
A. Experimental and Implementation details
In this section, we provide more details about our experiments.
We conduct all experiments using PyTorch [22]. We use two Im-
ageNet pretrained base models for fine-tuning. One of these is
the default ResNet50 Weights.IMAGENET1K V1 from Py-
Torch, while we pre-train the other starting from random initial-
ization following the same pipeline. For fine-tuning the models
on each domain, we use the Adam [17] optimizer, and sweep the
learning rates logarithmically between [1e-4,1e-1], testing out 4
values for LR. We validate on the validation subset wherever avail-
able, and on 10% of the training dataset where an explicit val set
is not provided. We use standard image augmentation techniques.
Our MoE model has a light-weight router, which is a 3 layer CNN
trained to predict which model to use for classifying an image.

For finding permutation symmetries, we use the official imple-
mentation of Git Re-Basin at this url. We also rely on the imple-
mentation of ZipIt! and MuDSC for the comparisons in Sec. 5.

For solving the least squares objective for PLeaS, we use SGD
with a batch size of 32, a learning rate of 10−3. We sample equally
from both datasets in each batch for experiments involving data.
We run our algorithm for 100 steps, and find that it converges
quickly. For the first step of PLeaS, we similarly compute the
activations on 100 batches of data for matching and finding the
optimal permutations. We also reset batch norm parameters using
100 batches of data from the actual domains for all methods.

For evaluations concerning the same label space setting, we
ensure that the final model produces a distribution over the output
classes. For ZipIt!, we achieve this by ensembling the predictions
across multiple task specific heads. PLeaS on the other hand al-
ready produces models with the same output dimensions as the
original models.

For evaluations on different label spaces, we train a linear probe
on the final layer representations for each merged model. We use
training data from the target domains to train this linear probe, run
Adam with a learning rate of 10−3, with a batch size of 64 for 50
epochs.

As an example evaluation for Domainnet, we have 8 models,
two each on Clipart, Infograph, Painting and Real domains. We
merge these pair-wise. We hence have 12 (6 domain pairs and
two models per pair) merged models. For each merged model, we
compute the accuracy on its component domains. Hence, for each
domain, we have 6 performances (3 domain pairs and two models
per pair). We report the average of these 6 numbers in Tab. 1.

ViT To obtain models for merging with CIFAR-50+50 for
Sec. 5.5.1, we follow the protocol from [32]. In particular, we
use ImageNet pretrained ViT models, and train two such models
on disjoint 50 class subsets of CIFAR-100. These are trained with
CLIP language embeddings for the final layer. This process is re-
peated thrice to get different sets of classes and pairs of models.
After merging, the performance of the merged model is measured
on CIFAR-100 as well as the two subsets of classes that the moders
were trained on. The average of these results is reported in Tab. 3.
For the other datasets, we start off with ViT-B/16 model from the
OpenCLIP project[11] which is pretrained on the LAION-400M
dataset. We fix the text encoder, and fine-tune the image encoder
on various datasets. This fine-tuned model achieves an accuracy of

(72%, 91%, 68%, 24%) on CUB, Pets, Dogs and NABirds datasets
resp. We then merge the model pairwise and report the results.

A.1. Compute time and cost
All our experiments (apart from the pretraining and fine-tuning
runs to get the original models) are run on a single RTX 2080 Ti
GPU. The first step of our method runs in 2 minutes, with the ma-
jority of time devoted to computing the activations. This is com-
mensurate with ZipIt! [28] and Git Re-Basin [1] The second step
takes around 4 minutes, which is similar to RegMean [14]. We be-
lieve that this can be significantly reduced with better dataloading
strategies and more efficient implementation, but that is beyond
the scope of this paper.

