
MASt3R-SLAM: Real-Time Dense SLAM with 3D Reconstruction Priors

Supplementary Material

8. Analytical Jacobians
In this section, we derive analytical Jacobians used in second-
order optimisation for both the tracking and backend. For
more information on Lie algebra and relevant Jacobians,
please see the following [37, 44].

To take the derivatives on Lie groups with respect to the
minimal parameterisation, we use the left-Jacobian defini-
tion:

Df(T)

DT
, lim

⌧!0

f(⌧ �T) f(T)

⌧
, (11)

= lim
⌧!0

Log
�
f (Exp(⌧) �T) � f(T)�1

�

⌧
. (12)

8.1. Points
For the point alignment used in both tracking and mapping,
we have a residual defined between a measured point in
one frame and a transformed point matched from a different
frame. Using the general notation from the backend for point
alignment, and switching the order of the residual which does
not affect the cost function, the residual is:

rp = TijX̃
j

j,n
� X̃

i

i,m
. (13)

Defining x = TijX̃
j

j,n
for brevity in deriving Jacobians for

a single point, we take the partial derivatives with respect to
the Lie algebra perturbation of the relative pose Tij :

Drp
DTij

=
⇥
I3⇥3 �[x]⇥ x

⇤
(14)

where [x]⇥ is the 3⇥ 3 skew-symmetric matrix.

8.2. Rays and Distance
Compared to the point residual, the ray residual minimises
the error in normalised space, which is equivalent to min-
imising the angle between rays in the camera’s frame:

r =
⇣
TijX̃

j

j,n

⌘
�

⇣
X̃

i

i,m

⌘
. (15)

The Jacobian now is the chain rule of the Jacobian for nor-
malising a point to a unit vector and Jacobian of the the pose
acting on the point:

D
DTij

=
@r
@x

Dx

DTij

. (16)

Defining the distance from the origin of camera i to point x
as dx, the Jacobian of the first term becomes:

@r
@x

=
1

dx

✓
I3⇥3 �

xx
T

d2x

◆
. (17)

Using the chain rule with Eq. (14), the first term becomes
Eq. (17) itself. Since the cross product of a point with itself
is a zero vector, the second term becomes a scaled version of
the skew-symmetric matrix. Lastly, as Eq. (17) has the form
of an operator that takes the difference between a point and
its orthogonal projection onto a subspace, and projecting a
point onto its own subspace preserves the point, this cancels
to a zero vector. In matrix form, this is:

Dr
DTij

=
h
@r

@x � 1
dx

[x]⇥ 03⇥1

i
. (18)

As mentioned in the main paper, we also include an error
based on the distance between the transformed point and
its match so that cases with pure rotation do not result in a
degenerate optimisation problem. This error is:

rd = d
⇣
TijX̃

j

j,n

⌘
� d

⇣
X̃

i

i,m

⌘
(19)

and its corresponding Jacobians are:

@rd
@x

=
x
T

dx
, (20)

Drd
DTij

=
h
xT

dx
01⇥3 dx

i
. (21)

8.3. Projection and Depth
In the case of known calibration, we instead use a pixel error
instead of ray error. While the rays could also be constrained
to the known camera model, we chose to use pixel error
as this better models the noise distribution in pixel-level
correspondence and is standard in bundle adjustment. The
pixel error is defined as:

r⇧ = ⇧
⇣
TijX̃

j

j,n

⌘
� p

i

i,m
. (22)

Using a pinhole camera model with calibration

K =

2

4
fx 0 cx
0 fy cy
0 0 1

3

5 , (23)

the projection Jacobian of point x = [x, y, z]T is

@r⇧
@x

=
1

z

fx 0 �fx x

z

0 fy �fy y

z

�
. (24)

We can then obtain Dr⇧
DTij

via the chain rule with Eq. (14).
We also include a small error on the predicted and measured
depth with similar motivation to Eq. (21) in cases of pure
rotation. In the future, any parametric camera model and its
corresponding Jacobian could be used here.

TUM fr1/room 7-Scenes: chess EuRoC: MH01

Figure 8. Total runtime in seconds for representative datasets showing cumulative time spent in significant components. The network encoder
and decoder are the majority of the runtime at an average of 64% of the total runtime. Datasets with more loop closures like fr1/room and
MH01 show more time spent in the backend.

Table 8. Average runtimes in milliseconds of different components for our single-threaded system.

