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A. Additional Results of HG-DPO
In this section, we present additional qualitative and quan-
titative results of HG-DPO to demonstrate the effectiveness
of HG-DPO.

A.1. Text-to-Image Generation
As demonstrated in Figure S1, HG-DPO successfully gen-
erates high-quality human images with diverse actions, ap-
pearances, group sizes, and backgrounds. This is made
possible by HG-DPO’s effective enhancement of the base
model, as demonstrated by extensive experimental results
in our manuscript and Figure S2.

As a result, in Table S1, HG-DPO outperforms other
existing methods. Table S1 is similar to Table 1 in the
manuscript but differs in two key aspects: it includes ad-
ditional baselines, DPOK [3] and D3PO [20], and uses 10
random seeds instead of a single one. To train DPOK and
D3PO, we use our training prompt set P and PickScore [10]
as the reward model. While D3PO originally uses human
feedback, we follow the authors’ setup by using the reward
model instead. The results in Table S2, which converts Ta-
ble S1 to samplewise win rates, further highlight the effec-
tiveness of HG-DPO.

Furthermore, HG-DPO significantly outperforms the
base model and the previous approaches in the user study,
as shown in Figure S3. In the user study, we evaluated
a selected subset of the baselines introduced in Section 4
of our manuscript against HG-DPO. Specifically, since the
model trained with HPD [19] yields results similar to the
model trained with Pick-a-Pic [10] (see Figure 4 in our
manuscript), we compared HG-DPO exclusively with the
model trained using Pick-a-Pic [10], which is widely used in
DPO-related studies. Furthermore, we excluded Diffusion-
DPO [17], NCP-DPO [4], and MAPO [7] from the user
study because these models often failed to generate images
reliably and exhibited severe artifacts (see Figure 4 in our
manuscript).

A.2. Personalized Text-to-Image Generation
HG-DPO significantly improves personalized text-to-image
(PT2I) generation. As shown in Figure S4, this allows
the generation of high-quality images that accurately re-
flect specific identities. Notably, these improvements are
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Figure S1. Qualitative results of HG-DPO. HG-DPO is capable of effectively generating high-quality human images that encompass a
wide range of actions, appearances, group sizes, and backgrounds.



Model P-Score (↑) HPS (↑) I-Reward (↑) AES (↑) CLIP (↑) FID (↓) CI-Q (↑) CI-S (↑) ATHEC (↑)

HPD v2 21.7211 0.2821 -0.1353 6.0928 29.71 39.53 0.8856 0.9507 17.45
Pick-a-Pic v2 21.6778 0.2821 -0.1352 6.0999 29.72 40.85 0.8614 0.9383 17.43
Diffusion-DPO 18.0731 0.2408 -1.9616 5.0637 23.49 160.11 0.6638 0.8715 40.31
NCP-DPO 17.4631 0.2327 -2.0222 4.7983 21.53 184.81 0.6342 0.8236 12.09
MAPO 20.3971 0.2692 -0.5150 5.4260 28.22 63.33 0.6459 0.7566 30.71
Curriculum-DPO 22.4298 0.2868 0.5823 6.1874 31.43 37.02 0.8857 0.9528 21.63
AlignProp 22.8933 0.2843 0.0693 6.2670 29.50 53.87 0.8534 0.9609 15.67
DPOK 21.6709 0.2809 -0.2344 6.0998 29.25 41.52 0.8756 0.9332 15.68
D3PO 21.6905 0.2810 -0.1914 6.0764 29.59 41.26 0.8902 0.9508 17.41
HG-DPO (Ours) 22.5781 0.2871 0.7384 6.1758 31.53 30.91 0.9327 0.9852 28.28

Table S1. Quantitative comparison with the previous methods. HG-DPO achieves superior performance over the existing methods
across nearly all evaluation metrics. Bold text and underlined text indicate the best and second-best results, respectively. The row corre-
sponding to our final model, HG-DPO, is highlighted in blue. For a more accurate comparison, we evaluate using 10 random seeds.

