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S1. Details on GarmentCodeData-Multimodal (GCD-MM)

We expand on the data curation process of GCD-MM. Specifically, in Sec. S1.1, we detail the specifics of gener-
ating text descriptions for the sewing patterns. In Sec. S1.2, we elaborate on how we generate the edited sewing
patterns and their associated editing instructions. Lastly, in Sec. S1.3, we show statistics comparing sewing pat-
terns in GCD-MM and sewing patterns in previous datasets used by DressCode [3] and SewFormer [12].

S1.1. Text Description Generation

We generate two types of sewing pattern descriptions for each garment in GCD-MM. The first is a detailed natural
language description of the sewing pattern, while the second outlines a suitable occasion for wearing the garment.
For captioning purposes, we use a standardized body type corresponding to the mean shape and pose derived from
SMPL.

Obtaining pattern descriptions happens in two steps. First, we generate keywords describing the simulated
garments using the design parametrization of each garment. Generated based on GarmentCode [7], each garment
is characterized by a set of continuous and categorical parameters. We generate descriptions for each garment
using the following rules:



DressCode: jacket; short sleeves; with a hood; fitted DressCode: trousers; long length; wide fit; front slit;

garment high waist
Ours: An upper-body garment; both sleeves; short Ours: A maxi skirt; narrow waistband; skirt with front
sleeves; with lapels slit; skirt with back slit; skirt with side slit

Figure S1. Comparison between our Short Captions and DressCodes’. This figure shows the short captions created by
DressCode and our method for two different garments. DressCode produces keywords that do not align with the garment
(red).

» Categorical parameters: We assign the categorical label when appropriate. For instance, a godet skirt is
classified as such. Some categorical parameters do not suffice - a shirt can signify anything from a crop top
to a dress. For these instances, we add additional checks consulting additional parameters.

* Continuous parameters: We define thresholds and assign different qualitative labels for garments above and
below them. Parameters such as sleeve lengthorcollar width are obvious examples.

* Dependent parameters: Most parameters have no impact on the final garment, as they only become relevant
when certain categorical parameters are set. We design rules that consider these edge cases. Only when a
godet skirt isset,doesthe num inserts become relevant. We include all relevant dependent parameters
that have a structural effect on the garment.

Similar to DressCode, we first generate a garment type description and a collection of keywords that contain
the specific description based on our rule-based approach. Note that each rule can contribute several keywords.
See Figure S1 for the examples.

In the second stage, we use these generated keywords in combination with a render of the front and back of the
garment to prompt GPT-40. We construct the prompt such that GPT-40 objectively describe the garment using the
characteristic features of the garment provided by the generated keywords and renders. In addition, we include
instructions to focus on information crucial for our learning problems, such as panel connectivity and stitching
patterns, while ignoring irrelevant information, such as colors or interpretations.

The following is the system prompt that we used:

You are a fashion expert tasked with providing concise and neutral descriptions of garments based on the
provided textual information. Your descriptions should focus on specific stitching details and how different
panels are connected (such as seam placements and stitching patterns), as well as any distinctive characteristics
and design elements of the garment. When describing the garment’s appearance, use precise and concrete
language, avoiding generic phrases or broad descriptions. Do not mention that seams are visible; instead,
describe where seams or panels are located to indicate construction details. Do not include any impressions,
subjective interpretations, or unobservable aspects. Avoid mentioning colors or any references to images.
Keep the descriptions brief and to the point, avoiding unnecessary words. Use only the information provided.



Here we present the user prompt:

Please generate a concise and neutral description of a garment, focusing on specific stitching details, how
different panels are connected, and including any distinctive characteristics and design elements, based on the
following information:

- **Title**: {title}

- **Description**: {description}

Provide a brief description that emphasizes stitching and construction details (such as seam placements, panel
connections, and stitching patterns), along with precise visual observations about the garment’s appearance,
including style, silhouette, length, and any unique design features or distinctive characteristics. Avoid using
generic phrases or broad descriptions; instead, provide specific details about the garment’s features. Do not
mention that seams are visible; instead, describe where seams or panels are located to indicate construction
details. Do not include any impressions, subjective interpretations, or unobservable aspects. Avoid mentioning
colors or any references to images. Keep the description succinct and avoid unnecessary words. Use only the
information provided.

