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A. Additional Implementation Details
DocVLM efficiently leverages OCR data to enhance VLMs’
reading capabilities. We extract text and layout informa-
tion from document images using an OCR system, which
is then processed by an OCR encoder as discussed in Sec.
3. Specifically, we utilize the encoder component of Doc-
FormerV2 [7], omitting the visual branch of this encoder,
as detailed in the main paper. The encoder is initial-
ized with pretrained weights from DocFormerV2, which
was pretrained on the Industry Document Library (IDL)
dataset [13]. For details on this pretraining process, refer
to [7].

A.1. Optimization and Hyperparameters Details
As discussed in Sec. 3.2, our training process comprises two
stages: 1) OCR-LLM alignment and 2) Vision alignment.
For both stages, we utilize AdamW optimization algorithm
with a cosine learning scheduling and 1000 warmup steps.
For the OCR-LLM alignment stage with our learned queries
component, we trained for 140K steps. We used learning
rates of 10→4 for the projection layer and query tokens, and
5 · 10→5 for the OCR encoder. To preserve the pretrained
weights of the OCR encoder while optimizing the randomly
initialized components, we initially froze the encoder for
the first 10K steps. In experiments without our learned
queries component (i.e., without OCR compression), we ad-
justed the process, training the OCR encoder and projection
layer for 100K steps using the same learning rates. In the
Vision alignment stage, we trained all components for an
additional 100K steps with a learning rate of 5 · 10→6. Un-
like the previous stage, this phase included visual features
as input to the LLM, allowing the model to align the OCR
modality with the visual one.

B. Datasets
B.1. Training Datasets
Tab. 5 details all the datasets used to fine-tune DocVLM.
For the OCR-LLM alignment stage, our dataset selec-
tion focuses on text-related tasks, including approxi-
mately 990K queries, including document VQA datasets
(DocVQA [40], InfoVQA [41], ChartQA [39], TAT-
DQA [62]), scene text VQA datasets (TextVQA [48], ST-
VQA [11], OCR-VQA [42]), and a captioning dataset
(TextCaps [47]). The vision alignment stage incorporates
additional visual-centric datasets: COCO Caption [15] and
VQA-V2 [24], bringing the total training set to approxi-
mately 2M queries.

Task Dataset Subsplit Visual Only # Queries

Document VQA

DocVQA [40] train → 39463
InfoVQA [41] train → 46883
ChartQA [39] train (H) → 7398
TAT-DQA [62] train → 13246

Scene Text VQA
TextVQA [48] train → 34602
ST-VQA [11] train → 26308
OCR-VQA [42] train → 800000

Captioning TextCaps [47] train → 21953
COCO Caption [15] train ↭ 566747

General VQA VQA-V2 [24] train ↭ 443757

Total Examples 2000357

Table 5. Training Datasets for DocVLM Fine-tuning. Datasets
used for fine-tuning DocVLM, categorized by task type. The ’Vi-
sual Only’ column indicates datasets that are not text-centric. The
total number of queries across all datasets is shown at the bottom.

Task Dataset Subsplit Metric Zero-Shot # Queries

Document VQA DocVQA [40] Test ANLS → 5188
InfoVQA [41] Test ANLS → 6573

Scene Text VQA TextVQA [48] Val VQAScore → 5000
ST-VQA [11] Test ANLS → 4163

Captioning TextCaps [47] Val CIDEr → 3166

Multipage VQA MP-DocVQA [50] Test ANLS → 5019
DUDE [51] Test ANLS ↭ 11402

Total Examples 40511

Table 6. Evaluation Datasets for DocVLM. Datasets used for
evaluating DocVLM, categorized by task type. The table includes
the dataset split used, evaluation metric, zero-shot status, and num-
ber of queries for each dataset.

B.2. Evaluation Datasets
Tab. 6 details all the datasets used to evaluate DocVLM’s
performance across a diverse range of document under-
standing tasks, including document VQA, scene text VQA,
captioning, and multipage document understanding. While
our training focused on single-page documents, we ex-
tended our evaluation to include multipage datasets: MP-
DocVQA [50] and DUDE [51]. It is important to note that
although both multipage datasets were not included in our
training set, we only consider DUDE as a true zero-shot
evaluation, as MP-DocVQA is an extension of DocVQA,
which was included in our training data.



C. Qualitative Results

Figures 6 and 7 showcase DocVLM’s enhanced docu-
ment understanding capabilities through representative ex-
amples. Figure 6 focuses on document images from the
DocVQA [40] test set, while Figure 7 presents infographic
images from the InfoVQA test set [41]. We present re-
sults for LLaVA-OneVision with a 1.5K visual token lim-
itation, InternVL2 with 256 and 1280 visual token limita-
tions, and Qwen2VL with 256 and 512 visual token limi-
tations. As can be seen, the baselines’ errors occur in sce-
narios that demand superior reading comprehension capa-
bilities. Notably, by only utilizing 64 OCR compressed to-
kens, DocVLM effectively corrects errors and provides the
correct responses. This improvement is consistent across
different VLM architectures and visual token limitations,
highlighting the efficiency and versatility of our approach.