Model P-Score (↑) HPS (↑) I-Reward (↑) AES (↑) CLIP (↑) CI-Q (↑) CI-S (↑) ATHEC (↑)

vs HPD v2 85.13 % 76.44 % 82.25 % 62.17 % 73.15 % 82.31 % 86.64 % 93.75 %
vs Pick-a-Pic v2 86.03 % 76.14 % 82.08 % 61.06 % 72.64 % 89.63 % 90.87 % 93.79 %
vs Diffusion-DPO 99.97 % 99.96 % 99.67 % 96.91 % 96.48 % 96.74 % 88.17 % 27.24 %
vs NCP-DPO 99.97 % 99.85 % 99.78 % 95.04 % 98.95 % 99.61 % 96.94 % 97.02 %
vs MAPO 97.92 % 98.35 % 88.51 % 96.26 % 84.78 % 98.89 % 98.10 % 42.07 %
vs Curriculum-DPO 60.85 % 51.86 % 57.10 % 49.51 % 50.21 % 84.35 % 88.66 % 82.74 %
vs AlignProp 33.82 % 62.12 % 75.80 % 37.73 % 74.02 % 95.35 % 85.45 % 97.98 %
vs DPOK 86.19 % 80.71 % 84.06 % 61.80 % 77.67 % 85.67 % 91.82 % 95.91 %
vs D3PO 85.90 % 81.70 % 83.69 % 64.16 % 74.82 % 81.09 % 87.46 % 92.90 %

Table S2. Samplewise win rates (%) of HG-DPO against the previous methods. HG-DPO achieves superior performance over the
existing methods across nearly all evaluation metrics. This table converts Table S1 into win rates, which means that these results are also
calculated using 10 random seeds.

achieved without compromising the identity injection capa-
bility of the base PT2I model.

B. Additional Analysis on the Easy Stage

In this section, we present additional experimental results
and further analysis of the easy stage.

B.1. Effectiveness of the Easy Stage
In the easy stage, we refine the base model to generate
images that align more closely with human preferences as
shown in Figure S5. Specifically, the model is improved to
produce images with undistorted poses and anatomies and
stronger alignment with the given prompts.

B.2. Image Pool with AI Feedback
In our manuscript, we propose a method for selecting win-
ning and losing images from the image pool using AI feed-
back (PickScore [10]). This method assumes that a larger
PickScore difference between the winning and losing im-
ages indicates greater semantic differences, which are cru-
cial for enhancing the model through DPO and align bet-
ter with actual human preferences. As shown in Figure S6,

Figure S2. Qualitative enhancements in text-to-image genera-
tion through HG-DPO. HG-DPO improves the base model’s ca-
pability to generate human images with more realistic poses and
anatomies that align more accurately with the given prompt.



Figure S3. User studies comparing HG-DPO and baselines.
HG-DPO demonstrates superior performance compared to the
base model and previous approaches in human evaluation. Partic-
ipants were tasked with choosing the image that exhibited higher
realism and better alignment with the given prompt from the out-
puts of the two models. The detailed process for conducting the
user study is described in Section F.5.

comparing the image with the highest PickScore to the im-
age with the l-th highest PickScore reveals that the semantic
differences between the two images (e.g., anatomy, pose,
and text-image alignment) become more pronounced as l
increases. By choosing the images with the highest and
the 20th highest PickScores as the winning and losing im-
ages, respectively, we accentuate the semantic differences
between them, better reflecting human preferences.

B.3. Statistics Matching Loss
In this section, we further analyze the statistics matching
loss.

B.3.1. Hypothesis test
Here, we validate the hypothesis underlying the statistics
matching loss, Lstat. Let us denote the model obtained by
training ϵbase through the easy stage without Lstat as ϵ̂E. ϵ̂E
is a model that suffers from the color shift artifacts. As ex-
plained in our manuscript, we hypothesize that the cause of
the color shift artifacts is the divergence between the latent
statistics sampled by ϵ̂E and those of ϵbase during inference.
Lstat is designed to prevent such divergence based on this
assumption.

