
8. Proofs of our Results

8.1. Proof of Theorem 1
Proof. Part I. Suppose the true labeling function h∗ is not 1-robust at an x ∈ X with y = h⋆(x). Then, applying Definition 3
with ϵ = 1, there exists a perturbation δ ∈ S(d∗PD,x, 1) ∩ (X − {x}) such that x+ δ ∈ ∪c ̸=yXc. In other words, there exists
an unsafe direction u ∈ U∗(x) and a step size t > 0 such that δ = tu. By the definition of g⋆, we see that t > g⋆(x,u) and
hence,

d∗PD(x, δ) = d∗PD(x, tu) ≥
1

g∗(x,u)
max (⟨tu,u⟩, 0) = t

g∗(x,u)
> 1. (2)

This is a contradiction since we assumed that δ ∈ S(d∗PD,x, 1), implying d∗PD(x, δ) ≤ 1. Hence h∗ must be 1-robust w.r.t.
dPD.

Part II. Note if h is 0-robust at any input x then h misclassifies x. Let x ∈ Xy be such that h is at most ϵ-robust for some
ϵ < 1. Hence there exists a perturbation δ ∈ S(d∗PD,x, 1) ∩ (X − {x}) such that h(x+ δ) ̸= h⋆(x). For such a perturbation,
there are two cases.

Case 1 : h(x+ δ) ̸= h∗(x+ δ).
In this case, clearly x+ δ is an adversarial example for h and the conclusion follows.
Case 2 : h∗(x+ δ) = h(x+ δ) = c for some c ̸= y.
Since x+ δ ∈ Xc. There necessarily exists an unsafe direction u ∈ U∗(x) such that δ = tu. Further, by definition of the

normalization function t > g∗(x,u). Thus,

d∗PD(x, δ) ≥
1

g∗(x,u)
max (⟨tu,u⟩, 0) = t

g∗(x,u)
> 1.

This is a contradiction since δ ∈ S(d∗PD,x, 1) ∩ (X − {x}). Hence this case is not possible.
To summarize if there exists an input x ∈ Xy such that h is at most ϵ-robust for some 0 ≤ ϵ < 1, then every perturbation

δ ∈ S(d∗PD,x, 1) ∩ (X − {x}) such that h(x+ δ) ̸= y is necessarily such that x+ δ is misclassified by h, i.e. h(x+ δ) ̸=
h⋆(x+ δ). Hence the conclusion follows.

9. Expanded Discussion

9.1. Choosing k-subset Sc,k

To obtain a representative subset of unsafe directions U(x) we find a k-subset Sc,k of Sc by solving a clustering-type
optimization problem,

Sc,k := argmax
|A|=k, A ⊆ Sc

f(A), (3)

where

f(A) := min
x∈Sc

max
a∈A

⟨x,a⟩
∥x∥2 ∥a∥2

.

The objective in Equation (3) defines a discrete k-center problem for which we can find an approximate minimizer using the
classical greedy 2-approximation algorithm [21] which starts from a randomly selected element of Sc, and greedily expands
the selection k times, each time adding the best element in Sc according to Equation (3). Algorithm 1 has a computational
complexity of O(k2|Sc|). The quality of this greedy approximation depends on the choice of the initial element. Exploring
other strategies to select subsets Sc,k remains an interesting future direction.

9.2. Projection onto sub-level sets
Each sublevel set is the intersection of halfspaces,

S(x, dPD, ε) = ∩
u∈U(x)

{δ ∈ Rd | ⟨δ,u⟩ ≤ ε · g(x,u)}



Algorithm 1 Choosing k-subset of Sc: Greedy k-center approximation

Sample uniformly at random a ∼ Sc

Initialize : A← {a}
repeat

Find b ∈ Sc with minimal cosine similarity to any a ∈ A,

b := argmin
x∈Sc

max
a∈A

⟨x,a⟩
∥x∥2 ∥a∥2

A← A ∪ {b}.
until |A| = k.
Return A

We let Cx,u := {δ ∈ Rd | ⟨δ,u⟩ ≤ ε · g(x,u)} denote the half space defined by the unsafe direction u at input x. For each
individual halfspace we denote PCx,u the projection operator defined as,

PCx,u(δ) := δ −max (⟨δ,u⟩ − εg(x,u), 0)u.

