
Generative Densification: Learning to Densify Gaussians for High-Fidelity
Generalizable 3D Reconstruction

Supplementary Material

A. Additional Results on the DL3DV Dataset

Table 1. Evaluation results on the DL3DV-10k [8] dataset. n de-
notes the frame distance span across all test views

Method n = 150 n = 300

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
MVSplat-finetune 17.42 0.516 0.417 16.19 0.452 0.478

Ours 17.76 0.533 0.405 16.46 0.468 0.469

We further evaluate our scene-level model on the DL3DV-
10k [8], a challenging dataset with 51.3 million frames from
10,510 real-world scenes. Our scene-level model and its
baseline are fine-tuned for 100,000 iterations on two sub-
sets (“3k” and “4k”) of the DL3DV-10k dataset, comprising
approximately 2,000 scenes. All models are evaluated on
140 scenes that are filtered out from the training set, follow-
ing MVSplat360 [2]. For each scene, we select 5 views as
input and evaluate on 56 views uniformly sampled from the
remaining views [2]. As shown in Tab. 1, our model out-
performs the baseline across all metrics, consistent with the
evaluations on the RE10k, ACID, and DTU datasets.

B. Generating Residuals of Fine Gaussians
We further propose to generate residuals of fine Gaussians
for scene-level reconstruction. Similar to the densification
procedure presented in Sec. 3.1, the top K Gaussians with
large view-space positional gradients (Gden) are selected,
and their positions and features (Xden, Fden) are passed
through L layers of serialized attention (SA), up-sampling
(UP), Gaussian head (HEAD), and splitting (SPLIT) blocks:

(X̃ (l), F̃ (l)) = SA(X (l−1)
den ,F (l−1)

den ), (1)

(X (l),F (l)) = UP(X̃ (l), F̃ (l)), (2)

G(l) = HEAD(G(l−1)
den ,X (l),F (l)), (3)

(G(l)
den,X

(l)
den,F

(l)
den,G

(l)
rem) = SPLIT(G(l),X (l),F (l)), (4)

for l ∈ {1, · · ·, L−1}, where G(0)
den = Gden, X (0)

den = Xden,
and F (0)

den = Fden. The Gaussian positions and features
are up-sampled in the UP block, which is identical to the
up-sampling procedure as described in Sec. 3.2. The up-
sampled positions and features are then passed to the HEAD
block, where they are transformed into Gaussian parame-
ters and added to those from the previous layer (G(l−1)

den ).
In the SPLIT block, the generated Gaussians are divided
into two groups: those that require further densification
and those that do not. The first group is refined in the

next layer, while the second group remains unchanged.
Note that the second group of Gaussians’ positions and
features (X (l)

rem,F (l)
rem) are omitted from Eq. (4) for brevity.

Finally, the L-th layer’s fine Gaussians are generated as
G(L) = HEAD(G(L−1)

den ,UP(SA(X (L−1)
den ,F (L−1)

den ))) without
splitting, and the final set of Gaussians is obtained as:

Ĝ = {
L−1⋃
l=0

G(l)
rem} ∪ G(L). (5)

The two densification methods for object-level and
scene-level reconstruction are similar in that both selec-
tively generates fine Gaussians leveraging learnable mask-
ing, but they differ in how fine Gaussians are generated.
The object-level method generates fine Gaussians directly
in each densification layer, while the scene-level method
generates initial fine Gaussians in the first layer and selec-
tively refines them by adding residuals in subsequent layers.

C. Model Details
The Number of Gaussians. As described in Sec. 3.1,
we begin by selecting K(0) = K Gaussians, which are
densified through L layers of densification blocks. In the
l-th up-sampling block, both Gaussian positions and fea-
tures are up-sampled by a factor of R(l), resulting in an in-
creased Gaussian count, K(l) = K(l−1)R(l). Subsequently,
in the splitting module, the up-sampled Gaussians are di-
vided into two groups: those requiring further densification
in the next layer, and those that do not. The number of
Gaussians for further densification, K(l)

den, and the remain-
ing Gaussians, K(l)

rem, are calculated as K
(l)
den = ⌈K(l)P (l)⌉

and K
(l)
rem = K(l) −K

(l)
den, respectively, where P (l) ∈ (0, 1)

is the masking ratio and ⌈·⌉ represents the ceiling operator.

Global Adaptive Normalization. The serialized atten-
tion module is learned to aggregate the scene context but
operates within each group of Gaussians for memory and
computational efficiency, which may lead to limited under-
standing of the global context. To complement the local fea-
tures, a global feature is widely used as a global descriptor
in point-level architectures. Inspired by previous works [12,
13] and recent normalization techniques [11, 15], we intro-
duce global adaptive normalization, which averages the fea-
tures of the Gaussians selected for densifcation (Fden) and
scales the normalized features using the averaged features.
Generative Densification of LaRa. LaRa [1] generates
3D volume representations conditioned on image features,



Table 2. Summary of training hyperparameters.