To verify our hypothesis more directly, we design an
inference-time statistics matching approach called latent
adaptive normalization (LAN). If the gaps in the channel-
wise statistics of the latents during inference cause the color
shift artifacts, then eliminating those gaps should resolve
those artifacts.

Let ĥt−1
E and ht−1

base denote the latents sampled from the
same random noise using ϵ̂E and ϵbase at inference time with

timestep t, respectively. Formally, we define

ĥt−1
E = ψ(htE, p, t, ϵ̂E) (1)

ht−1
base = ψ(htbase, p, t, ϵbase) (2)

where ψ denotes a inference-time latent sampler and p de-
notes an inference prompt. Then, we define LAN as fol-
lows:

ht−1
E =

(
ĥt−1
E − µ(ĥt−1

E )

σ(ĥt−1
E )

)
σ(ht−1

base) + µ(ht−1
base) (3)

where µ and σ calculate the channel-wise mean and stan-
dard deviation from the input, respectively. ht−1

E is used in
Eq. (1) of the supplementary material at the next inference
timestep.

Table S3 reveals that N > 2 (ϵ̂E) + LAN significantly
reduces the hue distance compared to N > 2 (ϵ̂E). Fur-
thermore, N > 2 (ϵ̂E) + LAN achieves comparable per-
formance to N > 2 (ϵ̂E) in human preference metrics (P-
Score, HPS, I-Reward, and AES) and image-text alignment
(CLIP). These findings validate LAN’s effectiveness in ad-
dressing the color shift artifacts and support the hypothesis
underlying the design of Lstat.

However, because LAN requires additional sampling
from ϵbase during inference, it incurs higher computational
costs during inference compared to N > 2 + Lstat. For this
reason, we propose Lstat as a more computationally efficient
solution to mitigate the color shift artifacts.

B.3.2. What causes the color shift artifacts?
The color shift artifacts arise from the deviation of the
channel-wise statistics of latents sampled using ϵ̂E from
those sampled using ϵbase, as demonstrated by the effec-
tiveness of LAN in the previous paragraph. Here, to find
the cause of this deviation, we further analyze the winning
and losing images used in the easy stage. Specifically, we
calculate the cosine distance of channel-wise statistics of
encoded latents of winning and losing images. In Table S4,
the results reveal that the cosine distance between the la-
tents’ means for the winning and losing images is 0.2035,
while the cosine distance for their standard deviations is
0.005. Since DPO trains the model to learn the differences
between winning and losing images, it can be inferred that
the differences in the channel-wise mean values of latents
present in the dataset are also learned by the model. This
can encourage the model to shift the mean of the sampled
latents far from that of the losing image and close to that of
the winning image.

B.3.3. Why is it sufficient to match only the mean?
Lstat mitigates the color shift by preventing the aforemen-
tioned mean shift through the mean matching loss. Interest-
ingly, as reported in the previous paragraph, we can observe



Figure S4. Qualitative advancements achieved through in personalized text-to-image (PT2I) generation through HG-DPO. HG-
DPO improves the base model’s capability to generate human images with more realistic poses and anatomies that align more accurately
with the given prompt, and these improvements extend to PT2I generation. As a result, we can produce high-quality images that accurately
reflect the identity of the concept image shown in the bottom left.

that the cosine distance of standard deviation between the
latents of winning and losing images is close to zero. We
believe this is why matching only the mean in Lstat is suffi-
cient to prevent the color shift artifacts.

B.3.4. Importance of the statistics matching loss

As illustrated in Figure S7, the absence of Lstat results in
generated images appearing unnatural due to the color shift
artifacts. Incorporating Lstat effectively eliminates these ar-
tifacts, producing noticeably more natural images.

C. Additional Analysis on the Normal Stage

In this section, we present additional experimental results
and further analysis of the normal stage.