D. Ablation Study on Visual Features

In this section, we explore how visual features contribute to
DocVLM’s performance by first evaluating DocVLM with-

out visual input and then assessing the impact of adding
visual features.

DocVLM’s OCR Encodings Without Visual Input. We
evaluate DocVLM based on Qwen2VL after the OCR-LLM
Alignment stage, using only OCR encodings as input to the
LLM, without visual tokens. This approach allows us to as-
sess how well the encodings capture OCR data and their
sufficiency for document question answering tasks. Our
architecture consists of inputting DocVLM’s encodings or
compressed encodings to the Qwen2 LLM along with the
query prompt. Tab. 7 presents our results on DocVQA [40]
and InfoVQA [41] test sets compared to baselines that also
rely solely on OCR information [52, 54, 55]. We can see
that DocVLM’s OCR encodings effectively capture OCR
information, yielding the best results in the comparison.
Remarkably, using only 64 learned queries (compressed
encodings) achieves competitive performance, significantly
surpassing the OCR words baseline, despite being much
shorter (64 compared to 1K tokens).

Contribution of Visual Features. In Tab. 8, we com-
pare the results from the previous text-only evaluation to
those obtained when adding 256 visual tokens to the in-
put of the same model checkpoint. The results demonstrate
that incorporating visual information improves performance
across both datasets, with a particularly notable enhance-
ment when using compressed OCR encodings. This com-
parison highlights the complementary nature of textual and
visual information in DocVLM’s architecture.

Method LLM OCR Input DocVQA InfoVQA

Alpaca Latin Prompt 42.0 –
ChatGPT-3.5 Latin Prompt 82.6 49.0
LayoutLMLARGE OCR Encodings 72.6 27.2
DocLLM OCR Encodings 69.5 –
Qwen2 OCR Words 76.4 44.5
DocVLMQwen2 OCR Encodings 89.2 62.9
DocVLMQwen2 64 Compressed Encodings 85.5 56.8

Table 7. Effectiveness in LLMs (no visual input). Comparison
of DocVLM’s full and compressed OCR encodings as sole input
to Qwen2 LLM against OCR-only baselines, showing DocVLM’s
OCR encodings effectiveness even without visual features.

Visual Features 64 Compressed Encodings OCR Encodings
DocVQA InfoVQA DocVQA InfoVQA

→ 85.5 56.8 89.2 62.9
↭ 90.2 60.2 91.9 65.3
! +4.7 +3.4 +2.7 +2.4

Table 8. Contribution of Visual Features in DocVLM. Compar-
ison of DocVLM’s performance in text-only mode (without visual
features) versus full multimodal operation, using both compressed
(64 tokens) and full OCR encodings. Results highlight the comple-
mentary benefits of visual information in DocVLM’s architecture.

D.1. Exploring LLM Fine-tuning for Text-Only
Impact of LLM Fine-tuning with LoRA. To assess the
potential for further improvement in DocVLM’s text pro-
cessing capabilities, we fine-tuned the LLM for an addi-
tional 100K steps using LoRA, focusing on the text-only
mode of operation. Tab. 9 presents the results of this exper-
iment, including a comparison with the baseline of inputting
OCR words directly. Our results show that LoRA sig-
nificantly improves the OCR words baseline performance.
However, both compressed and full OCR encodings out-
perform this improved baseline even without LoRA fine-
tuning. Notably, we observed only minor performance im-
provements when applying LoRA to the LLM with our
OCR encodings, both compressed and full. Based on these
findings in the text-only scenario, we decided against addi-
tional fine-tuning in our full multimodal DocVLM method.
This decision helps maintain the vision and LLM alignment
achieved through the extensive pretraining of the original
VLM, ensuring that DocVLM enhances the existing VLM
abilities without disrupting its pretrained knowledge.

LoRA OCR Words 64 Compressed Encodings OCR Encodings
DocVQA InfoVQA DocVQA InfoVQA DocVQA InfoVQA

→ 76.4 44.5 85.5 56.8 89.2 62.9
↭ 80.3 49 85.7 56.8 89.4 63
! +3.9 +4.5 +0.2 +0 +0.2 +0.1

Table 9. Effect of LoRA Fine-tuning on Text-Only Perfor-
mance. Comparison before and after LoRA fine-tuning in text-
only mode for OCR words baseline, compressed and full OCR en-
codings. Results show minimal gains for DocVLM’s encodings.



