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Supplementary Material

A. Additional Related Work

In this section, we shed more light on some of the previous
pioneering works in AD and AL, and their pipeline.

Recontrast [31] innovates anomaly detection through
contrastive reconstruction by adapting encoder and decoder
networks specifically to the target domain. Unlike traditional
approaches relying on frozen pre-trained encoders, it embeds
contrastive learning elements into feature reconstruction to
stabilize training, avoid pattern collapse, and improve do-
main relevance. This ensures precise anomaly detection in
industrial and medical imaging tasks.

Transformaly [16] focuses on anomaly detection using
a dual-feature approach. It leverages a pre-trained ViT to
extract agnostic feature vectors and employs teacher-student
training to fine-tune a student network on normal samples.
This complementary representation enhances anomaly de-
tection, achieving high AUROC results in unimodal and
multimodal settings.

GeneralAD [72] utilizes a Vision Transformer-based
framework for anomaly detection across diverse domains.
It introduces a self-supervised anomaly feature generation
module to create pseudo-abnormal samples by applying oper-
ations like noise addition and patch shuffling. These are fed
into an attention-based discriminator to detect and localize
anomalies while producing interpretable anomaly maps.

GLASS [13] uses gradient ascent for anomaly synthesis.
This unified approach combines global anomaly synthesis to
manipulate feature manifolds and local strategies to refine
weak anomalies. Together, it improves the precision and
breadth of industrial anomaly detection and localization.

B. Augmentation Details

In this section, we clarify the soft and hard augmentations,
t2,tl, which are used in the foreground estimation part of
our method. Here, we explain in more detail what these aug-
mentations are and what are the rationales behind choosing
them.

Soft Augmentations. Soft augmentations refer to trans-
formations that do not alter the semantic content of the image,
preserving the original context and interpretability of the vi-
sual information. Examples include color jitter (which mod-
ifies brightness, contrast, saturation, or hue slightly), color
tint (adding a consistent color overlay), grayscale conver-
sion (removing color information but maintaining structure),
and minor Gaussian noise (introducing slight variations that
mimic sensor noise). These transformations ensure that the

augmented images remain perceptually similar to the orig-
inals, focusing on maintaining semantic integrity while in-
troducing subtle variability. Such augmentations are critical
in our method for refining the estimation of the foreground
without distorting the regions of interest.

Hard Augmentations. Hard augmentations, in contrast,
involve transformations that can significantly alter the se-
mantic meaning or structure of the image. Examples include
large rotations (which may distort spatial relationships), ex-
treme cropping (removing substantial portions of the image,
potentially excluding key objects), elastic transformations
(which deform image structures in ways that can obscure
original semantics), and heavy noise injection. These trans-
formations challenge the robustness of the foreground esti-
mation by introducing substantial changes, effectively creat-
ing conditions where the boundaries of semantic preservation
are tested. In our method, hard augmentations are designed
to evaluate the resilience of the anomaly generation process
and its ability to adapt under challenging conditions.

C. Additional Ablation Studies

C.1. Clean Training

In this section, we chose to omit adversarial training and
instead trained our method using standard training while
keeping all other components unchanged. The results reveal
an improvement in clean performance, highlighting Patch-
Guard’s effectiveness across various training and evaluation
scenarios. These results are detailed in Table 7. Additionally,
we evaluated the clean-trained model under an adversarial
setup, demonstrating that our pipeline benefits significantly
from adversarial training. This underscores the impact of our
regularization technique in adversarial training, which en-
hances the robustness of attention-based mechanisms against
adversarial examples.

Table 7. Performance of the model trained without adversarial
training under clean and adversarial setups.

Method Task Dataset
MVTec AD  VisA BTAD  BraTS2021
AD  947/129 939/163 913/11.6 97.1/10.7
Clean
AL 9747125 980/8.1 957/11.6 985/123




C.2. Ablation on §

To determine the attention degree for an output token in an
attention head, you need to identify how many of the total
input tokens it attends to more than the others. In our case,
the ViT model has 256 input tokens. Intuitively, we set §
to %, drawn from a uniform distribution. In Table 8, we
present an ablation study on the value of §.

