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A. Algorithmic and Mathematical Details
A.1. Algorithm for Conformal Scene Graph Generation
The overall algorithm for our proposed SGG-specific CP is shown in Algorithm 1. The following details are important re-
garding the algorithm:

• The training and calibration sets are denoted as Dtr = {Ij , Gj}mj=1 and Dcal = {Ij , Gj}m+n
j=m+1, where Ij is an image and

Gj is its ground truth scene graph. Each G is composed of triplets belonging to the object and predicate classes (Yo,Yr)
as described in Sec 3.2. A test image is denoted as In+1.

• It must be noted that when referring to a sample, Xj , for a prediction set Ĉ(Xj), we do not refer to the whole image.
Specifically for the object prediction set Ĉo(Xi), Xj refers to a single RoI describing a detected object. For the predicate
prediction set Ĉr(Xj), the sample Xj refers to a pair of detected objects, as information about the pair including the union
box of its two objects is included in the sample. In some cases like in Algorithm 1 we specifically distinguish the samples
for the object and predicate classes by denoting them as Xo

j and Xr
j respectively (the meaning remains the same).

• The assumption of exchangeability i.e. Dcal ∪ (In+1, Gn+1) also implies exchangeability holds for any subsets of Dcal,
such as the considered partitions Do

cal,y ⊂ Dcal, and Dr
cal,y ⊂ Dcal.

• Algorithm 1 can sometimes result in null sets for the objects and predicates, however, such an event occurred extremely
rarely during our experiments. In such cases, we follow common practice [10] and choose the class with the highest
softmax probability value i.e. max

y∈Y
πy , as the prediction set. As such a singleton prediction set is constructed in such cases.

*Work done while at UCR.



Algorithm 1 Conformal Scene Graph Generation

1: Input: Training Set: Dtr, Calibration Set: Dcal, Object Miscoverage Rate: αo, Predicate Miscoverage Rate: αr,
Test Image: In+1.

2: Output: Object Prediction Set: Ĉo(Xo
n+1), Predicate Prediction Set: Ĉr(Xr

n+1), Triplet Prediction Set: Ĉt(Xr
n+1).

3: Fit an SGG model, ϕ, on the training set Dtrain.
4: Calibration Procedure:
5: Assume the calibration set Dcal which is comprised of images has the following subsets,

Do
cal,y = {(Xo

i , Yi) : Yi = yoi },∀yoi ∈ Yo.
Dr

cal,y = {(Xr
i , Yi) : Yi = yri },∀yri ∈ Yr.

where, Do
cal,y,Dr

cal,y ∈ Dcal define a classwise calibration subset specific to the object and predicate classes in the
images of Dcal, and Xo

i ∈ Do
cal,y refers to the object classification specific sample defined by an RoI in the image,

Xr
i ∈ Do

cal,y refers to the predicate classification specific sample defined by a pair of objects [3, 5, 11].
6: Define a nonconformity function

A : X × Y → [0, 1], (f̂(X), y) 7→ 1− π̂y(X)

f̂ is any classifier, π̂y(X) is estimated true class probability. Therefore, the complement of π̂y(X) encodes a notion of
dissimilarity (nonconformity) between the predicted and true class probabilities.

7: Define list of object and predicate class quantiles Qo and Qr.
8: Match pair of detected objects with ground-truth pair of objects using Eq 3.
9: Begin for each yoi ∈ Yo and yri ∈ Yr:

10: Apply A to Do
cal,y to obtain a set of scores

Syo
i
= {A(fo(Xi), y

o
i )}

nyo
i

i=1 = {soi }
nyo

i
i=1 . where fo is the object classifier within ϕ

11: Apply A to Dr
cal,y to obtain a set of scores

Syr
i
= {A(fr(Xi), y

r
i )}

nyr
i

i=1 = {sri }
nyr

i
i=1 . where fr is the predicate classifier within ϕ

12: Compute a conformal quantiles q̂yo
i

and q̂yr
i
, defined as,

q̂yo
i
= ⌈(nyo

i
+ 1)(1− αo)/nyo

i
⌉-th empirical quantile of Syo

i
.

q̂yr
i
= ⌈(nyr

i
+ 1)(1− αr)/nyr

i
⌉-th empirical quantile of Syr

i
.