C.1. Effectiveness of the Normal Stage

We further explore the role of the normal stage, which re-
fines ϵE, derived from the easy stage, to produce ϵN. While
the easy stage enables ϵE to generate images aligned with
human preferences resulting in undistorted anatomical fea-
tures and poses, they still fall short of achieving the realism
found in real human portrait images. For example, as shown
in Figure S8, although the poses are largely free from dis-
tortion, they still appear somewhat unnatural compared to
those in real photographs. The normal stage enhances ϵE
by improving its ability to generate compositions and poses
that are not only distortion-free but also realistic, closely
mirroring those found in the real dataset. Figure S8 illus-
trates that ϵN achieves significantly more realistic composi-



Figure S5. Qualitative advancements achieved through the easy stage. We enhance the base model through the easy stage to generate
images that better align with human preferences. Specifically, the model is improved to produce images with undistorted poses and
anatomies and stronger alignment with the given prompts.

Model P-Score (↑) HPS (↑) I-Reward (↑) AES (↑) CLIP (↑) FID (↓) CI-Q (↑) CI-S (↑) ATHEC (↑) Hue (↓)

Base (ϵbase) 21.7364 0.2819 -0.0665 6.1061 29.72 37.34 0.9058 0.9573 18.73 -
N = 2 22.1939 0.2854 0.3610 6.1408 30.66 34.44 0.8887 0.9472 18.96 10.24
N > 2 (ϵ̂E) 22.5688 0.2872 0.7830 6.2544 31.50 37.29 0.8879 0.9471 27.20 98.54
N > 2 (ϵ̂E) + β ↑ 22.2506 0.2864 0.5435 6.1129 31.30 36.00 0.8416 0.9141 19.17 23.77
N > 2 (ϵ̂E) + LAN 22.6474 0.2885 0.7677 6.1899 31.60 37.08 0.9086 0.9521 18.65 16.13
N > 2 + Lstat (ϵE) 22.5384 0.2878 0.7146 6.1775 31.56 36.00 0.9057 0.9547 19.58 27.94

Table S3. Quantitative analysis of the easy stage. For DE, N = 2 generates exactly two images per prompt, while N > 2 builds an
image pool. N > 2+ β ↑, N > 2+ LAN, and N > 2+Lstat add regularization to address the color shift artifacts in N > 2. Specifically,
N > 2 + β ↑ applies a higher β, which is a strength of the original regularization in LD-DPO, N > 2+ LAN applies latent adaptive
normalization (Section B.3), and N > 2 + Lstat integrates Lstat. Bold text and underlined text indicate the best and second-best results,
respectively. The row corresponding to the proposed training configuration in the easy stage is highlighted in blue.

Mean Standard deviation

Cosine distance 0.2035 0.0005

Table S4. Difference of channel-wise statistics between winning
and losing images. Cosine distance of channel-wise statistics of
encoded latents of winning and losing images. For the encoding,
we use the encoder of VAE [9] used in HG-DPO.

tions and poses, derived from real human portrait images,
than ϵE.

C.2. Intermediate Domains
In the normal stage, we introduce intermediate domains for
winning images. Figure S9 illustrates the outcomes of the
SDRecon operation used to create these intermediate do-
mains, along with the winning images employed during the
normal stage.

C.2.1. Intermediate domains with SDRecon
As shown in Figure S9, we use 10 intermediate domains, la-
beled from t1 to tT . While t1 is nearly identical to a real im-
age, tT resembles a generated image, retaining little of the
real image’s original features. As the transition progresses
from t1 to tT , the characteristics of the real image gradually
fade, increasingly resembling those of a generated image.
Specifically, fine-detail information is lost first, followed by
the loss of pose information.

C.2.2. Winning images from the intermediate domains
As depicted in Figure S9, we select four intermediate do-
mains, t4 through t7, as candidates for the winning images
in the normal stage. This is because the our qualitative anal-
ysis reveals that these domains generally retain the realistic
pose of the real image while exhibiting fine details resem-
bling those of generated images. Among these candidates,
the image with the highest PickScore [10] is chosen as the



Figure S6. Visualization of the image pool. This figure shows the image pool with the size of 20 for the prompt in the leftmost column.
The column labeled as 1st contains images with the highest PickScore, while the column labeled as 20th contains images with the 20th
highest PickScore, i.e., the lowest PickScore, in the image pool. By selecting the image with the highest PickScore from this image pool
as the winning image and the image with the 20th highest PickScore as the losing image, we magnify the semantic differences between the
winning and losing images.