Object-level Scene-level
Config Value Config Value

optimizer AdamW [10] optimizer Adam [7]
scheduler Cosine scheduler Cosine
learning rate 4e-4 learning rate 2e-4
beta [0.9, 0.95] beta [0.9, 0.999]
weight decay 0.05 weight decay 0.00
warmup iters 1,000 warmup iters 2,000
epochs 30 iters 300,000

Table 3. Summary of fine-tuning hyperparameters.

Object-level Scene-level
Config Value Config Value

optimizer AdamW [10] optimizer Adam [7]
scheduler Cosine scheduler Cosine
learning rate 2e-4 learning rate 2e-4
beta [0.9, 0.95] beta [0.9, 0.999]
weight decay 0.05 weight decay 0.00
warmup iters 0 warmup iters 0
epochs 20 iters 150,000

and each volume features are decoded into multiple Gaus-
sians. To improve the rendering quality, LaRa introduce a
cross-attention between the volume features and coarse ren-
derings, including ground-truth images, rendered images,
depth images, and accumulated alpha maps [1]. The inter-
mediate features from the cross-attention are transformed
to residuals of SH using an MLP, which are added to the
coarse SH to obtain the refined Gaussians.

We modify the last MLP (the residual SH decoder) to
output both the residuals and refined volume features. The
first d columns of the MLP output are considered the resid-
ual SH, while the remaining columns serve as input features
for generative densification. Here, d denotes the number
of SH coefficients. We take the refined Gaussians and the
concatenation of volume and refined volume features as in-
put, and their respective fine Gaussians are generated by
our method. Note that, while the baseline LaRa generates
2D Gaussian representations [5], we adapt it to generate 3D
Gaussians representations [6] instead.

Generative Densification of MVSplat. MVSplat [3]
generates per-view pixel-aligned Gaussian representations
from multi-view input images. A transformer encodes the
input images into features via cross-view attention, after
which per-view cost volumes are constructed. The image
features are concatenated with these cost volumes and de-
coded into depths and other parameters, including opacities,
covariances, and colors. The Gaussian positions are then
determined by un-projecting the depths into 3D space.

Similar to LaRa, we obtain the refined features by apply-
ing cross-attention between the coarse renderings and the
concatenated features of images and cost volumes, followed
by a simple MLP. However, we do not predict residuals of
SH, as this often leads to unstable training in scene-level

reconstruction. We use the per-view Gaussians from the
MVSplat backbone along with the refined features as input
to our method, generating per-view fine Gaussians.
Impelmentation Details. For object-level reconstruction,
we select 12,000 Gaussians from the LaRa backbone with
large view-space gradients and generate fine Gaussians
through two densification layers. The up-sampling factors
of the two layers are 2 and 4, and the masking ratio is 0.8. In
other words, the input Gaussians are densified by a factor of
2 in the first layer, and 80% of them are further densified by
a factor of 4 in the second layer, while the remaining 20%
are decoded into raw Gaussians. Similarly, for scene-level
reconstruction, we select 30,000 Gaussians per view from
the MVSplat backbone. We use three densification layers,
each with an up-sampling factor of 2. The masking ratios
are set to 0.5 for the first layer and 0.8 for the second layer.

D. Training and Evaluation Details
The training and fine-tuning hyperparameters are summa-
rized in Tab. 2 and Tab. 3, respectively. The training objec-
tives and additional details are outlined in the followings.
Object-level Reconstruction. The backbone and the den-
sification module are jointly trained by minimizing the loss
L = LMSE(I, Î) + 0.5(1 − LSSIM(I, Î)), for both coarse
and fine images, where LMSE is the mean squared error and
LSSIM(I, Î) is the structural similarity loss. The coarse
images are rendered using the Gaussians generated by the
backbone LaRa, and the fine images are rendered using the
densified fine Gaussians. Unlike the original implemen-
tation [1], where the fine decoder (the last cross-attention
layer and the residual SH decoder) is trained after the first
5,000 iterations, we train it from the very beginning.

For model evaluation on the GSO dataset, we utilize the
classical K-means algorithm to group the cameras into 4
clusters and select the center of each cluster to ensure suf-
ficient angular coverage of the input views. Both LaRa and
our model are evaluated using this new sampling method.
Scene-level Reconstruction. Similar to our object-level
model, we calculate the image reconstruction loss L =
LMSE(I, Î)+0.05LLPIPS(I, Î) for both coarse and fine im-
ages, and minimize the loss to jointly train the MVSplat
backbone and the densification module. Here, LLPIPS de-
notes the learned perceptual similarity loss (LPIPS [16]).
For model fine-tuning, we set the warm-up step of the view-
sampler to 0, and the minimum and maximum distances be-
tween context views are set to 45 and 192, respectively.