The second type of caption describes an occasion for which a garment is suitable. In this prompt, we ask the
model not to pay attention to the garment’s colors which only highlight different panels and are not semantically
relevant. Instead, we ask it to focus on the shape and description. We use the same information as before to prompt
GPT-4o. This is the system prompt:

You are an expert in fashion design and garment analysis. When provided with images of garments and their
metadata, focus solely on their shape and stitching. Note that different colors in the images represent different
panels of the garment and are not indicative of style or color choices. Ignore colors and any visible seams
meant only for stitching information. The metadata includes a title and a description, which is a list of short
attributes; use these to inform your understanding. Based on this information, provide only a detailed, but
concise, description of a single occasion where the given garment would be appropriate to wear. Do not
include any other information in your response.

and here is the user prompt:

Given the following garment’s metadata and images (remember that colors and seams are only for panel
representation and stitching information), please provide only a detailed, but concise, description of a single
occasion where this garment can be worn. Do not include any other information in your response.

Here is the metadata:

Title: {title}

Description: {description}

Effect of GPT version in caption quality. While GPT-40 potentially increases the accuracy of generated cap-
tions, the in-context knowledge about various design parameters crucially helps the model to generate captions
more faithful to the garment design. Fig. S2 shows the same captions in Fig. S1 of supp, generated instead using
GPT-4V. Notice that DressCode’s caption contains severe flaws (in red) due to inaccurate in-context prompting.
Ours do not have these flaws because we prompt GPT-4V with design-parameter-inspired content. We will update
Fig.S1 to include this example in the revision.



Reference Garment

Ours: This upper-body garment features short DressCode: This jacket features a fitted
sleeves and lapels, indicating a structured yet  silhouette with short sleeves and an attached
casual design... hood...

Figure S2. Captions generated using GPT-4V.

S1.2. Generation of Editing Data Sample

To generate paired garments representing before-and-after edits, we use design parameters from the GCD dataset
and systematically apply one of five pre-defined transformation rules. The modified design parameters are then
converted into garments using GarmentCode [7].

Each garment from GCD is first evaluated to determine which transformation rules are applicable. One rule
is then randomly selected and applied. Due to limitations in GarmentCode’s design space, not all edited design
parameters can be converted into sewing patterns. As a result, GCD-MM comprises 120k garment pairs that are
successfully generated from the 130k garments in GCD, while approximately 10k garments remain unpaired.

The transformation rules include adjustments to garment lengths (sleeves, pants, skirts), collar type changes,
modifications to garment symmetry, toggling the presence of hoods, and structural edits to style elements (e.g.,
changing the number of inserts in godet skirts). Each rule takes the existing design parameters as input and applies
a targeted change. For instance, length adjustments alter sleeves, pants, or skirts by 50% of their initial length,
constrained by the maximum length specified in GarmentCode. Similarly, collar types are randomly reassigned
from a predefined set, garment symmetry is toggled, and hoods are added or removed.

These rules are designed for three key reasons: (1) they produce clear and concise edits that can be succinctly
summarized; (2) they encompass varying levels of editing complexity, from minor panel length adjustments to
major structural modifications involving new panels and altered stitching; and (3) for all garments in the dataset,
at least one rule can always be applied.

To document each transformation, we generate descriptive sentences for the edited garments using a rule-based
approach. Here are a set of examples:

Godet skirt: ”Increase the number of inserts in the skirt by $x.”
Pants: ”Make the pants longer.”
Shirt: ”Switch the collar type from $currCollar to $newCollar.”

In total, the defined rules enable 52 distinct, describable modifications, ensuring a diverse and well-documented
dataset of garment editing pairs.
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Figure S3. Dataset statistics comparisons. Notice that GCD-MM in general contains larger variations in the number of
panels, edges, and stitches in the sewing patterns. This poses additional challenges in designing a sewing pattern generation
method with GCD-MM.

