view of scene from EgoHumans before and after HSfM optimization.

samples, demonstrating that naive initialization approaches
are not reliable.

Next, we vary the number of cameras to evaluate the ro-
bustness of our method. We tested 2, 4, and 8 input view
cameras. As indicated in the table, our joint optimization
consistently improves all metrics, regardless of the number
of input view cameras. With only 2 cameras, W-MPJPE is
2.63m and GA-MPJPE is 0.26m, indicating accurate human
placement in the world. The consistently better camera re-
sults compared to the initialization further validate the ben-
efit of incorporating humans into the traditional SfM for-
mulation. The robustness of our method is further demon-
strated qualitatively in Figure S.2, where the data is cap-
tured by two cameras in in-the-wild scenes.

S.4. Evaluation Details
S.4.1. Evaluation Metrics
In this section, we provide additional details about our hu-
man pose and camera metrics.
W-MPJPE describes the mean per-joint position error,
measured in the world frame. To bring predicted human
meshes into the ground-truth’s world coordinate system, we
use an SE(3) rigid alignment from the estimated camera po-
sitions to the ground-truth camera positions.
PA-MPJPE describes the Procrustes-aligned variant of
MPJPE, which measures position errors after Sim(3) align-
ment of joints for each human. This metric evaluates local
pose accuracy in a way that is not dependent on camera po-
sition estimates or human body scale.
GA-MPJPE evaluates group-aligned joint position errors,
computed after Sim(3) alignment for all humans in a scene.
This measures people relative to each other, without consid-
ering the scene or camera positions.
TE measures the mean Euclidean distance between pre-
dicted and ground truth camera positions, after SE(3) align-

ment. TE evaluates metric accuracy of camera positions.
s-TE is the scale-aligned version of TE, where we prepro-
cess positions with Sim(3) instead of SE(3) alignment. This
measures scale-invariant errors for estimated cameras.
AE measures the average Angle Error between camera
pairs. We compute relative orientations for each pair of
cameras in a scene. We then measure the difference be-
tween ground-truth and predicted pairwise orientations,
convert to degrees, and average.
CCA [27] measures the Camera Center Accuracy, after the
SE(3) alignment process used for TE. CCA@⌧ is the pro-
portion of camera positions with absolute error within ⌧%
of the overall scene scale. Following existing work, we
compute the scene scale as the furthest distance between
a ground-truth camera and the centroid.
s-RTA measures the the scale-aligned version of RTA, after
the Sim(3) alignment process used for s-TE.
RRA [52] measures the Relative Rotation Accuracy of cam-
era estimates, computed using the same camera pairs as AE.
RRA@⌧ is the proportion of pairwise camera orientations
with angular error of ⌧ degrees or lower.

S.4.2. Evaluation Datasets
EgoHumans: In the main text’s tables and Table S.1’s 4
view case, we used the following camera configurations for
each sequence:
• For 01 tagging sequences: camera 1, camera 4,
camera 6, and camera 8.

• For 02 lego sequences: camera 2, camera 3,
camera 4, and camera 6.

• For 03 fencing sequences: camera 4, camera 5,
camera 10, and camera 13.

• For 04 basketball sequences: camera 1, camera
3, camera 4, and camera 8.

• For 05 volleyball sequences: camera 2, camera
4, camera 8, and camera 11.



• For 06 badminton sequences: camera 1, camera
2, camera 5, and camera 7.

• For 07 tennis sequences: camera 4, camera 9,
camera 12, and camera 20.
In Table S.1’s 2 view case, we used the following camera

configurations for each sequence:
• For 01 tagging sequences: camera 1 and camera
2.

• For 02 lego sequences: camera 3 and camera 5.
• For 03 fencing sequences: camera 5 and camera
13.

• For 04 basketball sequences: camera 2 and
camera 7.

• For 05 volleyball sequences: camera 6 and
camera 12.

• For 06 badminton sequences: camera 5 and
camera 7.

• For 07 tennis sequences: camera 9 and camera
12.
In Table S.1’s 8 view case, we used the following camera

configurations for each sequence:
• For 01 tagging sequences: all 8 available cameras.
• For 02 lego sequences: all 8 available cameras.
• For 03 fencing sequences: camera 1, camera
3, camera 5, camera 7, camera 9, camera 11,
camera 13, camera 15.

• For 04 basketball sequences: all 8 available cam-
eras.

• For 05 volleyball sequences: camera 1, camera
3, camera 5, camera 7, camera 9, camera 11,
camera 13, camera 15.

• For 06 badminton sequences: camera 1, camera
3, camera 5, camera 7, camera 9, camera 11,
camera 13, camera 15.

• For 07 tennis sequences: camera 1, camera 3,
camera 5, camera 7, camera 9, camera 11,
camera 13, camera 15.