Data Per-Frame Tracking Per Keyframe Summary
Load frame Encoder Decoder Match Solve pose Total Retrieval Decoder Match Gauss-Newton Total Total time (s) FPS

TUM: fr1/room 11.4 13.8 27.7 1.9 2.7 48.6 14.4 97.7 5.8 37.8 157.4 51.5 13.2
7-Scenes: chess 13.8 14.4 26.9 2.0 2.1 47.9 14.4 70.6 4.5 22.7 114.0 33.7 14.8
EuRoC: MH01 9.1 11.4 23.9 1.7 1.8 41.1 15.1 130.4 8.4 66.8 223.3 117.6 15.7
Average 11.4 13.2 26.2 1.9 2.2 45.9 14.6 99.5 6.2 42.4 164.9 67.6 14.6

8.4. From Relative Pose to Global Pose

While the above derivations show the Jacobians with respect
to relative camera poses, we ultimately need updates with
respect to camera poses in the world frame. Using Tij =
T

�1
WCi

TWCj and the identities for the left Jacobian of the
group inverse and composition

DT
�1
WCi

DTWCi

= �AdT�1
WCi

, (25)

DTij

DT
�1
WCi

= I7⇥7, (26)

DTij

DTWCj

= AdT�1
WCi

, (27)

we can then solve for updates to each pose:

Dr
DTWCi

=
Dr
DTij

DTij

DTWCi

= � Dr
DTij

AdT�1
WCi

, (28)

Dr
DTWCj

=
Dr
DTij

DTij

DTWCj

=
Dr
DTij

AdT�1
WCi

. (29)

9. Initialisation

As mentioned in Sec. 3.3, to minimise the number of network
passes required for tracking, we re-use the last keyframe’s
pointmap estimate X̃

k

k
. Such pointmap is always available,

apart from at the initialisation. To initialise the system, we
simply feed the same image into MASt3R to perform monoc-
ular prediction of the pointmap. While such monocular pre-
dictions are often inaccurate, the pointmap incorporates mul-
tiview information and is refined using the running weighted
average filter.

10. Runtime Breakdown
We report the cumulative runtime for different components
of our system across three representative datasets in Fig. 8.
We also show average runtimes of different components in
Tab. 8. Note that tracking, which operates at greater than
20 FPS, occurs for every frame while keyframing is depen-
dent on the motion and thus occurs at a lower frequency. In
general, the network encoder and decoder are the most signif-
icant in terms of time spent for both the tracking and backend
at around 64% of the total runtime. As a large number of
loop closures are detected in TUM fr1/room and EuRoC
MH01, the time spent in the backend increases compared to
the more linear trajectory in 7-Scenes chess. Our efficient
matching, tracking, and backend optimisation ensure that
we can achieve real-time performance, with the network cur-
rently being the limiting factor on lower-latency SLAM. The
combination of the modular prior and principled backend
optimisation achieves global consistency in real-time.

11. Evaluation Setup
11.1. Trajectory Evaluation [Sec. 4.1]]
For all the datasets, we use the same parameters with
keyframe threshold !k = 0.333, loop-closure threshold
!l = 0.1, and !r = 0.005. For relocalisation, we have
a stricter check to allow for the current frame to be attached
to the graph. The match fraction must be greater than 0.3 for
all datasets apart from in ETH3D where we set the threshold
higher to 0.5.

For trajectory evaluation, we run DROID-SLAM using
the open-source code with the configuration files given for
each dataset. For 7-Scenes, we use the TUM configuration
file since it is the most similar. For TUM and EuRoC, the
remaining entries are from the tables in Deep Patch Visual

DROID-SLAM
Mean Chamfer:
RMSE Chamfer:

Ours
Mean Chamfer:
RMSE Chamfer:

0.0154m
0.0604m

0.0142m
0.0288m

Figure 9. Reconstruction comparison on 7-Scenes heads, with red indicating the ground-truth point cloud and blue the estimated point cloud.
While mean Chamfer distance does not significantly penalise inconsistent points, RMSE Chamfer is a better reflection of the quality of the
geometry.

DROID-SLAM Spann3R Ours

Figure 10. Reconstruction comparison on EuRoC V102.

SLAM [22], which also uses some results from DROID-
SLAM [45]. For 7-Scenes, we include the results reported
from NICER-SLAM [58]. For ETH3D, we ran all methods
locally as the dataset was not previously attempted with
monocular SLAM methods.

11.2. Geometry Evaluation [Sec. 4.2]
For evaluation, points that are unobservable are removed
from the reference point cloud. Additionally, for the 7-
Scenes dataset, we filter out depths which are marked as
invalid. For all methods, we do not filter any estimated
point, as in an incremental problem setting like SLAM,
reprojection-based filtering is not always possible and down-
stream applications benefit from per-pixel dense prediction.

For the metrics, we report the RMSE which penalises out-
lying measurements. Fig. 9 is an illustrative example, where
DROID-SLAM and MASt3R-SLAM achieve a similar mean
Chamfer distance. Qualitatively, however, MASt3R-SLAM
clearly produces more coherent and accurate geometry, and
this difference is reflected in the RMSE Chamfer distance.

We report the qualitative result of EuRoC reconstruction
in Fig. 10. Spann3R fails as the sequence is not object-
centric, and DROID-SLAM produces many more outliers
compared to MASt3R-SLAM . Compared to Spann3R which
maintains a memory buffer, our keyframing system ensures
that viewed parts of the scene are not discarded. Further-
more, our efficient global optimisation can create globally
consistent maps in real-time.