SewFactory [12] DressCode’s Dataset [3, 5] GCD-MM

Edge Types L, QB L, QB L,QB,CB, A
Number of Sewing Patterns 13700 20292 127629

Table S1. Dataset Statistics Comparison. L=Line, QB=Quadratic Beziér, CB=Cubic Beziér, A=Arc. GCD-MM shows a
larger variation in both numbers of panels, edges, and stitches than previous sewing pattern datasets. For Panel, edge, and
stitching statistics, refer to Figure S3.

S1.3. Sewing Pattern Statistics

GCD-MM uses sewing patterns fitted on a default body from the GarmentCodeData (GCD) dataset [8], which are
procedurally generated sewing patterns using the programming abstraction of GarmentCode [7]. Compared with
the sewing patterns used by SewFormer [12] and DressCode [3], GCD contains more complicated and diverse
sewing patterns. For detailed documentation and comparison with existing datasets and procedural sewing pattern
generators, please refer to GarmentCodeData [8]. Here, we briefly show some statistics comparing these different
datasets.

GCD exhibits more diverse and detailed garment feature variations than the previous dataset, including fitted
garments, correct sleeve shapes, more collar types, more skirt types, cuffs, and asymmetric features (tops, asym-
metric skirt cuts). All of these characteristics make sewing patterns from GCD more complicated than existing
sewing pattern datasets.

Comparatively, datasets used by SewFormer [12] and DressCode [3] are procedurally generated sewing patterns
from an older programming abstraction [5]. While this programming abstraction can also generate sewing pat-
terns for the types of garments described above, all its variations are from changes in the vertex and control point
positions while fixing the number of panels, edges, and stitches the same. This constraint significantly limits the
variations exhibited in the datasets used by SewFormer and DressCode. Figure S4 showcases randomly sampled
sewing patterns as well as their draped renderings from GCD and sewing patterns used by SewFormer and Dress-
Code. We see that sewing patterns from GCD are generally more complex and diverse than the previous dataset.
Table S1 and Figure S3 show a statistical comparison in terms of the number of edges, panels, stitches, and edge
types between sewing patterns in GCD-MM, SewFactory [12], and dataset used by DressCode [3]. Notice that
comparatively sewing patterns in GCD-MM exhibit the largest variation in all of the statistics, demonstrating the
difficulty of the dataset. In particular, because of this difficulty gap, previous methods such as SewFormer and
DressCode exhibit poor performance despite fine-tuning their network on GCD-MM. See Section S3 for details.
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Figure S4. Visualization of Sewing Patterns. Random sewing pattern samples from the datasets used by Alpparel and the
baselines are visualized. Notice that compared to prior works, GCD-MM exhibits more complex sewing patterns in general.
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S2. Implementation Details on Alpparel
We include details about the network architecture and training hyperparameters of Alpparel.
S2.1. Network Architecture

As described in Section 3 of the main paper, Alpparel is built on top of LLaVA-1.5 7B [11]. Therefore, the

majority of the network, except for the newly added regression heads gée), géﬁ)

projection layers hg ), h(l,%), are identical to LLaVA-1.5 7B. For completeness, we only summarize key parameter
values we used here. Please refer to their paper for architectural details. LLaVA-1.5 7B fine-tunes LLama 2 [16]
with a vision encoder on a visual question—answer dataset. Specifically, it has a context length of 4049 and a
hidden dimension of 4096. Its language model is a 32-layer transformer with 32 head attention layers. Its vision
encoder is CLIP [14]. Each image is converted into 255 clip tokens before getting projected into the language
model’s embedding space using a custom projector.

To extend LLaVA-1.5 7B for sewing pattern prediction, we expand the vocabulary of the model to include the
special tokens defined in Section 3.2 of the main paper. In total, this results in 122 additional tokens added to
the vocabulary of LLaVA-1.5 7B. Each of the tokens is initialized to be the average embedding from the existing
vocabulary.