Table 8. Ablation study on the value of § and its effect on the
attention degree in the ViT model.

Dataset
4 Task
MVTec AD  VisA BTAD  BraTS2021
L AD  89.0/69.1 888/72.1 867/794 944/79.4
2x256

* AL 931/709 968/820 940/708 97.8/90.1

. AD  88.1/711 885/743 853/821 943/81.0
B0 AL 027/738  060/852 932/73.0 977 /945

,  AD  851/71.9 847/758 824/828 91.7/813
256

AL 886/743 934/856 903/741 92.7/81.9

C.3. Diffenet ViT Backbone

As mentioned in the implementation details, we used a ViT
small model with a patch size of 14, initialized with random
weights. In this section, we evaluate our method by replacing
the backbone with larger variations of ViT models (note that
these models use random weights and are not pre-trained).
All other components are kept fixed. As shown in Table X,
the results demonstrate that our method achieves high per-
formance and consistency across different backbones.

Table 9. Evaluation of our method with different ViT backbones
initialized with random weights. The results demonstrate high per-
formance and consistency across various backbone configurations.

ViT Task Dataset
MVTecAD  VisA BTAD  BraTS2021
Small(Ours) AD 88.1/71.1 88.5/743 853/82.1 4.3/ 81.0
AL 92.7/73.8 96.9/85.2 93.2/73.0 97.7 /94.5
Base AD  89.1/71.0 87.9/73.1 845/817 93.0/82.3
AL 91.0/72.6 95.8/82.1 047/74.8 98.4/94.9
AD 90.0/70.6 87.5/747 855/81.9 95.1/81.6
Large
AL 92.9/73.4 95.8/86.0 94.1/73.5 96.7/93.2
C.4. Backbone

In Sections 4 and 5, we provided intuitions and theoretical
insights on why vision transformers achieve better adver-
sarial robustness than convolution-based methods. In this
section, we use convolution-based backbones in our pipeline

instead on the ViT, while preserving all other components as
they are. To support this claim, we provide the detection and
localization results in Table 10.

Adapting convolution-based backbones like ResNet [32]
to our patch-based pipeline poses certain challenges. To
integrate ResNet, we incorporate a binary classification layer
at the model’s final stage. Each image is divided into patches
manually, following the same patching approach used by the
vision transformer. Anomaly scores are then computed for
each patch independently, and the final anomaly detection
decision is based on the top-k patches with the highest scores.
For a fair comparison, we apply the same hyperparameters
used in our original method.

To adapt U-Net [64], we shift from a patch-wise approach
to pixel-wise localization, given the architectural constraints
of U-Net. Notably, the top-k selection used previously is
incompatible in this context. Instead, we employ a top-p
percent pixel selection for the anomaly detection decision,
where p = %, and N represents the total number of patches
in an image.

C.5. Integrating Sparse Attention Mechanism into
Our Methodology

We evaluate the performance of our method after incorporat-
ing BigBird [87], a sparse attention mechanism, as shown in
Table 11. The results reveal two key findings. First, applying
the sparse attention mechanism generally reduces the robust-
ness of our method. This aligns with our intuition and theory,
which suggest that a higher attention degree enhances model
robustness, while sparse attention decreases the attention de-
gree. Second, our regularization term remains effective even
in the sparse attention setup—when applied, it still improves
the model’s robustness.

C.6. Impact of Regularization Layer on Model Per-
formance

We investigated the effect of applying regularization to dif-
ferent layers of the network. The results, shown in Table
12, indicate that regularization in inner layers generally im-
proves model robustness. However, the last layer performs
slightly better according to our experiments.

Table 10. A study on the performance of various backbone net-
works, as alternatives to the ViT, within our architecture.

Backbone Task Dataset

MVTec-AD VisA BTAD BraTS2021
] ) Q }

U-Net AD 84.7/15.1 80.0/157 769/14.0 70.3/12.9
AL 854/17.8 81.8/13.9 79.6/182 76.3/16.0

. -
Resnet50 AD 88.1/27.6 849/233 857/23.9 86.0/23.5
AL 87.1/283 83.7/246 86.0/247 85.1/239




Table 11. Performance comparison of our method with and without
the BigBird sparse attention mechanism.