To obtain a projection operator for the sublevel sets one can employ a greedy procedure (see Algorithm 2) that alternates
between projection onto the halfspaces Cx,u.

Algorithm 2 Greedy Projection

Require: Nonempty closed convex sets Ci for 1 ≤ i ≤ T .
Require: Input a ∈ Rd.
Require: Iteration hyper-parameter N ≥ 1.
Ensure: Projection onto intersection of convex sets ∩iCi.

repeat N times
Select farthest convex set Cj and project to Cj ,

Cj ← argmax
Ci

∥a− PCi(a)∥2 (4)

a← PCj
(a). (5)

end
Return a.

In practice, we leverage the linearity of the PD-threat by utilizing the lazy projection algorithm δ → ε
dPD(x,δ)δ in time-and

compute-constrained settings.

9.3. Quality of Approximation
The quality of the approximation depends on the choice of representative unsafe directions Uk(·) via the k-subset Sc,k and
on the heuristic choice of the approximate normalization gβ , via the scaling hyper-parameter β. For approximating the
normalization, we note that for β = 1, dPD,k,1(x, δ) ≤ d∗PD,k,β(x, δ) for all inputs x and perturbations δ. However, the
permissible set S(x, dPD,k,β , ε) for threshold ε = 1 is likely to include unsafe perturbations. To see this, let u ∈ Uk(x) and
let x̃ ∈ Sc,k be the corresponding point such that u := x̃−x

∥x̃−x∥2
. The perturbation δ := x̃− x has threat dPD,k,1(x, δ) = 1.

Yet, for some t ≤ 1, the scaled perturbation tδ has threat less than 1 but x+ tδ still has true label c and hence tδ is an unsafe
perturbation. Hence, in practice, we make a heuristic choice of β = 1

2 to compute the approximate normalization.
Next we note that a larger k trades-off computational efficiency of evaluating dPD,k,β to how well it approximates d∗PD.

Given training data S, we first recommend finding the minimum k such that PD threat dPD,k,β rates unsafe corruptions on
training data as a sufficiently large threat,

kmin := min
k∈[1,

|S|
C ]

s.t. min
(x,y), (x̃,c)∈S

dPD,k,β(x, x̃− x) > 1



We let kmax ∈ [kmin,
|S|
C ] be the maximum k subject to a practitioner’s memory constraints and desired throughput on

evaluation of threat function. We then recommend a equi-spaced grid search over the interval [kmin, kmax] to determine an
appropriate heuristic choice. In our experiments on Imagenet-1k, we observed that kmin = 20 and kmax = 50 with our
computing resources. In this range, a grid search showed that k = 50 is sufficiently fast, and capable of discriminating safe
and unsafe perturbations on validation data (more on this in Section 4).

9.4. Additional Technical characteristics of PD
Scope of Design. We emphasize that the PD threat is designed to disentangle safe and unsafe perturbations. By construction,
the unsafe directions U(x) only contain perturbations that alter the class label. Thus, the PD threat is not expected to
differentiate two safe perturbations. The threat of two different safe perturbations that retain the class label need not be ordered
by the perceptual similarity which requires a fine-grained inference on image features at multiple levels of resolution. As
such the PD threat is not a suitable replacement for neural perceptual distance metrics, and human-evaluation studies such as
two-alternative forced choice testing (2AFC) are out of scope for the proposed design. In a similar vein, unsafe directions only
correspond to observations within the data domain. Along a safe direction, the threat is not normalized to the boundaries of the
data domain. Hence the PD threat (even exact threat d∗PD) is not designed to identify out-of-distribution (OOD) data.

