MI-DETR: An Object Detection Model with Multi-time Inquiries Mechanism

Supplementary Material

Due to the space limitation of the main text, we provide
more results and discussions in the supplementary material,
which are organized as follows:

» Section 7: More Diagnostic Experiments.
— Section 7.1: The effectiveness of our method on another
DETR-like model.
— Section 7.2: The comparison between our proposed MI-
DETR and Lite MI-DETR.
— Section 7.3: Diagnostic experiments on different query
fusion mechanisms.

* Section &: Further Analysis of Model Complexity.

e Section 9: More Visualization Analysis.

7. More Diagnostic Experiments

7.1. The effectiveness of our method on another
DETR-like model.

We have conducted experiments to verify the effects of
MI on other models in Sec. 4.3.2, including the most rep-
resentative model DINO [44] and SOTA model Relation-
DETR [12]. Due to the space limitation of the main text,
we present additional experiments based on recent proposed
Align-DETR [2] to further validate the effectiveness and
generalization of MI. The results are available in Tab. 7,
from which we can observe that our method show consis-
tent improvement on Align-DETR.

Method Backbone Epochs AP
Align-DETR [2] ResNet-50 12 50.2

ours ResNet-50 12 51.5(+1.3)
Align-DETR [2] ResNet-50 24 51.3

ours ResNet-50 24 51.8(+0.5)

Table 7. Effectiveness of our method on Align-DETR.

Method ‘ AP AP5 AP75‘GFLOPS Params

MI-DETR |50.2 68.1 54.8 311 76M
Lite MI-DETR | 50.1 67.9 54.7 299 2M

Table 8. The comparison between our proposed MI-DETR and
Lite MI-DETR.

7.2. The comparison between our proposed MI-
DETR and Lite MI-DETR.

MI-DETR and Lite MI-DETR are two Kkinds of architec-
tures of our model, and the latter targets to reduce the model
complexity by sharing the self-attention layer in MI decoder

layers. As shown in Tab. 8, Lite MI-DETR achieves com-
parable performance with MI-DETR while requiring less
parameters and computation.

7.3. Diagnostic experiments on different query fu-
sion mechanisms.

To verify the impact of different query fusion mecha-
nisms on model performance, we conduct experiments with
three different fusion mechanisms, including “add”, “lin-
ear+concat”’, and “concat+linear”. “add” fusion directly
adds up object queries from different inquiry heads. “lin-
ear+concat” fusion first projects the object queries to C'/M
dimensions along the feature dimension, and then concate-
nates them, where C' is the original dimensions of object
queries and M is the number of inquiry heads. “con-
cat+linear” fusion is the classic concatenation fusion as il-
lustrated in Eq. (4). The results are reported in Tab. 9, from
which we can observe that the fusion mechanism has slight
impact on the performance, which potentially proves that
MI is the main contributor to performance improvement.

query fusion ‘ AP APsy AP;; APy APy APy

add 50.1 67.9 547 327 532 649
linear+concat | 49.8 67.7 542 327 529 64.8
concat+linear | 50.2 68.1 54.8 334 53.6 64.5

Table 9. Diagnostic experiments on different query fusion mech-
anisms in MI decoder layer. “add”, “linear+concat”, and “con-
cat+linear” represent three different fusion mechanisms.

8. Further Analysis of Model Complexity

We have conducted experiments in Sec. 4.4 to eliminate the
misunderstanding that our performance improvement might
result from increasing the parameters complexity. To fur-
ther analyze the complexity of our method, we conduct ad-
ditional experiments by comparing the training time, in-
ference speed, and AP of basically-equal-parameter mod-
els (with different layer number, head number, and chan-
nel number configurations), and the results are summarized
in Tab. 10. Specifically, two kinds of adding-parameters
strategies, vertically deepening 2x/4x layers (#2/#4) and
horizontally widening 2x/4x heads and channels (#6/#8),
generate four models with the single decoder. We note all
models in Tab. 10 use the same number of queries as the
DINO baseline. All these experiments consistently prove
the superiority of our parallel multi-time inquires architec-
ture (#3, #5, #7, and #9) on performance and complexity.



ID Strategy LN HN CN IHN Params ‘ Train | Test T AP 1

#1 baseline 6 8 256 1 47M 70min 14.2 49.0
# 2 8 256 1 58M 88min 122 490
#3 . 6 8 256 2 57M 78min 128 495
g | Vertical 24 8 256 1 78M 124min 92 473
#5 6 8 256 4 75M 95min 113 498
#6 6 6 512 0 58M 83min 33 490
# |, L6 8 256 2 57M 78min 128 495
#8 6 32 1024 1 97M 103min _ 10.6  49.1
#9 6 8 256 4 75M 95min 113 498

Table 10. Comparisons on performance and complexity under diverse conditions. LN: Layer Number; HN and CN: Head Number and
Channel Number of the multi-head self-attention and multi-head cross-attention; IHN: Inquiry Head Number. “Train” denotes the average
training time per epoch, and “Test” indicates the inference FPS (i.e., Frames Per Second) tested on the same GPUs.

9. More Visualization Analysis

We have conducted rich visualization experiments in
Sec. 4.3.5, including object queries visualization and object
detection results visualization. To avoid the randomness of
visualization results, we present more visualization results,
as shown in Fig. 7, Fig. 8, and Fig. 9. Fig. 7 illustrates that
object queries in different inquiry heads generally present
distinct distributions, validating that multi-pattern informa-
tion are learnt in different inquiry heads. Fig. 8 presents
that different inquiry heads are mutually collaborate. For
example, on the first example, the “car” is not detected in
head 1, 2, and 3, and the “person” on road is not detected
in head 1, 2, 4. These two objects are respectively noticed
in head 4 and head 3 and are finally detected by heads 1-
4. As shown in Fig. 9, our method exhibits advantages in
challenging natural scenes (e.g., extremely-small, heavily-
occluded, and confusingly mixed with the background).
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Figure 7. The visualization of object queries in different inquiry heads by T-SNE high-dimensional data visualization tool. This is a
supplement to Fig. 4 of the main text.

headl head 2 head 3 head 4 head 1-4 GT

A
Umbrella 4058

Figure 8. More object detection results based on the single inquiry head and multiple inquiry heads. This is a supplement to Fig. 5 of the
main text.
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Figure 9. The “elephants” in (a), the “cup” in (b), and the “surfboard” in (e) are confusingly mixed with the background. The “elephants”
in (a) and the “handbag” in (c) are heavily-occluded. The “handbag” in (c) and the “knife” in (d) are small. These objects are difficult
to detect, and DINO fails to detect them (e.g., the elephants are falsely detected as cows or missed). In contrast, our method successfully
detect these challenging objects. Suggest zooming in to view clearer details. This is a supplement to Fig. 6 of the main text.