Backbone Task MVTec AD VisA BTAD BraTS2021

BigBird AD 86.7/51.7 90.3/49.7 86.0/589 959/61.8

AL 91.4/53.1 939/59.8 925/514 96.4/685

BigBird + Our Regularization =~ AD 85.6/63.0 885/61.4 862/69.8 922/73.1
AL 90.0/647 92.1/73.6 90.5/622 94.6/789

Ours AD 88.1/71.1 885/743 853/821 943/81.0

AL 92.7/73.8 969/852 932/73.0 97.7/94.5

Table 12. Performance of Regularization at Different Layers

Regularization Layer Task MVTec AD VisA BTAD BraTS2021
(N —2)1 AD  87.3/682 89.7/729 863/79.1 935/754

AL 91.5/70.6 96.0/83.1 91.7/685 96.8/90.6

(N —1)" AD  89.0/694 875/73.1 843/823 92.6/79.9

AL 932/70.6 95.7/86.1 93.1/71.7 97.0/93.2

N'™ (Last Layer) AD  88.1/71.1 885/743 853/821 943/81.0
AL 92.7/73.8 969/852 932/73.0 97.7/945

D. Dataset Details

We conducted our experiments on eight datasets covering
a diverse range of domains, from industrial to medical ap-
plications. The medical datasets include BraTS2021 and
Head-CT, while the remaining six datasets focus on indus-
trial and synthetic anomaly detection and localization tasks.
Below, we provide detailed descriptions of each dataset.

e MVTec AD: MVTec AD is a dataset for benchmarking
anomaly detection methods in industrial inspection. It in-
cludes over 5,000 high-resolution images across fifteen ob-
ject and texture categories. Each category contains defect-
free training images and a test set with both normal and
defective samples, featuring defects like scratches, dents,
and misalignments.

* VisA: The VisA dataset contains 12 object subsets with
10,821 images, comprising 9,621 normal samples and
1,200 anomalous samples. The subsets include printed
circuit boards, multi-instance objects like Capsules and
Macaroni, and roughly aligned objects such as Cashew
and Chewing Gum. Anomalies include surface defects like
scratches and dents, and structural issues such as missing
components.

e BTAD: The BTAD [60] consists of 2,830 images of three
industrial products. It provides samples with body and
surface defects, intended for evaluating visual anomaly
detection methods in industrial settings.

e MPDD: MPDD [40] is a dataset for defect detection in
metal parts manufacturing, consisting of over 1,000 images
with pixel-level defect annotations. The dataset is divided
into six distinct classes and includes anomaly-free training
samples and test samples with normal and defective parts,
covering a variety of surface and structural defects.

* WFDD: WFDD [13] is a dataset for anomaly detection in
textile inspection, comprising 4,101 woven fabric images

across four categories: grey cloth, grid cloth, yellow cloth,
and pink flower. Defects are categorized as block-shaped,
point-like, or line-type, with pixel-level annotations.

* DTD-Synthetic: The DTD-Synthetic [3] is designed for
anomaly detection and segmentation tasks, containing syn-
thetic texture images generated from predefined texture
patterns. It includes twelve classes of normal texture sam-
ples and those with artificially introduced anomalies such
as structural distortions or irregular patterns.

* BraTS2021: BraTS2021 is a medical dataset for anomaly
segmentation, containing 1,251 MRI cases with voxel-
level annotations for tumor regions. Each case includes
multiple imaging modalities (T1, Tlce, T2, and FLAIR).
In this paper, only the FLAIR modality is used due to its
sensitivity to tumor regions.

e Head-CT: The Head-CT [42] contains 200 head CT slices,
evenly split between normal slices and those with hemor-
rhages, without distinguishing between hemorrhage types.