, and the positional embedding

(¢) (R)

Besides additional vocabulary, we also add two additional regression heads g, ", g, ’, and the positional em-

bedding projection layers hg’ ), h((j“) to the architecture described above. As described in Section 3 of the main
paper, the regression heads will take the output hidden embedding from the language transformer to regress vertex
and control point positions using gée) and the transformation with géR). Specifically, both of the regression heads
are two-layer perceptrons with ReLU non-linearity. Both heads map the 4096-dimensional output embedding to
the parameter space. For g(ge), the output dimension is 8, representing vertex and control points in different chan-
nels. Specifically, the first two channels as vertex regression, mapping to the second endpoint of the associated
edge. The next four are used for control points to the quadratic and cubic Bézier curves. Finally, if the associated

edge is an arc, the last two channels are used to map to an additional point on the arc besides the two endpoints.



During training, only the associated channels for each edge are supervised and the unused channels are masked
out for back propagation. With the same architecture, g(gR) has an output dimension of 7, with the first 3 being the
translation and the last four being the rotation represented in quaternion.

Finally, the positional embedding layers are also two-layer perceptions with ReLU non-linearity. hff ) maps the
2-dimensional vertex coordinate to a 4096-dimensional hidden embedding. The output is then added to that edge
type token’s vocabulary embedding before inputting through the language transformer. Similarly, hc(pR) maps the
7-dimensional transformation for each panel to a 4096-dimensional hidden embedding. Then the output is added
to the vocabulary embedding of the transformation token <R>.

Both the regression heads and the positional embedding projection layers are initialized to have zero weights in

the final layer so that the output before fine-tuning is unaltered.

S2.2. Training Details

Alpparel is trained for a total of 12,750 steps with a total batch size of 320, and a learning rate of 0.00005 with
cosine learning rate decay to zero in 15,000 steps. We also warm-start the fine-tuning from zero learning rate to
the default in the first 100 steps. We use A = 0.1 to balance the regression losses and the cross-entropy loss in
Equation (2) of the main paper. We use DeepSpeed ZeRO Stage 2 [15] to parallelize the training on 8 xH100
GPUs. The entire training took around 312 H100 GPU hours. We train on all modalities in our GCD-MM jointly.
Specifically, we include four different modalities from GCD-MM: text — sewing pattern, image — sewing pattern,
text and image — sewing pattern, and sewing pattern and editing instruction — edited sewing pattern. During
each training step, the batch is formed by randomly sampling each of the four modalities with a preset sampling
ratio. Specifically, we sample images, texts, image+text, and editing data with the ratio of 3:2:4:1. We randomly
split our dataset into 90%, 5%, and 5% for training, validation, and testing. All of our qualitative results are
samples from the testing split. While previous works [3, 6, 12] use relative coordinates to represent the control
point coordinate, we use absolute coordinates to represent the additional edge parameters. Prior to training, we
normalize vertex coordinates and transformation using the global mean and standard deviation computed from all
sewing patterns in GCD-MM. Additionally, for input to the positional embedding projection layers, we discretize
the input into 256 discrete values ranging between +4 standard deviation values for robustness during generation.

S3. Additional Results And Experiment Details

We detail the experiment setup and baselines for the result section (Section 5 of the main paper). Further, we also
include additional ablation results and qualitative comparisons.

S3.1. Sewing Pattern Prediction from Images

Setup & Baseline Details. We will describe the image-to-garment prediction experiment showcased in Section
4.1 of the main paper in detail. We will also report comparisons on two datasets: GCD-MM and SewFactory.