Attribution. In Figure 6, the perturbation δ is assessed to have large threat at input x with label y. Let ū :=
argmax
u ∈ U(x)

1
gβ(x,u)

ReLU (⟨δ,u⟩) . be the unsafe direction most aligned with the perturbation δ. Since ū ∈ U(x), there

exists a point x̄ ∈ Sc,k where c ̸= y such that ū = x̄−x
∥x̄−x∥2

. Hence for each perturbation δ and input x, the PD-threat identifies
a point x̄ that is most aligned with the direction of perturbation. This feature enables a direct attribution of threat to observed
training data points.

Figure 6. Adversarial attack on benchmark model from [33]

Bottom-up Perspective. We first note that the threat function at each input x, can be re-arranged as a particular large-width
single layer feed-forward neural network hPD,x. Here the neural networks hPD,x have parameters {Sc,k}c∈[C]. On the
Imagenet dataset with C = 1000 labels, and k = 50, this amounts to a neural network with≈ 7.5 billion parameters. However,
unlike the pretraining required to compute vision-language embeddings, the PD threat describes a randomized neural network
based on observed data that does not require an iterative gradient based learning of parameters. The only computation needed
is the selection of representative subset Sc,k for each label c. Thus the PD-threat can be viewed as a bottom-up definition of
neural embedding that requires no training and is motivated instead as a heuristic empirical approximation of a principled exact
non-parametric threat function d∗PD. The value of this approach is shown in promising experimental evidence in Section 4.

Illustration of exact threat d∗PD on synthetic 2D data Consider a binary classification task where inputs x ∈ R2 from
a bounded domain X are assigned labels y ∈ Y := {−1,+1} by a true labeling function h∗. In Figure 7, the solid black
rectangular regions indicate the bounded domain X , and the solid blue lines are the decision boundary of the true labeling



function h∗. A point within the domain is labeled 1 if it is above the blue line and −1 otherwise. Figure 7 presents four
inputs, three points (x,x1,x2) with label 1 and x̃ with label −1. The points are chosen such that x1 and x2 are equidistant
from x, i.e., ∥x1 − x∥2 = ∥x2 − x∥2 = ε. In this toy example, the true labeling function h∗ and the corresponding partition
sets X1 and X−1 are known, and thus the exact PD-threat d∗PD can be computed13. At x, clearly u1 := x1−x

∥x1−x∥2
is an unsafe

direction while u2 := x2−x
∥x2−x∥2

is a safe direction and hence d∗PD(x, εu1) ≥ d∗PD(x, εu2). Figure 7 presents a visualization of
the 1-sublevel sets at each marked point. Figure 7 demonstrates the anisotropy and locality of the sublevel sets S(d⋆PD, ·, 1). A
large value of threat d⋆PD(x, δ) indicates the proximity of the input x to the boundary of the partition sets. This behaviour is
intuitively captured in Figure 3 where x1 is closer to the boundary indicated by the blue line than the other marked points.

(a) S(d∗PD,x, 1) (b) S(d∗PD,x1, 1)

(c) S(d∗PD,x2, 1) (d) S(d∗PD, x̃, 1)

Figure 7. Shape of 1-sublevel sets at different inputs

13Unsafe directions U⋆(x) and normalization g⋆(x,u) are computed via a 2D discretization grid over the domain X



9.5. Weighted Threat Specification
Definition 9 requires a relative distance between class labels W : [C] × [C] → [0, 1]. We note that W (y, c) is the weight
assigned to threats where y is the class label of the original input under perturbation and c is the class label associated with
the unsafe direction. In this section we identify 3 distinct approaches to computing such a relative distance between class
labels. For each approach, the relative weights are computed by scaling w.r.t minimum and maximum for any fixed class y
and varying class c′ of the unsafe directions. This additional normalization ensures comparability of weights across different
approaches. The final weights W (y, c) used to define the weighted threat specification combines all 3 approaches.