E. Details of Adaptation of State-of-the-Art
Methods for Adversarial Robustness

Before proposing a novel approach for adversarial AD and
AL setups, our idea was to adapt existing state-of-the-art
methods in the field and enhance their robustness through
adversarial training [13, 31, 72, 82]. Adversarial training
involves feeding adversarial examples to the model during
training [54]. In the following section, we explain how we
create adversarial examples for each method and the details
of our best approach to make them robust, which are reported
in Table 3.

Anomaly-free methods like PatchCore [65] and ReCon-
trast [31] have anomaly-free training. For adapting Patch-
Core, we used an adversarially trained ResNet-50 [32] as
the feature extractor. Adding adversarially generated normal
samples to the memory bank was tested but did not improve
performance. For adapting ReContrast, we replaced both
the teacher and student networks with adversarially trained
ResNet-50 models, and using adversarial samples generated
by the PGD-100 attack [54] on the final anomaly map, we
trained the network to improve robustness.

Embedding-space synthesis methods, such as General AD
[72] and SimpleNet [49], operate in the embedding space.
For adapting SimpleNet, we employed an adversarially ro-
bust WideResNet-50 [86] as the feature extractor. Two strate-
gies were tested: input-space adversarial training, which
was ineffective due to the absence of anomaly samples, and
embedding-space adversarial training, where the discrimina-
tor was adversarially trained using both normal and anomaly
features. The latter approach performed better, as reported
in Table 3, but the overall performance was still insufficient.
For General AD, due to the model’s dependency on DINO
[9] pre-trained weights, we could not find a proper robust
pre-trained ViT backbone for adaptation that maintained



Table 13. Class-wise Clean and Adversarial AUROC (%) Results
for Image-level and Pixel-level Evaluations on the MVTec-AD
Dataset.

Class Name Image-level AUROC (%) Pixel-level AUROC (%)

Clean Adversarial Clean Adversarial
Bottle 97.6 84.7 96.7 84.6
Cable 87.3 74.0 97.2 77.8
Capsule 71.8 79.6 93.6 85.2
Carpet 83.9 432 95.8 53.7
Grid 95.7 74.9 93.1 55.5
Hazelnut 99.5 80.5 97.2 91.3
Leather 91.0 80.2 97.6 67.6
Metal Nut 88.8 54.4 87.9 75.3
Pill 81.5 59.1 86.7 76.3
Screw 554 56.6 93.8 86.5
Tile 95.3 71.7 86.2 64.0
Toothbrush 100 90.6 93.9 81.9
Transistor 94.1 84.3 954 84.8
Wood 93.1 56.0 89.6 57.4
Zipper 87.6 76.9 86.2 65.7

clean performance. We tested multiple approaches to make
it robust while maintaining clean performance, and the best
one was embedding-space adversarial training of the dis-
criminator with access to both normal and anomaly features,
and replacing the ViT with a robust pre-trained model on
ImageNet [19].

Input-space synthesis methods like DRAEM [88] and
GLASS [13] generate synthetic anomalies in the input space.
In adapting DRAEM, adversarial samples were created us-
ing PGD-100 on the focal loss [46] of the anomaly map,
and these samples were used to train both the reconstructive
and discriminative sub-networks adversarially. For adapting
GLASS, the best results were achieved by combining an ad-
versarially trained feature extractor with adversarial samples
(PGD-100) applied to both L,, and L.

According to Table 3, state-of-the-art methods in AD and
AL, even after adapting to adversarial training scenarios, still
suffer from vulnerability to adversarial attacks and perform
weakly.

F. Per-Class Results

In this section, we present the per-class AUROC results for
anomaly detection and localization using PatchGuard across
the reported datasets, as detailed in Tables 13, 14, 15, 16, 17,
and 18.

G. Implementation Details

The optimizer used is AdamW [51], with a learning rate of
0.0008 and a weight decay of 0.00001. For learning rate
scheduling, we utilize a CosineAnnealingLR scheduler
with a decay factor of 0.0125, where the minimum learning

Table 14. Class-wise Clean and Adversarial AUROC (%) Results
for Image-level and Pixel-level Evaluations on the VisA Dataset.