Figure S7. Qualitative enhancements achieved with the statis-
tics matching loss. The statistics matching loss effectively re-
moves the color shift artifacts, leading to the generation of signifi-
cantly more natural images.

winning image.

D. Additional Analysis on the Hard Stage
In this section, we present additional experimental results
and further analysis of the hard stage.

D.1. Effectiveness of the Hard Stage
We investigate the impact of the hard stage, which refines
ϵN, obtained from the normal stage, to produce ϵH. While
ϵN achieves realistic composition and poses during the nor-
mal stage, it struggles to generate fine details. For instance,
as shown in Figures S10, S11, S12, and S13, ϵN 1) fails to
accurately depict fine facial features such as eyes and lips,
2) requires better shading, and 3) suffers from image blur-
riness. Although these details may seem minor, they play
a crucial role in achieving overall image realism. The hard
stage addresses these limitations by enhancing ϵN, result-
ing in ϵH, which excels in generating realistic fine details.
Figures S10, S11, S12, and S13 illustrate that ϵH effectively

produces fine details that ϵN cannot, significantly improv-
ing image realism. As shown in Figure S14, in a user study
comparing ϵN and ϵH, ϵH is rated higher, further demonstrat-
ing its effectiveness.

D.2. Winning Images of the Hard Stage
In the hard stage, we employ images from the intermediate
domain t1 as winning images instead of real images. As
illustrated in Figure S9, images from the intermediate do-
main t1 are visually nearly indistinguishable from real hu-
man portrait images, making this approach effectively com-
parable to using real images directly as winning images.
This choice is motivated by the observation that, while real
images and intermediate domain t1 images appear almost
identical to the human eye, utilizing intermediate domain
images leads to slightly better quantitative performance.
Specifically, as demonstrated in Table S5, the model trained
with intermediate domain t1 images achieves results similar
to those trained with real images, with a slight improvement
in CI-Q scores.

D.3. Effectiveness of the Enhanced Text Encoder
We train the text encoder during the easy stage to en-
hance image-text alignment and employ it alongside ϵH,
derived from the hard stage, during inference. As shown
in Figure S15, the enhanced text encoder effectively im-
proves image-text alignment without compromising the im-
age quality achieved by ϵH.

E. Limitations
Through a three-stage training pipeline, HG-DPO enhances
the base model to generate not only realistic anatomical fea-
tures and poses but also fine details with greater realism.
Despite these improvements, HG-DPO does not address the
generation of realistic fingers. As shown in Figure S16, HG-
DPO produces an image with sharper and more realistic fine
details compared to the base model. However, the generated
fingers remain notably unrealistic.

F. Implementation Details
In this section, we provide implementation details on train-
ing and inference.

F.1. Details on Supervised Fine-Tuning
First, we introduce the method for obtaining ϵbase through
supervised fine-tuning.

Text-to-image dataset. We collected approximately 300k
high-quality human images. Each image has a resolution of
704 × 1024. We use LLaVa [11] to generate text prompts
for all the collected images for training. This text-to-image
dataset corresponds to Dreal in our manuscript.



Figure S8. Qualitative advancements achieved through the normal stage. ϵN, derived by refining ϵE through the normal stage, generates
images with more realistic compositions and poses compared to ϵE.

Model P-Score (↑) HPS (↑) I-Reward (↑) AES (↑) CLIP (↑) FID (↓) CI-Q (↑) CI-S (↑) ATHEC (↑)

Real 22.4773 0.2857 0.5388 6.1953 30.99 28.56 0.9298 0.9885 29.13
Intermediate t1 22.4698 0.2867 0.5791 6.1955 31.15 28.66 0.9365 0.9859 30.08

Table S5. Quantitative results based on the type of images used as winning images in the hard stage. The row labeled Real displays
the results for the model trained with real images as winning images, while the row labeled Intermediate t1 shows the results for the model
trained using images from the intermediate domain t1 as winning images. Bold text indicates the best results. The row corresponding to
the proposed training configuration in the hard stage is highlighted in blue.