EgoExo4D: EgoExo4D scenes are typically captured
using four to six RGB cameras and an egocentric device
(Aria glasses). For our experiments and the baselines, we
use only the RGB images from sequences with correct
re-identification. Sequences containing ego-centric RGB
views, such as helmet-mounted cameras, are excluded.
We evaluate 182 videos from the validation set, sampling
one random frame per video. The videos include ground-
truth annotations for human poses, locations, and camera
parameters. We evaluate on the following takes/frames:
cmu soccer06 3/1426
cmu soccer12 2/6807
cmu soccer16 2/6373
georgiatech bike 06 12/170
georgiatech bike 06 2/97
georgiatech bike 06 6/74

georgiatech bike 06 8/15
georgiatech bike 07 10/28
georgiatech bike 07 12/38
georgiatech bike 07 2/97
georgiatech bike 07 4/46
georgiatech bike 07 6/67
georgiatech bike 07 8/138
georgiatech bike 14 12/593
georgiatech bike 14 2/1214
georgiatech bike 14 6/575
georgiatech bike 14 8/97
georgiatech bike 15 2/1508
georgiatech bike 15 4/844
georgiatech bike 15 6/1103
georgiatech bike 15 8/3153
georgiatech bike 16 2/882
georgiatech bike 16 6/3031
georgiatech bike 16 8/1274
georgiatech covid 02 10/2227
georgiatech covid 02 12/6974
georgiatech covid 02 14/2926
georgiatech covid 02 2/67
georgiatech covid 02 4/67
georgiatech covid 04 10/999
georgiatech covid 04 12/6160
georgiatech covid 04 4/2996
georgiatech covid 04 6/4528
georgiatech covid 06 2/47
georgiatech covid 06 4/64
georgiatech covid 18 10/5524
georgiatech covid 18 12/3457
georgiatech covid 18 2/2413
georgiatech covid 18 4/3534
georgiatech covid 18 6/4389
georgiatech covid 18 8/458
iiith cooking 59 2/7795
iiith cooking 64 2/298
iiith cooking 89 6/1177
iiith cooking 90 4/1383
iiith soccer 015 2/1610
nus cpr 12 1/1338
nus cpr 12 2/76
sfu basketball012 10/774
sfu basketball012 12/399
sfu basketball012 2/945
sfu basketball012 3/1506
sfu basketball012 4/66
sfu basketball012 6/526
sfu basketball012 7/1581
sfu basketball012 8/329
sfu basketball016 2/247
sfu basketball 04 8/209
sfu basketball 05 22/1902



sfu basketball 05 26/29
sfu basketball 09 11/32
sfu basketball 09 12/1114
sfu cooking028 12/1049
sfu cooking 007 7/77
sfu cooking 008 3/4164
sfu cooking 008 5/3559
sfu covid 004 2/2828
sfu covid 004 4/5360
sfu covid 008 16/1595
unc basketball 02-24-23 01 3/84
unc basketball 02-24-23 02 10/466
unc basketball 02-24-23 02 11/927
unc basketball 03-30-23 02 10/45
unc basketball 03-30-23 02 14/7
unc basketball 03-30-23 02 15/40
unc basketball 03-30-23 02 17/9
unc basketball 03-30-23 02 18/20
unc basketball 03-30-23 02 19/7
unc basketball 03-30-23 02 4/107
unc basketball 03-30-23 02 5/25
unc basketball 03-30-23 02 7/1141
uniandes basketball 001 23/768
uniandes basketball 001 24/1386
uniandes basketball 001 26/146
uniandes basketball 001 27/439
uniandes basketball 003 38/32
uniandes basketball 004 23/369
uniandes basketball 004 44/261
uniandes basketball 004 45/667
uniandes dance 002 11/201
uniandes dance 002 2/439
uniandes dance 008 29/276
uniandes dance 008 30/166
uniandes dance 008 31/31
uniandes dance 008 32/11
uniandes dance 008 33/1105
uniandes dance 008 34/753
uniandes dance 008 35/607
uniandes dance 008 36/1045
uniandes dance 008 37/913
uniandes dance 008 38/706
uniandes dance 016 10/841
uniandes dance 016 11/279
uniandes dance 016 12/932
uniandes dance 016 13/453
uniandes dance 016 14/951
uniandes dance 016 30/577
uniandes dance 016 31/1709
uniandes dance 016 32/377
uniandes dance 016 33/1158
uniandes dance 016 36/1247
uniandes dance 016 37/145