Definition 10 (Euclidean Relative Weights). We define the class distance based on Euclidean norm as the average ℓ2 distance
between the selected subsets14 of training data {Sc,k}Cc=1,

L2(y, c) := E
x∼Unif(Sy,k),
x̃∼Unif(Sc,k)

∥x− x̃∥2 ,

where Unif(·) denotes sampling uniformly at random. The relative class distance WEuclidean : [C] × [C] → [0, 1] is the
defined as,

WEuclidean(y, c) :=
L2(y, c)−minc1 L2(y, c1)

maxc2 L2(y, c2)−minc1 L2(y, c1)
.

As explained in the motivation ℓp norms are insufficient to measure perceptual similarity between images of distinct class
labels. Hence we propose to account for perceptual similarity using DreamSim.

Definition 11 (DreamSim Relative Weights). We define the class distance based on DreamSim as,

DS(y, c) := E
x∼Unif(Sy,k),
x̃∼Unif(Sc,k)

DreamSim(x, x̃).

The relative class distance WDS : [C]× [C]→ [0, 1] is the defined as,

WDreamSim(y, c) :=
DS(y, c)−minc1 DS(y, c1)

maxc2 DS(y, c2)−minc1 DS(y, c1)

DreamSim is finetuned to match human perceptual similarity judgements however it is unclear if DreamSim can explicitly
account for the concept hierarchy of Imagenet-1k class labels provided by WordNet. For e.g. images of class labels HEN and
Ostrich can be deemed perceptually distinct but are closer semantically as they both correspond to bird categories.

Next, we discuss a relative distance that explicitly accounts for semantic similarity based on class hierarchy. For Imagenet-
1k class labels [C], the associated WordNet hierarchy can be represented as the tree WordNet(V,E) where [C] ⊂ V and V is
the set of WordNet classes and the edge set E contains an edge (v1, v2) if v1 is a sub-class of v2 or vice-versa. For any pair of
classes (v1, v2), the lowest common ancestor LCA : V × V → V function outputs the lowest (i.e. deepest) class LCA(v1, v2)
that has both v1 and v2 as descendants. Let vroot denote the root class (ENTITY for Imagenet-1k) such that all classes in
V \{vroot} are descendants of vroot. Let dv denote the length of the minimal path from root vroot to class v.

Definition 12 (WordNet Relative Weights). For any two pairs of classes (v1, v2), we define the class distance based on the
WordNet hierarchy as the length of the minimal path connecting the two classes v1 and v2 (through LCA(v1, v2)),

distLCA(v1, v2) := dv1 + dv2 − 2dLCA(v1,v2)

The relative class distance based on the WordNet class hierarchy, WWordNet : [C]× [C]→ [0, 1] is defined as,

WWordNet(y, c) :=
distLCA(y, c)−minc1 distLCA(y, c1)

maxc2 distLCA(y, c2)−minc1 distLCA(y, c1)

Definition 13 (Threat Specification Relative Weights). The relative weights W : [C] × [C] → [0, 1] used to define the
weighted threat specification are explicitly defined as,

W (y, c) :=
(
min {WEuclidean(y, c),WDreamSim(y, c),WWordNet(y, c)}

)2

.

14Recall, Sc,k is the representative subset chosen to formulate the threat specification.



A smaller value of W (y, c) ≈ 0 indicates that the class labels y and c are nearby by at least one of the 3 relative distances
based on Euclidean norm, DreamSim or WordNet Hierarchy. A smaller value of W (y, c) indicates that perturbations δ on
inputs x with label y that are aligned with unsafe directions u of label c have a larger threat dPD−W(x, δ), thus the threat of
perturbations between nearby classes is amplified.

10. Illustrative Examples

Following Mintun et al. [36]’s protocol, each corruption style is computed in-memory to avoid additional noise incurred from
compression quality of images saved to disk. Figure 8 and Figure 9 show the corruptions of an original image x with label
LIONFISH. Table 4 and Table 5 show the amount of threat assesed for each corruption by 6 threat models - (1) the ℓp threat
models - d∞ and d2, (2) the proposed PD threat models - dPD, dPD−W and dPD−S and finally (3) the Dreamsim threat model
dDS. In Table 4 and Table 5 the threats across different threat models are not comparable due to different scalings (for e.g.
d∞, dDS range between [0, 1]) but the others are not limited to an interval. Note, the threats d2 and dPD−W are scaled by a
constant factor for readability.