Class Name Image-level AUROC (%) Pixel-level AUROC (%)
Clean Adversarial Clean Adversarial

Candle 83.6 82.5 94.9 70.7
Capsules 71.7 66.2 97.1 57.0
Cashew 88.7 83 97.3 89.9
Chewing gum  92.2 73.5 97.7 92.2
Fryum 85.1 74.5 95.9 88.0
Macaroni 1 86.5 66.2 97.0 84.8
Macaroni 2 68.3 423 95.3 85.0
Pcb 1 954 85.3 99.0 95.4
Pcb 2 97.3 91.2 96.8 87.1
Pcb 3 94.8 73.5 98.7 93.0
Pcb 4 98.5 92.1 95.9 83.7
Pipe fryum 94.3 61.5 98.1 96.2

Table 15. Class-wise Clean and Adversarial AUROC (%) Results
for Image-level and Pixel-level Evaluations on the BTAD Dataset.

Class Name Image-level AUROC (%) Pixel-level AUROC (%)
Clean Adpversarial Clean Adpversarial
01 98.6 96.1 91.7 77.1
02 65.3 65.6 92.1 64.2
03 92.0 84.6 95.8 77.8

Table 16. Class-wise Clean and Adversarial AUROC (%) Results
for Image-level and Pixel-level Evaluations on the MPDD Dataset.

Class Name  Image-level AUROC (%) Pixel-level AUROC (%)
Clean Adversarial Clean Adversarial

Bracket Black 83.4 60.1 92.1 88.4
Bracket Brown  84.5 77.4 91.0 84.7
Bracket White ~ 79.8 52.9 92.1 85.9
Connector 94.3 92.5 93.8 76.8
Metal Plate 100 86.2 98.2 95.2
Tubes 70.4 42.8 95.9 88.9

Table 17. Class-wise Clean and Adversarial AUROC (%) Results
for Image-level and Pixel-level Evaluations on the WFDD Dataset.

Class Name Image-level AUROC (%) Pixel-level AUROC (%)
Clean Adversarial Clean Adversarial
Gray Cloth 88.8 57.3 93.1 759
Grid Cloth 99.6 94.7 97.8 85.1
Pink Flower ~ 52.3 33.0 94.4 63.0
Yellow Cloth  96.3 75.0 93.3 62.5

rate (Mmin) 1s calculated as 1r x 1r_decay_factor, and
T_max is set to the number of epochs, which is set to 300 but
we observe empirically that convergence usually happens
much faster. The batch size for both training and testing is
set to 16. The input image size is 224 x 224. Weuse a ViT



Table 18. Class-wise Clean and Adversarial AUROC (%) Results
for Image-level and Pixel-level Evaluations on the DTD-Synthetic
Dataset.

Class Name  Image-level AUROC (%) Pixel-level AUROC (%)
Clean Adversarial Clean Adversarial

Blotchy 099 86.1 73.2 94.7 87.5
Fibrous 183 100 55.8 99.0 80.9
Marbled 078 89.3 63.8 97.6 88.4
Matted 069 93.1 53.8 97.1 78.1
Mesh 114 94.4 74.9 97.6 73.6
Perforated 037  99.9 81.1 94.4 55.5
Stratified 154 91.6 425 98.2 76.2
Woven 001 83.6 56.0 96.2 71.6
Woven 068 88.5 55.5 93.6 71.4
Woven 104 79.6 55.4 87.9 73.0
Woven 125 95.3 56.9 98.2 71.6
Woven 127 96.8 57.9 97.2 70.5

(Vision Transformer) small model as the feature extractor,
which is not pre-trained. Finally, we perform a top-k selec-
tion of the localization map achieved, to obtain a final AD
decision, with k being set to 5.