uniandes dance 016 38/1416
uniandes dance 016 39/399
uniandes dance 016 3/1239
uniandes dance 016 42/1406
uniandes dance 016 43/1271
uniandes dance 016 44/1268
uniandes dance 016 45/838
uniandes dance 016 6/1361
uniandes dance 016 7/1040
uniandes dance 016 8/1488
uniandes dance 017 6/1592
uniandes dance 019 17/1003
uniandes dance 019 18/509
uniandes dance 019 19/1537
uniandes dance 019 20/1089
uniandes dance 019 22/81
uniandes dance 019 24/484
uniandes dance 019 25/183
uniandes dance 019 26/1814
uniandes dance 019 27/283
uniandes dance 019 28/1411
uniandes dance 019 46/412
uniandes dance 019 47/790
uniandes dance 019 49/1617
uniandes dance 019 51/481
uniandes dance 019 52/875
uniandes dance 019 54/766
uniandes dance 019 55/679
uniandes dance 019 56/561
uniandes dance 019 57/1073
uniandes dance 019 58/192
uniandes dance 024 11/1619
uniandes dance 024 12/104
uniandes dance 024 13/1419
uniandes dance 024 14/1180
uniandes dance 024 15/378
uniandes dance 024 16/1569
uniandes dance 024 17/1317
uniandes dance 024 45/844
uniandes dance 024 47/732
uniandes dance 024 48/261
uniandes dance 024 49/325
upenn 0706 Dance 4 2/2512
upenn 0706 Dance 4 3/1277
upenn 0706 Dance 4 4/1670
upenn 0706 Dance 4 5/1904
upenn 0713 Dance 3 2/164
upenn 0713 Dance 3 3/586
upenn 0713 Dance 3 4/0
upenn 0713 Dance 3 5/243
upenn 0713 Dance 4 2/125
upenn 0713 Dance 4 3/1280
upenn 0713 Dance 4 4/308



upenn 0713 Dance 4 5/262
upenn 0713 Dance 5 4/238
upenn 0713 Dance 5 6/2534
upenn 0721 Piano 1 2/140
upenn 0721 Piano 1 3/648
upenn 0722 Piano 1 2/83
upenn 0727 Partner Dance 3 1 2/62
utokyo pcr 2001 29 2/5799
utokyo pcr 2001 29 4/3491
utokyo pcr 2001 29 6/550
utokyo pcr 2001 30 2/2121
utokyo pcr 2001 30 4/1696
utokyo pcr 2001 32 2/6641
utokyo pcr 2001 32 4/6048
utokyo soccer 8000 43 2/3262
utokyo soccer 8000 43 4/3472
utokyo soccer 8000 43 6/2781

S.5. Implementation Details
Given sparse-view images, HSfM jointly estimates SMPL-
X [35] parameters for humans, scene pointmaps, and cam-
era poses (rotation and translation), in the world coordi-
nate frame. The SMPL-X parameters for humans are ini-
tialized using predictions from HMR2 [16] converted to
SMPL-X following the conversion procedure in [33]. Scene
pointmaps and camera parameters are initialized with esti-
mates from DUSt3R [53]. We use Adam [25] optimizer
and set the number of optimization steps proportional to the
scene scale with a minimum of 500 steps. This allows suf-
ficient time to accurately determine scene scale and cam-
era poses and people’s location. The learning rate is set to
0.015 with a linear reduction schedule. To tune hyperpa-
rameters, we use the first frame (4 cameras) of sequences
01 tagging and 04 basketball of EgoHumans as
these scene encompass a good range of scene scales.

S.6. Additional related work
Monocular Human Mesh Reconstruction. Most methods
estimate 3D humans in the camera coordinate system for a
single person [14, 16, 23, 35] or for multiple people with
depth estimation [2, 46, 67]. Recent works jointly estimate
human and camera motion in the world coordinate frame
[29, 43, 44, 47, 54, 61, 65, 69]. They leverage temporal
dynamics from video sequences to improve reconstruction
quality over time. While single-view reconstruction meth-
ods are valuable for their minimal input requirements, they
often suffer from ambiguity, especially due to occlusion.
Our approach leverages multi-view data to enhance recon-
struction accuracy and integrates scene context, providing
a more detailed and reliable reconstruction of multi-person
interactions within their environment.



Figure S.4. Qualitative results. We show reconstruction on EgoExo4D. On the left, the input images to our method, the scene, humans,
and cameras before optimization (HSfM (init.)) in the center, and the reconstruction of our method after joint optimization on the right.



Figure S.5. Continuation of Fig. S.4



Figure S.6. Continuation of Fig. S.4



Figure S.7. Qualitative results. We show reconstructions on EgoHumans. On the left, the input images to our method, the scene, humans,
and cameras before optimization (HSfM (init.)) in the center, and the reconstruction of our method after joint optimization on the right.



Figure S.8. Continuation of Fig. S.7