13: Add object class quantile to the set: Qo = Qo ∪ {q̂yo
i
}, and Add predicate class quantile to the set: Qr = Qr ∪ {q̂yr

i
}.

14: End for
15: End procedure
16: Conformal Inference Procedure:
17: For a new test Image In+1 comprised of objects depicted by (Xo

n+1, Y
o
n+1), and predicates depicted by (Xr

n+1, Y
r
n+1),

valid prediction sets for Xo
n+1 and Xr

n+1 are constructed as,
Ĉo(Xo

n+1) = {yok ∈ Yo : π̂yo
k
≥ 1− q̂yo

k
}

Ĉr(Xr
n+1) = {yrk ∈ Yr : π̂yr

k
≥ 1− q̂yr

k
}

where q̂yr
k
∈ Qr and q̂yo

k
∈ Qo. The validity of the sets refers to satisfying class-conditional coverage guarantee (Eq 2)

with probability (1− αo) for each object class, and (1− αr) for each predicate class. (Proof: Sadinle et al. [8])
18: Combinatorially combine Ĉo(Xo

n+1) and Ĉr(Xr
n+1) to construct a triplet prediction Ĉt(Xr

n+1).
19: End procedure

A.2. Nominal Coverage Guarantee of Triplet prediction Sets
Theorem 1. Given the ground truth class of the kth triplet is denoted as ytk = [ysk, y

r
k, y

o
k] ∈ R3 where ysk, y

o
k ∈ Yo and

yrk ∈ Yr, the triplet coverage guarantee is given as P (ytk ∈ Ĉt(Xr
n+1)) = P (Y o

n+1 ∈ Ĉo(Xo
n+1) | Y o

n+1 = yoi ) · P (Y r
n+1 ∈

Ĉo(Xr
n+1) | Y r

n+1 = yrm) ∀ ysk ∈ Yo, y
o
k ∈ Yo, y

r
k ∈ Yr.

Proof. Assume the ground truth of the kth triplet in an image is denoted as ytk = [ysk, y
r
k, y

o
k] ∈ R3 where ysk, y

o
k ∈ Yo are

the ground-truth classes of the subject-object pair and yrk ∈ Yr is the ground-truth class of the predicate. Since ysk, y
o
k ∈ Yo,

for clarity let’s denote ysk = yoi | i ∈ [1,Ko], yok = yoj | j ∈ [1,Ko] & j ̸= i, and yrk = yrm | m ∈ [1,Kr]. Now assuming the
prediction sets for the subject and object are given as Ĉo(Xo

n+1), Ĉo(Xo
n+2), and the prediction set of the predicate is given

as Ĉr(Xr
n+1), the nominal coverage guarantee of a triplet prediction set is described as,



P (ytk ∈ Ĉt(Xr
n+1)) = P (Y o

n+1 ∈ Ĉo(Xo
n+1) ∧ Y o

n+2 ∈ Ĉo(Xo
n+2) ∧ Y r

n+1 ∈ Ĉr(Xr
n+1)|Y o

n+1 = yoi , Y
o
n+2 = yoj , Y

r
n+1 = yrm) (i)

We observe that the guarantees of the object and predicate prediction are controlled by distinct conformal procedures on the
calibration data and, as such, are conditionally independent. Therefore,

P (ytk ∈ Ĉt(Xr
n+1)) = P (Y o

n+1 ∈ Ĉo(Xo
n+1) ∧ Y o

n+2 ∈ Ĉo(Xo
n+2)|Y o

n+1 = yoi , Y
o
n+2 = yoj ) · P (Y r

n+1 ∈ Ĉo(Xr
n+1)|Y r

n+1 = yrm)

(ii)
Additionally, there is no separate subject and object detection, as all objects in an image are detected once and then combina-
torially combined to form subject-object pairs. Therefore, the class-conditional coverage guarantee of the subject is contained
in the class-conditional coverage guarantee of the object. Hence,