H. Attack Adaptation Details

Adaptation Classification Attack. We evaluated Patch-
Guard’s resilience against several advanced adapted attacks
from the classification domain, including CAA, AutoAttack,
A3, and PGD-1000. Originally designed to compromise clas-
sification tasks by exploiting the cross-entropy loss, these
attacks were adapted for anomaly localization (AL) and
anomaly detection (AD) tasks. The focus was on altering the
sum of cross-entropy for all patches in detector models, aim-
ing to increase the loss values for normal regions of test sam-
ples while decreasing them for anomalous regions. Adapting
AutoAttack (AA) for AD and AL tasks posed significant
challenges. AutoAttack comprises a suite of different attack
methods, such as FAB, multi-targeted FAB, Square Attack,
APGDT, APGD with cross-entropy loss, and APGD with
DLR loss. The primary difficulty in adaptation arises be-
cause attacks using the DLR loss assume the model’s output
contains at least three elements, an assumption valid for clas-
sification tasks with three or more classes but not applicable
to AD and AL tasks. Consequently, we replaced the DLR
loss component in AutoAttack with a PGD attack. However,
for the other attacks under consideration, no modifications
were necessary.

Adaptation Segmentation Attack. We evaluate our
method against advanced adapted semantic segmentation
attacks, specifically SegPGD and SEA, with a key modifi-
cation: instead of operating at the pixel level, our approach
applies these attacks patch-wise. SegPGD is a segmentation-
specific adaptation of the Projected Gradient Descent (PGD)
attack that dynamically balances focus between misclassi-

Table 19. Comparison of our model’s performance with and without
the attention discriminator.

Dataset
MVTec AD VisA BTAD

Method Task

BraTS2021

AD 859/69.5 87.7/73.0 83.8/80.6 93.4/80.6

w/o discriminator

AL 91.1/715 954/83.9 91.7/7122  96.4/93.5

88. . 88.5 ¥ 85.3 . 94.3 K
wi discriminator (Ours) AD 8.1/71.1 8.5/743 853/82.1 94.3 /81.0
AL 92.7/738 969/852 932/73.0 97.7/945

fied and correctly classified pixels. It starts by prioritizing
correctly classified pixels, progressively shifting its empha-
sis to achieve an effective balance as the attack unfolds. On
the other hand, SEA integrates multiple complementary loss
functions, such as Jensen-Shannon divergence and Masked
Cross-Entropy, to exploit various weaknesses in model ro-
bustness. Through progressive radius reduction and adaptive
optimization, SEA generates potent adversarial perturba-
tions, selecting the worst-case attack outcome to ensure a
thorough robustness evaluation.

I. Attention Discriminator

The attention discriminator in our method plays a pivotal
role in the anomaly detection and localization pipeline. Con-
ceptually, this component operates similarly to a single layer
of a Vision Transformer, where the input embeddings un-
dergo self-attention operations. The resulting embeddings
are subsequently passed through a Multi-Layer Perceptron
(MLP) to compute a set of anomaly scores for each embed-
ding. Furthermore, the “Attention Degrees,” introduced in
previous sections, are derived directly from this attention dis-
criminator, reinforcing its critical position in our framework.

To substantiate the necessity and efficacy of the attention
discriminator, we performed an ablation study, the results
of which are presented in Table 19. In the alternative setup
without the discriminator, the attention degrees and MLP
components are instead placed on top of the ViT’s final layer.
This bypass eliminates the intermediate role played by the
attention discriminator. However, the comparative results
demonstrate that the inclusion of the attention discriminator
provides marginally superior performance. This advantage
highlights its significance not only in enhancing the model’s
performance but also in improving its interpretability by
providing more precise and structured attention degree cal-
culations.

J. Evaluating Our Model Under Various At-
tacks with Diverse Epsilon
To demonstrate our model’s robustness, we conducted an

experiment in which we trained it under varying e values of
PGD with [, norm and evaluated it using the same e (ensur-



ing that the training and evaluation € were identical). The
results, as presented in Table 20, indicate that PatchGuard
performs effectively across different e values.

Table 20. Performance of PatchGuard under varying e values,
demonstrating consistent robustness and effectiveness across differ-
ent settings.

Epsilon Task Dataset

MVTec AD  VisA BTAD  BraTS2021

2 AD 90.1/80.3 89.6/77.8 883/85.6 95.7/86.3

w0 AL 940/81.6 97.1/887 93.7/79.1 98.2/953

N AD  880/742 888/754 86.0/835 048/834

29 AL 93.2/76.4 97.1/77.5 93.1/754 97.9/94.6

. AD  88.1/71.1 885/743 853/82.1 943/81.0
355 (Ours)

AL 927/738 969/852 932/73.0  97.7 /945

In this section, we evaluate PatchGuard trained on PGD-
10 with [, norm under ¢ = % using PGD-1000 with [y
norms with various €. As shown in Table 20, our model

remains robust against these types of attacks.