The corruptions are sourced from Imagenet-C [25] and Imagenet-C̄ [36]. The Imagenet-C corruptions are at severity 5
(maximum 5). The Imagenet-C̄ corruptions includes the full list of 30 corruptions at severity 5 (maximum 10). We note that
the larger experiments on comparison of average threat (for eg. Figure 3) only include the subset of 10 Imagenet-C̄ corruptions
that are considered semantically distinct from Imagenet-C [36]. For any fixed threat model, the threats for different corruption
styles vary. Selective entries are colored red if the threat assessed for the corruption style is as large as the threat of the unsafe
perturbation. Entries are colored orange if the threat of the corruption style is at least half of the threat of the perturbation.
The colors are meant only for illustrative purposes to highlight the ability of each threat model to separate safe and unsafe
perturbations. Evidently most of the safe corruptions are rated as high threat by d∞. We note that both d2 and dDS rate
noise corruptions as high threat but dPD, dPD−W and dPD−S do not. Weather corruptions are uniformly rated as high threat.
Implementation of PD-threat and other necessary files can be found at our github repo.

CATEGORY STYLE d∞ d2 dPD dPD−W dPD−S dDS

Unsafe Unsafe 0.90 0.40 3.30 1.79 2.51 0.64

Noise Gaussian Noise 0.88 0.28 0.51 0.28 0.49 0.36
Shot Noise 0.89 0.30 0.61 0.30 0.46 0.35

Impulse Noise 0.90 0.27 0.57 0.31 0.52 0.35
Speckle Noise 0.91 0.24 0.46 0.24 0.35 0.32

Blur Defocus Blur 0.64 0.08 0.40 0.15 1.28 0.23
Glass Blur 0.59 0.07 0.38 0.15 1.24 0.16

Motion Blur 0.66 0.09 0.43 0.19 1.29 0.18
Zoom Blur 0.51 0.08 0.37 0.18 0.96 0.14

Gaussian Blur 0.63 0.07 0.42 0.17 1.29 0.26

Weather Snow 0.82 0.38 2.53 0.79 2.19 0.53
Frost 0.58 0.34 2.31 0.68 2.40 0.44
Fog 0.61 0.22 1.87 0.99 1.76 0.49

Compression Pixelate 0.54 0.06 0.22 0.09 0.76 0.11
JPEG 0.51 0.06 0.12 0.05 0.39 0.10

Digital Brightness 0.47 0.26 1.41 0.48 2.07 0.20
Contrast 0.60 0.16 1.54 0.74 2.13 0.48

Elastic Transform 0.69 0.16 0.25 0.11 0.89 0.01
Saturate 0.87 0.18 0.71 0.27 1.15 0.24

Occlusion Spatter 0.81 0.16 0.63 0.31 0.49 0.25

Table 4. Threats evaluated on Imagenet-C corruptions in Figure 8

https://github.com/ramcha24/nonisotropic


Unsafe Gaussian Noise Shot Noise Impulse Noise

Defocus Blur Glass Blur Motion Blur Zoom Blur
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Figure 8. Imagenet-C corruptions on a sample image of class LIONFISH.



Color Balance Quadrilateral No Bars Perspective No Bars Single Frequency Greyscale Cocentric Sine Waves

Plasma Noise Voronoi Noise Caustic Noise Perlin Noise Blue Noise

Brownish Noise Scatter Chromatic Abberation Transverse Chromatic Abberation Circular Motion Blur

Bleach Bypass Technicolor Pseudocolor Hue Shift Color Dither

Checkerboard Cutout Sparkles Inverse Sparkles Lines Blue Noise Sample

Pinch And Twirl Caustic Refraction Fish Eye Water Drop Ripple

Figure 9. Imagenet-C̄ corruptions on a sample image of class LIONFISH.