Furthermore, we use Qwen2-VL [18] for visual question
answering to analyze distribution of this dataset, which in-
cludes 40.7% male and 59.3% female, and 24.45% child,
2.82% teenager, 41.00% youth, 31.61% adult, and 0.12%
elderly. While the proportions of teenagers and elderly ap-

pear small, images in these groups may have been reason-
ably classified into adjacent categories (e.g., teenagers as
child/youth, elderly as adult).



Figure S9. Visualization of the intermediate domains. The images labeled t1 to tT are reconstructed from real images using the SDRecon
operation. The image labeled generated image is produced via text-to-image generation based on the caption of the real image. As the labels
progress toward tT , SDRecon applies increasingly stronger noise to the real image, causing it to lose more of its original characteristics
and resemble the generated image more closely. For the normal stage, we select four intermediate domains, t4 to t7, as candidates for
winning images, because they maintain the realistic pose of the real image while adopting the fine details typical of the generated image.
The image with the highest PickScore among these candidates is chosen as the winning image.



Figure S10. Qualitative advancements achieved through the hard stage. ϵH, derived by refining ϵN through the hard stage, generates
finer details, especially more realistic depictions of the eyes, compared to ϵN as shown in the red box.



Figure S11. Qualitative advancements achieved through the hard stage. ϵH, derived by refining ϵN through the hard stage, generates
finer details, especially more realistic depictions of the gaze, compared to ϵN as shown in the red box.



Figure S12. Qualitative advancements achieved through the hard stage. ϵH, derived by refining ϵN through the hard stage, generates
finer details, especially more realistic depictions of the lips, compared to ϵN as shown in the red box.



Figure S13. Qualitative advancements achieved through the hard stage. ϵH, derived by refining ϵN through the hard stage, generates
sharper images with improved fine details, particularly exhibiting more vivid and realistic shading, compared to ϵN.



Figure S14. User study comparing a model trained up to the
normal stage (ϵN) with one trained through the hard stage (ϵH).
Participants were tasked with choosing the image that exhibited
higher realism and better alignment with the given prompt from
the outputs of the two models. The model trained through the hard
stage achieves higher human evaluation scores due to its ability to
generate finer details with greater realism compared to the model
trained only up to the normal stage.

Architecture. We employ Stable Diffusion 1.5
(SD1.5) [13], which is pre-trained with large text-to-
image datasets, as our backbone model. More specifically,
we use majicmix-v7 [1], a fine-tuned model of SD1.5
specialized in human generation. We further fine-tune this
backbone model with Dreal, to obtain our base model, ϵbase.

Loss function. For fine-tuning, we use the noise predic-
tion loss [6]. Also, we use DDPM noise scheduler [6] for
the forward diffusion process during training.

F.2. Details on HG-DPO Training
In this section, we provide details on how to improve ϵbase
using HG-DPO.

F.2.1. Architecture
U-Net. Instead of training the all parameters of ϵbase
through HG-DPO, we attach LoRA [8] layers to the all lin-
ear layers in the attention modules and only train them. We
set LoRA rank as 8.

Text encoder. When training the text encoder, we also at-
tach LoRA [8] layers to the all linear layers in the attention
modules and only train them. For the text encoder, we set
LoRA rank as 64.

F.2.2. Loss function
DPO loss. We adopt the objective function of Diffusion-
DPO (LD-DPO) [17] with β = 2500. For LD-DPO, we use
DDPM noise scheduler [6] for the forward diffusion pro-
cess.

Figure S15. Qualitative advancements achieved through the
text encoder enhancement. By training the text encoder through
the easy stage and incorporating it with ϵH during inference, we
achieve improved image-text alignment compared to using ϵH
alone. Moreover, the use of the enhanced text encoder does not
compromise the image quality produced by ϵH.