P (Y o
n+1 ∈ Ĉo(Xo

n+1) ∧ Y o
n+2 ∈ Ĉo(Xo

n+2)|Y o
n+1 = yoi , Y

o
n+2 = yoj ) = P (Y o

n+1 ∈ Ĉo(Xo
n+1)|Y o

n+1 = yoi ) (iii)

=⇒ P (ytk ∈ Ĉt(Xr
n+1)) = P (Y o

n+1 ∈ Ĉo(Xo
n+1) | Y o

n+1 = yoi ) · P (Y r
n+1 ∈ Ĉo(Xr

n+1) | Y r
n+1 = yrm) (iv)

Corollary 1. Following Theorem 1, P (ytk ∈ Ĉt(Xr
n+1)) ≥ (1− αo)(1− αr), ∀ ysk ∈ Yo, y

o
k ∈ Yo, y

r
k ∈ Yr.

Proof. This follows trivially from Theorem 1. Since

P (Y o
n+1 ∈ Ĉo(Xo

n+1) | Y o
n+1 = yoi ) ≥ (1− αo) and P (Y r

n+1 ∈ Ĉo(Xr
n+1) | Y r

n+1 = yrm) ≥ (1− αr) (v)

=⇒ P (ytk ∈ Ĉt(Xr
n+1)) ≥ (1− αo) · (1− αr) (vi)

It must be pointed out that the nominal coverage guarantee in Eq vi is the intended coverage goal, based on which
calibration is conducted (under assumptions of exchangeability). However, in practice, the empirical coverage may not always
reach coverage guarantees, owing to the high predictive uncertainty of the underlying model as well as, unquantified/subtle
distribution shifts between the train/calibration and test data [1, 7, 8, 10]. We observe this in our empirical results (Table
1). Additionally, from an empirical standpoint, the results in Table 1, of the main paper, validate Eq iv in the sense that the
empirical coverage of the triplet prediction set is approximately close to the product of the empirical coverages of the object
and predicate prediction sets.

B. Additional Implementation Details
B.1. Computation of Conformal Prediction Metrics
End-to-end SGG or SGDET entails the localization and classification of all objects in a scene along with classifying their
pairwise predicates. As such, when computing the CP metrics on the inference data, we need to match the predicted bounding
boxes with the ground-truth ones in an image. We do so by following the same pairwise greedy matching strategy shown in
Eq 3. Finally, the CP metrics are computed over the matched predictions only as is standard practice in CP-based localization
studies [6, 10].

B.2. Adaptation of Scene Graph Generation Metrics for Prediction Sets
For SGG the Recall@K (R@K) and mean-Recall@K (mR@K) are standard evaluation metrics [9]. Formally if K predicted
triplets {t̂i}Ki=1, are matched to a ground-truth triplet defined by the class yi, then R@K is computed as,

R@K =
1

N

N∑
i=1

 K∨
j=1

1[yi = t̂j ]

 (vii)



head body tail
Categories

0

5

10

15

20

25

30

35

40

cm
R@

50
/m

R@
50

SQUAT+PC-SGG
SQUAT

(a) SQUAT

head body tail
Categories

0

5

10

15

20

25

30

35

40

cm
R@

50
/m

R@
50

BGNN+PC-SGG
BGNN

(b) BGNN

head body tail
Categories

0

5

10

15

20

25

30

35

cm
R@

50
/m

R@
50

VCTREE+PC-SGG
VCTREE

(c) VCTREE

head body tail
Categories

0

5

10

15

20

25

30

35

cm
R@

50
/m

R@
50

MOTIFS-D+PC-SGG
MOTIFS-D

(d) MOTIFS-D

head body tail
Categories

0

5

10

15

20

25

30

35

cm
R@

50
/m

R@
50

MOTIFS+PC-SGG
MOTIFS

(e) MOTIFS

Figure I. Improvement of recall-hit rate across head, body, and tail categories of VG150 [4], with the incorporation of PC-SGG. The darker
shade is the cmr@50 value and the lighter one is the mR@50 value.

where,
∨

is the logical OR operation, 1[·] is the indicator function, N is the total number of ground-truth triplets, and
t̂j , yj ∈ R3. However, R@K is not designed for prediction sets and so to accommodate triplet prediction sets we propose
coverage-Recall@K (cR@K) which is computed as follows,

cR@K =
1

N

N∑
i=1

 K∨
j=1

1[yi ∈ Ĉt,j(Xr
i )]

 (viii)

where Ĉt,j(Xr
i ) is the triplet prediction set of the jth predicted triplet. Therefore, the only difference between R@K and

cR@K is that the equality (=) operation is replaced with the belongs to (∈) operation. As such cR@K is equivalent to R@K
when predictions are not in the form of a single triplet but in the form of prediction sets. The coverage-mean-Recall@K
(cmR@K) metric is designed similarly and is equivalent to the mR@K metric.