For GCD-MM, we use our model trained with multimodal data described in Section S2.2 to evaluate the qual-
itative and quantitative results showcased in Table 2 and Figure 3 of the main paper. To compare with Sew-
Former [12], we adapt its pre-trained model for sewing pattern prediction on GCD-MM. Specifically, we expand
the per-panel query embedding from its default number of 23 to 75 to accommodate all the different panel classes
present in GCD-MM. We initialize the newly added panel query embeddings as the average embedding from the
pre-trained weights. Similarly, we expand the per-edge embedding from 14 to 39. Furthermore, because GCD-
MM contains cubic Bézier curves and arcs, which the SewFactory dataset does not have, we also extend per-edge
parameterization from using four channels (2+2: endpoint + optional quadratic Bézier control points) to seven
channels (2+4+1: endpoint, control point parameters, arc flag). Specifically, the arc flag takes a value of O or 1,
indicating if the edge is an arc. If the arc flag is 1, the first two control points would take a value equal to the
relative coordinate of the third point on the arc. If the arc flag is zero, then the four channels will be the relative



coordinates of the two control points in the Bézier curve. We keep the network architecture the same except for the
above modifications. We fine-tune the pre-trained SewFormer model adapted as above for a total of 16 epochs on
the same training split Alpparel is trained on, using a learning rate of 0.00005 and a batch size of 8 on 2 xQuadro
RTX 8000 GPUs. Except for these, we use the default hyperparameters provided by SewFormer. The validation
loss no longer increases after 16 epochs, so we stop the training and use it for comparison.

For comparison on SewFactory, we use the pre-trained SewFormer model as our baseline. However, because
the SewFormer authors did not release their train and test split, we show a comparison on a custom test set for this
experiment. Specifically, we first train Alpparel on SewFactory data, with a different random split, from scratch
for a total of 3750 steps on 8 xA100 GPUs using the same hyperparameter settings as described in Sec. S2.2.
Then, we evaluate our model on the custom test set. In this way, we ensure a fair comparison with the baseline as
the test set should contain a mixture of training and testing examples for both methods.

Additional Qualitative Visualization. Figure S5 showcases additional image-to-garment prediction result com-
parisons to the SewFormer baseline in both the GCD-MM (left) and SewFactory (right) datasets. Our model in
general predicts more correct sewing patterns following the guidance of the input image than SewFormer.

Sewing Pattern Prediction from In-the-wild MultiModal Inputs. While Alpparel is trained on procedurally
generated sewing patterns and annotations, it is able to generalize the in-the-wild input due to the large-scale data it
trains on, as well as the world-level knowledge that it inherits from the large multimodal model. Fig. S7 showcases
our model’s sewing pattern prediction from an in-the-wild image with GPT-generated text descriptions.

S3.2. Sewing Pattern Prediction from Texts

We showcase additional text-to-sewing pattern generation visualization from Alpparel in Fig. S6. Notice that our
method is able to output correct sewing patterns from long, detailed text descriptions. Moreover, our generated
sewing patterns also closely follow the key characteristics described in the text input.

S3.3. Sewing Pattern Prediction from Multimodal Input

Setup. For our multimodal evaluation, we utilize 20 samples for each of the following modality combinations:
(1) image, (2) text, (3) image + text, (4) occasion, and (5) editing. These samples are generated following the
procedure outlined in Section S1. To ensure proper testing, these test samples are entirely distinct from the training
and validation sets used in other experiments.

To benchmark our method, we compare it against two state-of-the-art baselines: SewFormer and DressCode.
SewFormer processes image-based inputs, while DressCode is designed for text-based inputs. Since these base-
lines are limited to specific modalities, we convert multimodal inputs into formats compatible with their archi-
tectures. For SewFormer, we use DALL-E 2 to generate a single 512x512 image from non-image inputs using
tailored prompts. For DressCode, we convert inputs into keyword-based formats with GPT-4o.

The evaluation of our method and these baselines is conducted using Garment Accuracy, a metric defined as the
product of Panel Accuracy and Edge Accuracy, which quantifies the percentage of garments reconstructed with
the correct number of panels and edges. Additionally, we measure the squared distance between the predicted and
ground-truth vertex positions to assess the geometric accuracy of the reconstructions.

Baselines. To generate an image input from a non-image modality, we use DALL-E 2 to produce a single
512x512 image. The prompt used for generation always begins with:

Create an image of a single garment worn by a mannequin. The mannequin should be front-facing and in
t-pose.