Table 21. Evaluation of PatchGuard’s robustness when trained on
PGD-10 with [, norm under € = %5, assessed using PGD-1000
with [3 norms with various €. The results demonstrate the model’s

sustained robustness against different types of attacks.

Dataset
€ Task
MVTec AD VisA BTAD BraTS2021
AD 88.1 885 853 94.3
Clean

AL 92.7 969 932 97.7
&« AD 843 827 817 89.2
P AL 85.7 91.7 843 96.7
w  AD 82.1 81.0 795 87.4
AL 83.6 903  82.9 96.1
o AD 782 798 785 86.4
P AL 81.0 887  79.6 957
s AD 772 786  76.7 84.7
AL 783 86.7 779 95.0

K. Limitations

Our proposed PatchGuard method includes a “foreground-
aware anomaly generation” component that leverages Grad-
CAM, which inherently ties our approach to a pretrained
model. While this dependency enables our method to focus
on relevant regions, it also introduces reliance on the quality

and biases of the pretrained model. Furthermore, although
we employ soft augmentations to encourage this component
to identify accurate regions, there is no theoretical guarantee
that it consistently achieves this objective. Nonetheless, as
our empirical results demonstrate, the component performs
well in practice, effectively highlighting anomalies in diverse
scenarios.

L. Trade-Off Between Anomaly Detection and
Localization

The anomaly score and localization map of a method play
a crucial role in shaping the design of attacks, enabling at-
tackers to target either anomaly localization or detection
with greater precision. In this study, however, we design our
attacks on other methods to simultaneously target both local-
ization and detection. In our proposed method, PatchGuard,
the anomaly score is derived as the average of the top-k
values in the anomaly map. This mechanism ensures that
the optimal attack strategy for anomaly detection inherently
aligns with the strategy for anomaly localization.

A particularly noteworthy aspect of our study is the
approach we use to attack anomaly localization. Specifi-
cally, we flip anomaly patches to appear normal and normal
patches to appear anomalous. An alternative logical attack
could involve manipulating normal images to make all pix-
els anomalous, while for anomalous samples, the attack
would preserve the normal pixels as they are and convert the
anomalous pixels to appear normal. This approach would
ultimately make the anomaly map of an anomalous sample
indistinguishable from that of a normal sample.

Although this alternative attack is specifically designed
for anomaly detection, it is far less effective for anomaly
localization. Existing methods, even without explicitly ad-
dressing this type of targeted attack, are already highly vul-
nerable to detection-based attacks. In contrast, our method
has been experimentally shown to be robust against such
attacks. This robustness arises from our use of stronger
adversarial training strategies, where all pixels are flipped
to create more challenging adversarial examples during the
training process.



DTD-Synthetic

Head-CT
BraTS2021

Figure 4. Visualization of Pseudo-Anomaly Generated for Each Dataset. Each group corresponds to one dataset: MVTec AD, VisA, BTAD,
MPDD, WEDD, DTD-Synthetic, BraTS2021, and Head-CT. Within each group, columns represent randomly selected samples from the
respective dataset. The first row shows a normal image, the second row depicts the corresponding pseudo-anomaly generated image, and the
third row illustrates the associated anomaly mask.



	Additional Related Work
	Augmentation Details
	Additional Ablation Studies
	Clean Training
	Ablation on 
	Diffenet ViT Backbone
	Backbone
	Integrating Sparse Attention Mechanism into Our Methodology
	Impact of Regularization Layer on Model Performance

	Dataset Details
	Details of Adaptation of State-of-the-Art Methods for Adversarial Robustness
	Per-Class Results
	Implementation Details
	Attack Adaptation Details
	Attention Discriminator
	Evaluating Our Model Under Various Attacks with Diverse Epsilon
	Limitations
	Trade-Off Between Anomaly Detection and Localization