C. Additional Empirical Results

Table I. Impact of number of options in the MCQA prompt. Results are shown for the BGNN model. The number of options here refers
to the number of prediction set entries. The ‘no valid option’ choice is not counted.

Number of MCQA Options CovT ↑ AvgSize ↓
Original

(w/o MLLM post-processing) 80.45 971.69
3 80.45 539.72
5 80.45 464.11

10 69.38 291.47
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Figure II. Impact of different prompting strategies on AvgSize of triplet prediction sets. (a)Proposed prompting design, (b) No Image
Cropping, (c) No System Prompt, (d) No Example prompt, (e) No System and Example prompt. All results are obtained for the BGNN
model.

C.1. Per Class Performance Improvement
Incorporating PC-SGG with any existing SGG method significantly improves the recall-hit rate for every class in the scene
graph dataset. this is evident from Fig 4 in the main paper where we show the massive performance improvement over some
of the tail classes of VG150 [4] for the BGNN method. In Fig I we further show the aggregate improvement of recall-hit rate
across the HEAD, BODY, and TAIL classes of VG150 when PC-SGG is added to any of the SGG methods used in this paper.
Specifically for MOTIFS and VCTREE, which had negligible or zero mR@50 values for the TAIL classes, incorporating
PC-SGG is significantly beneficial as the generated triplet prediction sets cover most of the TAIL classes.

C.2. More Analysis
C.2.1. Impact of different prompting strategies on average set size of triplet prediction sets
In Fig 6 of the main paper, we showed how incontext learning style prompting strategy benefits the MLLM-based plausibility
assessment task, of truncating triplet prediction sets without impacting their original empirical coverage. Fig II shows how
changing our proposed prompting strategy impacts the average set size of the truncated prediction sets. We can observe the
figure, that in general when the example prompt is not provided as a one-shot support example [2], the AvgSize increases,
thus highlighting its importance for our task. On the other hand, the impact of not using image cropping or the system prompt
is relatively small on the empirical set size of the truncated sets. However, given their impact on the CovT values (Fig 6), it
can be concluded that utilizing our full prompting strategy provides the most optimal results.

C.2.2. Impact of number of options in the MCQA prompt
We choose at max 5 entries from a triplet prediction set, which along with the ‘no valid option’ choice make a total of 6
options in the MCQA prompt to the MLLM. We observe empirically that 5 options give the optimal performance. This can
be validated from Table I, which shows that increasing the number of options adversely affects the coverage while decreasing
the number adversely affects the average set size.

This phenomenon occurs because increasing the number of options confuses the MLLM, causing it to hallucinate tokens
that indicate all choices are equally plausible. This results in near-uniform likelihood values across all tokens (where each
token represents an option). Consequently, the MLLM behaves like a naive or random guesser, selecting entries that are
implausible and often not the ground truth. This significantly impacts empirical coverage. Conversely, limiting the number
of options preserves the original empirical coverage but restricts the truncation of the prediction set. This happens because, in
the task of plausibility assessment, the MLLM inherently compares the provided options. When the token space is reduced,
the comparison is constrained, leading to the inclusion of more entries in the set. Thus, the optimal number of options for the
MCQA prompt is 5.
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Figure III. Qualitative results on a test image with BGNN+PC-SGG. The prediction sets obtained via PC-SGG facilitate the generation of
multiple plausible scene graphs.

C.3. Qualitative Visualization
Fig III shows some plausible scene graphs generated by the BGNN+PC-SGG method. The importance of each plausible
scene graph will depend on the downstream application and must be determined by domain expertise.
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