Input Text Prediction GT

The garment is a sleeveless hoodie with a deep cut neckline. The hood is
attached to the main body with seams running along the back neckline and
shoulder areas. The front panel includes a deep neckline, with seams attaching
it to the side and shoulder panels. The side panels extend under the arms and
connect to the back panel, which comprises multiple sections joined with vertical
seams. The silhouette is fitted, accentuating the upper torso, while the hood adds
a distinctive layered look to the upper garment.

The dress is a mini-length garment featuring a sleeveless design with a short
square neckline and a short square back. It includes a wide waistband
positioned at a high rise. The front and back panels connect seamlessly at the
shoulders and sides, with the waistband acting as a horizontal dividing panel,
emphasizing the high-rise waistline. The overall silhouette is fitted, with the
bodice and skirt sections distinctly separated by the wide waistband, ensuring a
structured and defined shape.

The jumpsuit features a maxi silhouette with long sleeves. It has an extended
neckline creating a deep cut at the front. The garment is constructed with
multiple panels joined throughout, including horizontal and vertical connections.
The sleeves are attached at the shoulder seams and feature a wide, loose fit.
The lower part of the jumpsuit includes flared panels that add volume to the
hem. The design displays a combination of fitted and loose sections, enhancing
the overall silhouette with distinctive seam placements.

The dress features an asymmetric design with a single right long sleeve. The
neckline is also asymmetric, providing a unique contour to the upper section.
Panels are carefully constructed to achieve the asymmetric top, with precise
seams joining the right sleeve to the body. The silhouette is elongated with a
clean, straight cut extending to full length. Distinctive characteristics include
the single sleeve and the non-traditional neckline, producing a visually striking
and modern appearance.
L

The jumpsuit features a maxi silhouette with long sleeves and a short v-
neckline in both the front and back. The front panel is divided by a central
seam running from the neckline to the waist, where it meets the waistband
seam. The bodice and lower body panels are connected at the waistband, with
additional vertical seams along the torso sides extending to the hem. The back
contains a yoke panel that connects to the lower body panels with vertical seams.
The sleeves are attached to the bodice with shoulder seams extending to the cuffs.

Figure S6. Text-conditioned sewing pattern generation. Alpparel generates accurate sewing patterns closely following the
text descriptions. Notice that the characteristics described in the bolded phrases all appear in the generated sewing patterns.




Input DressCode SewFormer Ours

Figure S7. In-the-wild Image to Garment Example. Our model is able to predict a sewing pattern more aligned with the
input image compared to the baselines. Notice that SewFormer did not drape correctly, resulting in a missing bottom.

The prompt is tailored to each input modality by appending the following continuations.

» Text: Make sure that the garment follows this description: + text
* QOccasion: Make sure the garment suits the following occasion: + text
» Editing: Make sure the garment looks like if this edit + edit + was applied to the garment.

Similarly, to convert any input modality into a keyword-based format compatible with DressCode, we design
distinct prompts based on the modality. Each prompt is constructed as a concatenation of the following starting
phrase:

Describe the garment in a list of comma separated keywords. Give a maximum of 5 keywords.
and a modality specific continuation:

» Text: Make sure that the garment follows this description: + text

* Image: Make sure that the garment looks like this image.

* Text + Image: Make sure that the garment looks like this image and follows this description: + text.
* Occasion: Make sure the garment suits the following occasion: + text

» Editing: Make sure the garment looks like if this edit + edit + was applied to the garment.

S3.4. Sewing Pattern Editing

We detail the baseline methods we used for Table 4 and Figure 5 in the main paper. Using existing models, we
extend SewFormer and DressCode to translate the sewing pattern and editing instructions to their input domains.
Specifically, for SewFormer, we take the editing instruction and rendered image from GCD-MM and translate the
rendering image using a pre-trained InstructPix2Pix [1] with the editing instruction as input. The output from
InstructPix2Pix is a garment image generated based on the editing instructions and the input rendering. With
this input image, we query the SewFormer-FT baseline to obtain the final sewing pattern. For DressCode, we
use GPT4V to translate the editing instructions and rendered image into short keywords that describe the edited
garment. This is then used to query the pre-trained DressCode and obtain the sewing pattern. The text prompt we
use for querying GPT4V is the following:



Input DressCode Edited Ours Edited GT Edited

Switch the collar type
from v-neck collar to
square collar.