E. Additional Qualitative Results
Fig. 1 illustrates how fine Gaussians are generated in each
densification layer. Fig. 2 and Fig. 3 show comparisons
for object-level and scene-level reconstruction, respectively.
Fig. 4 show rendering results from far-away novel views.



Figure 1. Additional qualitative results of our object-level and scene-level model trained for 50 epochs and 450,000 iterations, respectively.
The zoomed-in parts show our method selects and reconstructs the fine details through alternating densification layers, while preserving the
smooth areas unchanged. Note that the 7-th column of the scene-level reconstruction results shows the union of fine Gaussians generated
across all three densification layers, and the output Gaussians from the third layer are omitted due to space constraints.



Figure 2. Qualitative comparisons of our object-level model against the original LaRa [1], evaluated on the GSO [4] and Gobjaverse [14]
dataset. The coarse and fine Gaussians are the input and output of generative densification module, respectively.

Figure 3. Qualitative comparisons of our scene-level model against the original MVSplat [3], evaluated on the RE10K [17] dataset. The
red boxes show that our model better reconstructs the scene, removing visual artifacts and generating missing parts.



Figure 4. Qualitative comparisons of our scene-level model against the original MVSplat [3], evaluated on the RE10K [17] dataset (left
column) and the ACID [9] dataset (right column). Our method consistently improves reconstruction quality at far away from input views.



References
[1] Anpei Chen, Haofei Xu, Stefano Esposito, Siyu Tang, and

Andreas Geiger. Lara: Efficient large-baseline radiance
fields. In European Conference on Computer Vision, 2025.
1, 2, 4

[2] Yuedong Chen, Chuanxia Zheng, Haofei Xu, Bohan Zhuang,
Andrea Vedaldi, Tat-Jen Cham, and Jianfei Cai. Mvsplat360:
Feed-forward 360 scene synthesis from sparse views. arXiv
preprint arXiv:2411.04924, 2024. 1

[3] Yuedong Chen, Haofei Xu, Chuanxia Zheng, Bohan Zhuang,
Marc Pollefeys, Andreas Geiger, Tat-Jen Cham, and Jianfei
Cai. Mvsplat: Efficient 3d gaussian splatting from sparse
multi-view images. In European Conference on Computer
Vision, 2025. 2, 4, 5

[4] Laura Downs, Anthony Francis, Nate Koenig, Brandon Kin-
man, Ryan Hickman, Krista Reymann, Thomas B McHugh,
and Vincent Vanhoucke. Google scanned objects: A high-
quality dataset of 3d scanned household items. In Interna-
tional Conference on Robotics and Automation, 2022. 4

[5] Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and
Shenghua Gao. 2d gaussian splatting for geometrically ac-
curate radiance fields. In SIGGRAPH, 2024. 2

[6] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics,
2023. 2

[7] Diederik P Kingma. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014. 2

[8] Lu Ling, Yichen Sheng, Zhi Tu, Wentian Zhao, Cheng Xin,
Kun Wan, Lantao Yu, Qianyu Guo, Zixun Yu, Yawen Lu,
et al. Dl3dv-10k: A large-scale scene dataset for deep
learning-based 3d vision. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
2024. 1

[9] Andrew Liu, Richard Tucker, Varun Jampani, Ameesh
Makadia, Noah Snavely, and Angjoo Kanazawa. Infinite na-
ture: Perpetual view generation of natural scenes from a sin-
gle image. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021. 5

[10] I Loshchilov. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101, 2017. 2

[11] William Peebles and Saining Xie. Scalable diffusion models
with transformers. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 2023. 1

[12] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2017.
1

[13] Peng Xiang, Xin Wen, Yu-Shen Liu, Yan-Pei Cao, Pengfei
Wan, Wen Zheng, and Zhizhong Han. Snowflakenet: Point
cloud completion by snowflake point deconvolution with
skip-transformer. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 2021. 1

[14] Chao Xu, Yuan Dong, Qi Zuo, Junfei Zhang, Xiaodan Ye,
Wenbo Geng, Yuxiang Zhang, Xiaodong Gu, Lingteng Qui,
Zhengyi Zhao, Qing Ran, Jiayi Jiang, Zilong Dong, and

Liefeng Bo. G-buffer objaverse: High-quality rendering
dataset of objaverse. https://aigc3d.github.io/
gobjaverse/. 4

[15] Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao, and
Junyang Lin. Understanding and improving layer normaliza-
tion. Advances in Neural Information Processing Systems,
2019. 1

[16] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2018. 2

[17] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo magnification: Learning
view synthesis using multiplane images. arXiv preprint
arXiv:1805.09817, 2018. 4, 5

https://aigc3d.github.io/gobjaverse/
https://aigc3d.github.io/gobjaverse/

	Additional Results on the DL3DV Dataset
	Generating Residuals of Fine Gaussians
	Model Details
	Training and Evaluation Details
	Additional Qualitative Results