Table 9. Absolute trajectory error (ATE (m)) on EuRoC [3].

MH01 MH02 MH03 MH04 MH05 V101 V102 V103 V201 V202 V203 avg

Calibrated

ORB-SLAM 0.071 0.067 0.071 0.082 0.060 0.015 0.020 X 0.021 0.018 X -
DeepV2D [42] 0.739 1.144 0.752 1.492 1.567 0.981 0.801 1.570 0.290 2.202 2.743 1.298
DeepFactors [6] 1.587 1.479 3.139 5.331 4.002 1.520 0.679 0.900 0.876 1.905 1.021 2.040
DPV-SLAM [22] 0.013 0.016 0.022 0.043 0.041 0.035 0.008 0.015 0.020 0.011 0.040 0.024
DPV-SLAM++ [22] 0.013 0.016 0.021 0.041 0.041 0.035 0.010 0.015 0.021 0.011 0.023 0.023
GO-SLAM [54] 0.016 0.014 0.023 0.045 0.045 0.037 0.011 0.023 0.016 0.010 0.022 0.024
DROID-SLAM [45] 0.013 0.012 0.022 0.048 0.044 0.037 0.013 0.019 0.017 0.010 0.013 0.022
Ours 0.023 0.017 0.057 0.113 0.067 0.040 0.019 0.027 0.020 0.025 0.043 0.041

Uncalibrated Ours* 0.180 0.124 0.156 0.282 0.327 0.101 0.134 0.096 0.133 0.100 0.170 0.164

12. EuRoC Results
We summarise the average ATE for EuRoC in the main
paper, and show the results for each sequence in Tab. 9.
While our system does not outperform DROID-SLAM and
methods that leverage its matching architecture, EuRoC has
traditionally been challenging for monocular systems due
to aggressive motion, large-scale trajectories, and varying
exposure. As noted previously, DROID-SLAM was trained
with explicit greyscale augmentation which may account for
the gap in performance. Compared to previous systems with
geometric priors, such as DeepV2D and DeepFactors, we
demonstrate significant improvements in trajectory estima-
tion. Furthermore, the results from the main paper highlight
the additional benefits of using such a prior, as the dense
geometry is more accurate and consistent as shown in Tab. 3,
even for our uncalibrated system.

13. Comparison to Other SLAM/SfM Methods
13.1. DROID and DPV SLAM
Our system uses a two-view geometric prior in a modular
system, while DROID and DPV SLAM learn a matching
prior as part of an end-to-end system with differentiable
bundle adjustment. While these systems are very accurate
for pose estimation, there are fundamental limitations for
geometry and generality.

First, bundle adjustment cannot guarantee coherent ge-
ometry even with accurate poses, as it lacks smoothness
regularisation and constraints under low parallax. Given
MASt3R, we find local fusion and scale optimisation to be
sufficient for consistency and coherence, while the BA of
DROID loses the latter. Second, beyond improved geometry,
geometric priors enable new capabilities like continuously
changing intrinsics. DROID fixes the model to pinhole dur-
ing training, and also cannot efficiently handle time-varying
intrinsics as this slows down backend optimisation.

13.2. MASt3R-SfM
MASt3R-SfM uses sparse correspondences (subsampling
1/64 pixels) due to MASt3R’s brute-force matching. Our
dense projective pointmap matching formulates search as

local optimisation and achieves a 1000x speedup without
compromising accuracy as shown in Tab. 4. Global opti-
misation in MASt3R-SfM uses a 1st-order optimiser, lacks
minimal rotation updates, and introduces degenerate solu-
tions that require scale renormalisation. To avoid such prob-
lems, we formulate a nonlinear least-squares problem and
develop a 2nd-order optimiser with minimal pose updates
and gauge fixing. Our uncalibrated ray formulation achieves
a similar accuracy as MASt3R-SfM’s procedure of fitting
pinhole models and minimising reprojection error, but we
avoid selecting a specific camera model. This maintains
generality of our SLAM system in order to handle all types
of distortion, such as fisheye in the future.

	. Introduction
	. Related Work
	. Method
	. Preliminaries
	. Pointmap Matching
	. Tracking and Pointmap Fusion
	. Graph Construction and Loop Closure
	. Backend Optimisation
	. Relocalisation
	. Known Calibration

	. Results
	. Camera Pose Estimation
	. Dense Geometry Evaluation
	. Qualitative Results
	. Component Analysis

	. Limitations and Future Work
	. Conclusion
	. Acknowledgement
	. Analytical Jacobians
	. Points
	. Rays and Distance
	. Projection and Depth
	. From Relative Pose to Global Pose

	. Initialisation
	. Runtime Breakdown
	. Evaluation Setup
	. Trajectory Evaluation [sec:camera-pose-estimation]]
	. Geometry Evaluation [sec:dense-geometry-eval]

	. EuRoC Results
	. Comparison to Other SLAM/SfM Methods
	. DROID and DPV SLAM
	. MASt3R-SfM