' Make the skirt longer.
#

|

|

Make the sleeves longer.

Decrease the amount of
inserts in the skirt by 6.

|

|

nn
.
TE
ol o

Increase the amount of
inserts in the skirt by 6.

|

Make the pants longer.

|

Figure S8. Additional visualization for sewing pattern editing. The task is to predict a sewing pattern that closely matches
the input sewing pattern while following the editing instructions (text above the arrow). Notice that despite the diverse kinds
of editing instructions we give, our methods can output sewing patterns that closely follow the instructions and the input
sewing pattern. In the meanwhile, the baseline cannot achieve a similar effect because it takes only takes in text as input,
losing structural details.



Method Panel L2 () #Panel Acc (1) #Edge Acc (T) RotL2(]) TranslL2 (}) #Stitch Acc (1)

LoRA 13.7 31.6 45.4 .020 5.1 .088
Alpparel 54 85.2 82.7 020 2.7 77.2

Table S2. Ablation Study: Fine-tuning Comparison. The scores are reported on the image-to-garment prediction tasks on
GCD-MM dataset. The metrics indicate that full model fine-tuning significantly outperforms LoRA fine-tuning, allowing the
base model to better adapt to sewing pattern understanding.

Method Panel L2 (|) #Panel Acc (1) #Edge Acc (1) RotL2(]) TranslL2(]) #Stitch Acc (1)

6 layers 5.93 83.6 81.0 .008 29 74.3
5 layers 6.10 84.2 80.7 0.010 2.8 73.4
4 layers 5.94 83.2 81.3 0.011 3.0 74.7
3 layers 5.92 83.7 80.9 0.010 29 73.7
2 layers 54 85.2 82.7 020 2.7 77.2

Table S3. Aboation Study: Number of Layers in Regression Heads. The scores are reported on the image-to-garment
prediction tasks on GCD-MM dataset.

You are given a list of attributes describing a garment. Your task is to modify the list according to an editing
instruction provided.

To accomplish this: 1. If the attribute related to the instruction already exists in the description, locate and
modify it to reflect the new information. 2. If the attribute is not present, add a new entry to the description
that fulfills the instruction. 3. Ensure that no other attributes are altered unless necessary for consistency or
clarity following the modification.

Once the changes are complete, return the list of attributes, without any additional information.

We evaluate this task using the test split of GCD-MM, containing approximately 6,000 editing samples.

Additional Qualitative Visualization Figure S8 shows additional visualization of the editing tasks as shown in
Fig. 5 of the main paper. Notice that our model is able to correctly edit the sewing pattern with a diverse set of
instructions.

S3.5. Ablation Study

Setup & Baseline Details. Table 5 in the main paper shows an ablation study on our proposed tokenization
scheme in Section 3.2 of the main paper. As described in Section 5.4, we use text-to-image as our ablation task
to conduct an equal comparison of our model with DressCode [3]’s pre-trained model. Futhermore, we swap our
tokenizer into DressCode’s model, to ensure an equal comparison. We also do the same for the configuration,
Ours w.o. reg., which uses the proposed sewing pattern tokenization scheme without the usage regression heads.
We train both models from scratch with a learning rate of 0.0006 and a total batch size of 512 on 2xQuadro RTX
8000 GPUs, for a total of 30,400 steps until convergence.