E. Robustness to OCR Systems
We investigate DocVLM’s robustness to various OCR sys-
tems, with particular emphasis on open-source OCR mod-
els that typically exhibit higher error rates due to limited
training data. While our primary implementation uses Ama-
zon Textract for text and layout extraction, we evaluated
DocVLM’s generalizability across different OCR architec-
tures. Specifically, we tested text localization models in-
cluding DB-ResNet50 and DB-FAST-base, combined with
text recognition models such as CRNN-VGG16 and ParSeq.
Notably, these evaluations involved only OCR system sub-
stitution without any additional model training.

Our experimental results, presented in Table 10, demon-
strate that DocVLM consistently outperforms the baselines
across all OCR system combinations tested, highlighting its
robustness to varying OCR quality. This is particularly sig-
nificant as it shows that our method remains effective even
with open-source OCR systems and without any system-
specific fine-tuning.

Visual LLM OCR Input Baseline OCR System
Features [1] [2] [3] [4]

256 OCR Words 84.4 87.4 87.4 87.6 89.3
DocVLM (64) 89.1 89.4 89.6 91.2

512 OCR Words 91.5 91.3 91.1 91.2 92.0
DocVLM (64) 91.9 92.2 92.1 92.8

Table 10. DocVLMQwen2-VL performances on DocVQA with dif-
ferent OCR systems. OCR systems: [1] DocTR: DB-ResNet50
& CRNN-VGG16, [2] DocTR: DB-FAST-base & ParSeq, [3] DB-
ResNet50 & ParSeq, [4] Our system (Textract). DocVLM consis-
tently improves performance over the baseline and OCR words in
prompt, even with lower-quality OCR systems.

F. Complexity Analysis
We compare DocVLM in the setting of 512 visual tokens
+ 64 learned OCR queries and compare it to the full-
resolution Qwen2VL baseline which uses 16k visual tokens
to highlight DocVLM’s computational advantage. We con-
sider (I) theoretical FLOP estimates, (II) empirical latency,
and (III) GPU memory usage.

(I) FLOP Estimation: To quantify computational costs,
we evaluate the number of FLOPs of all attention-based
components (Vision encoder, OCR encoder, and LLM) and
the OCR system. The FLOPs per attention layer for N to-
kens and dimension d are estimated by:

4N d2︸ ︷︷ ︸
Q,K,V,O projections

+ 2N2 d︸ ︷︷ ︸
attention inner product

+ m (h/d)N d2︸ ︷︷ ︸
m projections (d ↑ h)

.

For the OCR system, we reference LSGSpotter [38],
which requires 194 GFLOPs for 1600→960 images. As a

conservative upper bound, we estimate OCR processing at
< 1 TFLOPs per image. Assuming 100 prompt tokens and
up to 800 OCR tokens for DocVLM, our analysis shows
that DocVLM achieves a 72→ reduction in computational
complexity (7.8 vs. 565.3 TFLOPs), as detailed in Table 11.

Component L Dim Qwen2VL (16k) DocVLM (576)
Seq. Length TFLOPs Seq. Length TFLOPs

OCR System – – – – – < 1
OCR Encoder 24 1024 – – 800 0.3
Vision Encoder 32 1280 16,384→ 4 393 512→ 4 1.6
LLM 28 3584 16,384 + 100 172.3 (512 + 64) + 100 4.9

Total – – – 565.3 – 7.8

Table 11. Complexity comparison between Qwen2VL and
DocVLM. DocVLM achieves a 72→ reduction in total compu-
tational complexity (7.8 TFLOPs) compared to Qwen2VL (565.3
TFLOPs), while maintaining high performance as shown in previ-
ous experiments.

(II) Empirical Latency: We evaluate inference latency
on an NVIDIA A100 GPU. The results are as follows:

• DocVLM achieves an inference time of 0.30s, compared
to 1.46s for Qwen2VL.

• The OCR system, using DocTR without optimization,
has a latency of 0.128s per DocVQA page, which is
comparable to LSGSpotter’s 0.14s.

• Overall, DocVLM is 3.4→ faster in inference speed
compared to Qwen2VL.

(III) GPU Memory Usage: In addition to computational
savings, DocVLM significantly reduces peak GPU memory
usage:

• DocVLM: 18.6GB

• Qwen2VL: 35.1GB
This reduction enables better scalability and lower hardware
requirements, making DocVLM a more practical choice for
real-world document understanding tasks.



Figure 6. Qualitative Results on Text-Heavy Documents. Representative examples of DocVLM’s performance on text-dense documents
compared to baseline models (LLaVA-OneVision, InternVL2, and Qwen2VL). Each example shows an image-instruction pair with baseline
and DocVLM predictions, demonstrating DocVLM’s enhanced reading comprehension using only 64 OCR compressed tokens.



Figure 7. Qualitative Results on Infographics. Representative examples of DocVLM’s performance on infographic-style documents
compared to baselines under various visual token constraints, demonstrating improved handling of complex layouts and visual information.
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