10.1. Anisotropy of Threat on Imagenet-1k
We illustrate a key feature of the PD threat - anisotropy. At each input x, along any direction u, we can compare two threat
functions d1 and d2 by measuring the largest d1 threat for perturbations within S(d2,x, ε). Such a measurement is feasible



CATEGORY STYLE d∞ d2 dPD dPD−W dPD−S dDS

Unsafe Unsafe 0.90 0.40 3.30 1.79 2.51 0.64

Noise Plasma Noise 0.29 0.13 0.62 0.25 0.72 0.17
Voronoi Noise 0.30 0.18 1.04 0.37 0.91 0.18
Caustic Noise 0.59 0.14 0.71 0.20 1.31 0.09
Perlin Noise 0.28 0.11 0.88 0.37 0.95 0.31
Blue Noise 0.87 0.22 0.26 0.15 0.24 0.25

Brownish Noise 0.48 0.16 0.56 0.22 0.91 0.29
Blue Noise Sample 0.90 0.16 0.44 0.19 0.30 0.29

Blur Cocentric Sine Waves 0.12 0.07 0.03 0.01 0.07 0.16
Scatter 0.70 0.10 0.34 0.14 1.13 0.12

Chromatic Abberations 0.89 0.17 0.76 0.31 1.48 0.22
Transverse Chromatic Abberation 0.70 0.10 0.38 0.18 0.94 0.20

Circular Motion Blur 0.81 0.08 0.35 0.15 0.94 0.19
Pinch and Twirl 0.73 0.06 0.15 0.06 0.51 0.00

Caustic Refraction 0.88 0.09 0.18 0.07 0.48 0.09
Fish Eye 0.68 0.08 0.25 0.10 0.88 0.05

Water Drop 0.89 0.10 0.28 0.13 0.97 0.03
Ripple 0.89 0.12 0.40 0.18 1.08 0.07

Digital Color Balance 0.18 0.09 0.74 0.45 0.20 0.29
Quadrilateral No Bars 0.77 0.13 0.57 0.26 1.62 0.02
Perspective No Bars 0.75 0.16 0.80 0.30 2.08 0.03

Bleach Bypass 0.25 0.08 0.33 0.13 0.94 0.07
Technicolor 0.90 0.21 0.75 0.45 0.94 0.24
Pseudocolor 0.21 0.11 0.93 0.53 0.94 0.41

Hue Shift 0.55 0.26 1.53 0.92 0.94 0.36
Color Dither 0.17 0.06 0.02 0.00 0.00 0.04

Occlusion Single Frequency GreyScale 0.18 0.12 0.04 0.02 0.03 0.14
Checkerboard Cutout 0.42 0.07 0.24 0.14 0.08 0.05

Sparkles 0.77 0.14 0.77 0.30 0.59 0.13
Inverse Sparkles 0.72 0.26 1.75 0.61 0.50 0.33

Lines 0.43 0.10 0.65 0.35 0.67 0.20

Table 5. Threats evaluated on Imagenet-C̄ corruptions in Figure 9

for PD threat and ℓp threat due to linear growth, since, for any perturbation, evaluating the threat at d(x, δ), immediately
provides the threat at scaled perturbations since d(x, tδ) = td(x, δ) for each d ∈ {d∞, d2, dPD}. Figure 10 is a radial bar
plot of the corruptions ω ∈ Ω5 (with severity level 5) where the radial axis is d∞ threat. The heights of each radial bar is

1
2·avg(dPD,ω) · avg(d∞, ω). A larger height indicates a corruption ω where the growth of PD threat per unit ℓ∞ threat is lower
(on average). Figure 10 indicates that if corruptions ω(x)− x are scaled to a fixed d∞ threat, the resulting PD threat varies
across directions reflecting the anisotropy of the PD threat model. We emphasize such a plot is not possible for the DreamSim
threat model since the growth is non-linear and hence threat at each scaled perturbation tδ needs to be evaluated separately.
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11. Comparison of Average Threat Statistics
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Figure 11. Heatmap of threat models vs corruption severity
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Figure 13. Comparison of PD-W threat
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