Additional Ablation Study. Table S2 shows a qualitative comparison studying the effectiveness of full model
fine-tuning versus LoRA [4] fine-tuning. The table reports reconstruction metrics on the image-to-garment pre-
diction task on GCD-MM dataset. For the LoRA model, we use rank 8 and only fine-tune the query and key
projection layers following previous works [2, 9]. The model is trained with the same hyperparameter settings



described in Section S2.2 for 8250 steps. The metrics indicate that the full fine-tuning model significantly outper-
forms the LoRA fine-tuned version, indicating that fine-tuning all weights in the language transformer is essential
for understanding sewing patterns.

Additional Qualitative Visualization. Figure S9 shows additional visualizations for the ablation study in Sec-
tion 4.4 of the main paper. Notice that our model in general demonstrates better sewing pattern prediction ability
than DressCode. This can be seen in the pants prediction in the second and third rows of the figure, where Dress-
Code does not predict the correct sewing pattern.

S3.6. Draping Details

We use the draping pipeline provided by GarmentCode [7] for converting sewing patterns to a 3D mesh of the
garment draped on a standard female SMPL model in A-pose. Specifically, the draping process consists of creating
the boxed mesh and using Nvidia-Warp [13] for cloth simulation. To obtain the garment in arbitrary poses and
in a motion sequence, we follow the simulation pipeline provided by PhysAvatar [17], which uses Codimensional
Incremental Potential Contact (C-IPC) [10] simulation for cloth simulation. For simulation details, please refer to
Zheng et al. [17]. Finally, the simulated mesh sequence is imported to Blender for texturing and rendering.

S3.7. Human Study

We conducted a user study to compare sewing patterns generated from multimodal inputs using Alpparel with
those using baselines. Specifically, we deployed 10 multiple-choice questions asking which garment better aligns
with the input prompts while maintaining realism. The questions contain a combination of sewing patterns gener-
ated from images, texts, and editions of existing sewing patterns from different methods. We collected responses
from 73 participants and Fig. S10 shows the favorability comparison for each modes of generation. Alpparel is
more favorable in all modes, aligning with our quantitative and qualitative results.

S4. Discussion

We expand our discussion in Section 6 of the main paper to include further limitations, future work, and social
impact.

S4.1. More Discussion on Limitations and Future Work

Due to computational resource constraints, we only train Alpparel on part of the GCD data, and Alpparel outputs
a single modality, sewing pattern. As the community gets more computing resources, we are excited to see works
extending our methods to larger datasets with richer annotations. It is an interesting direction to further scale up
Alpparel to study the emergence of abilities like few-shot or in-context generalization to novel garment generation
tasks or perform chain-of-thoughts to achieve a complex garment design. It is also an interesting direction to study
how to further enlarge sewing pattern datasets with more variations and more annotations. For example, reflecting
realistic variations of fabric properties can enable more accurate sewing pattern prediction.

Bias and comprehensiveness of GCD-MM. Alpparel can inherit the bias from the sewing pattern dataset used
to create GCD-MM. In fact, GarmentCodeData [8] discusses such biases in its limitation section including only
sewing patterns fitted to statistical models computed from a pool of healthy European and North American adults,
hence limiting the size variations within the sewing patterns of GCD. However, we note that our data curation
pipeline outlined in the paper can be used for other sources. By applying our pipeline to other, less biased, and
more comprehensive sewing pattern datasets, we can still improve their quality by creating annotations for the
sewing patterns.
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Figure S9. Additional Visualizations for Ablation Study.
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Figure S10. User Favorability Comparison of Apparel vs. Baselines for Multimodal Generation.

S4.2. Further Social Impacts

Besides the concerns of hallucination and bias that we inherit from our base model, LLaVA, we also acknowledge
that our generated sewing patterns might not produce suitable garments for all communities, due to the limited
body type and style selections within the data we trained on. It is important to study how to improve our method
and dataset annotation on more diverse sewing patterns and body types in the future.

Another potential risk of our work is the potential bias we inherit from foundation models in our annotation gen-
eration process. Because we use large models such as GPT-4V for data generation, existing biases in these models
will also be included in our generated annotations. However, because the prompts we used (see Section S1.1)
encourage the model to generate descriptions based on the given images and keyword phrases, we did not find any
immediate systematic bias present in our annotations.
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