Statistics matching loss. For the statistics matching loss
(Lstat), we set λstat = 10000. Also, for the latent sampling
in Lstat, we use DDPM sampler [6]. We tried DDIM sam-
pler [15], but there was no significant difference. In addi-
tion, classifier-free guidance [5] is not used during the latent
sampling in Lstat.

F.2.3. Optimization
For the optimization, we set the local batch size to four,
which corresponds to the total batch size to 16 because we
used four NVIDIA A100 GPUs. As an optimizer, we use
the 8-bit Adam optimizer [2] with β1 and β2 of the Adam
optimizer to 0.9 and 0.999, respectively, and the learning
rate to 1e − 5. Additionally, we utilize mixed precision for



Figure S16. Qualitative results illustrating the limitations of
HG-DPO. While HG-DPO significantly improves the base model
in generating more realistic human images, it still struggles to ac-
curately synthesize fingers.

efficient training. For the easy, normal, and hard stages, we
update the model for 300k, 20k, and 20k steps, respectively.

F.2.4. Dataset
Image pool. For the image pool generation, we simply
use the prompt set from Dreal. Furthermore, as shown in
Figure S6, we generate 20 images per prompt for the image
pool, which corresponds to N = 20 in our manuscript.

Intermediate domains. For the intermediate domains,
we introduce 10 intermediate domains from t1 to tT=10 as
shown in Figure S9. These 10 domains are generated by
evenly dividing the diffusion timesteps from 1 to 1000 into
10 intervals. Specifically, we set t1 = 100, t2 = 200, ...,
tT = 1000. Then, we set tr = t4 and tg = t7 for candidates
of winning images as shown in Figure S9.

F.3. Adaptation to Personalized T2I model
To adapt HG-DPO to the personalized T2I model, we firstly
trained InstantBooth [14] using ϵbase as the backbone. Af-
ter training InstantBooth, we can seamlessly adapt the pre-
trained HG-DPO LoRA layers to InstantBooth because they
share the same backbone, ϵbase.

F.4. Details on Image Sampling
Sampling method. DPMSolverMultistepScheduler [12]
in diffusers [16] is used with the step size of 50 for
sampling the images, using classifier-free guidance [5] with
the guidance scale of 5.0.

Figure S17. User study interface. We conduct the user study by
providing a prompt and two images, asking users to choose the
one that appeared more realistic considering the given prompt.

LoRA configuration. In addition, the LoRA weight of
0.5 is applied to both the U-Net and the text encoder. The
LoRA layers in the text encoder are specifically trained to
improve image-text alignment rather than visual quality, so
they are applied only to a subset of inference timesteps near
the noise. Specifically, the text encoder’s LoRA layers are
activated during inference timesteps 900 to 1000. Addi-
tionally, as ϵH focuses on enhancing visual fine details, its
LoRA layers are applied solely to the upsampling blocks
of the U-Net, while the remaining U-Net blocks are frozen.
This approach is chosen because qualitative analysis sug-
gested that applying ϵH’s LoRA layers to all U-Net blocks
reduces image diversity. This method allows for improved
image quality while preserving diversity as much as possi-
ble.

F.5. Details on User Study
In Figures S3 and S14, we present the results of user studies.
Each participant was tasked with selecting one of two im-
ages that best aligned with the given prompt and appeared
more realistic. Here, these two images are generated by the
models being compared. Evaluations were conducted using
a web-based user interface, as illustrated in Figure S17.

G. Broader Impacts
We recognize the potential negative societal impacts of our
work. Since our method can generate high-quality human
images, it could be misused to create malicious fake images,
especially when combined with personalized T2I models. It
can cause significant harm to specific individuals. However,
our work can also have positive impacts on society when
used beneficially, such as in the entertainment or film in-
dustries. For instance, users can create desired high-quality
profile pictures using text input. It highlights the beneficial
uses of our work.
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