A.2. Computing the permutation matrices
We use the algorithms of Git Re-Basin to compute the permuta-
tion matrices Pi. For activation matching, we collect the repre-
sentations for both models over a batch of data, and measure the
alignment between two neurons as the squared distance between
their representations (closer → better alignment). Then for each
layer, we find the bipartite matching (i.e. permutation) between
the two models that minimizes the total distance using a standard
algorithm (scipy.optimize.linear sum assignment).
For weight matching, the alignment between two neurons is the
squared distance between its input and output vectors. This time,
the permutations at adjacent layers interact, so we perform an al-
ternating minimization, solving for the permutations one layer at a
time until we reach a fixed point.

A.3. Computing the layerwise merging ratio
Note that ki can be different for each layer. Given a configura-
tion K = { ki

di
: i ∈ [L]}, we can model the FLOPs/memory

of the merged model as a quadratic function of ki, which we de-
note as Footprint(K). For a given relative memory/FLOPs bud-
get B, we want to find K s.t. Footprint(K) ≤ B to maximize
the accuracy of a model merged with the configuration K. We
scale everything so that B = 1 corresponds to the footprint of
a single model. This problem is NP-Hard. We propose a re-
laxation of the problem in order to get an approximate solution.
First, we measure the performance of a set of models merged
with “leave one out” configurations of K, where for each layer
i, we construct K0

i = {kj : kj = di if j = i, 0 otherwise}
and K1

i = {kj : kj = 0 if j = i, di otherwise}. K0
i corre-

sponds to merging only layer i, keeping all other layers unmerged,
and K1

i corresponds to merging every other layer while keeping
i unmerged. We also compute the accuracies of the fully merged
model (denoted by K0) and the ensemble (denoted by K1). Then,
we approximate the accuracy of any given K with a linear function
as

Acc(K) =

L∑
i=1

ki
di

(
(2−B)(Acc(K1)− Acc(K0

i ))

−(1−B)(Acc(K0
i )− Acc(K0))

)
This approximates the effect of ki on model performance at bud-
get B by linearly interpolating between the performance with fully
merging layer i and keeping it separate. We then propose to solve

https://github.com/samuela/git-re-basin


1.0 1.2 1.4 1.6 1.8 2.0

Size Ratio

40

45

50

55

M
ea

n
A

cc
u

ra
cy

Our

Linear

(a) PLeaS

1.0 1.2 1.4 1.6 1.8 2.0

Size Ratio

20

30

40

50

M
ea

n
A

cc
u

ra
cy

Our

Linear

(b) Permutations

Figure 5. Comparing our strategy for layer-wise merging with
a linear baseline: We merge models using PLeaS and permu-
tations using the strategy described in Appendix A.3 and a linear
strategy where k

d
is held constant.

a quadratically constrained linear program to maximize Acc(K)
subject to Footprint(K) ≤ B. This program is non-convex how-
ever Gurobi [8] is able to solve the program to global optimality
in a few seconds. To faithfully compute the performance of the
merged model, one would require validation samples from the tar-
get domain. However, we empirically observe that using the ac-
curacy of a configuration K on ImageNet is a good proxy for its
performance on other merging tasks as well, and we hence use it
to compute the layer-wise merging ratio for all our experiments.

A.3.1. Empirical Results
In Figs. 5a and 5b, we compare the QP method with a baseline
strategy which assigns the number of units in each layer to be a
constant ratio. We find that our strategy outperforms this baseline
for both PLeaS and Permutations.

B. Additional Results
B.1. What to optimize for Least Squares?
In Eq. (1), we propose to solve a least squares problem involving
the permuted average activations from each layer of the compo-
nent models. In Tab. 4, we demonstrate that this choice is not
only natural, but also performs better than other alternatives. It
is also interesting to note that the second row in the table corre-
sponds to a permuted version of RegMean[14]. This formulation
performs better than RegMean, indicating that using permutations
is necessary to align features for networks which were differently
initialized. Further, row 3 is similar to the objective proposed by
[10], but we show that PLeaS outperforms this objective as well.

B.2. Reducing the accuracy barrier on ImageNet
In this section, we show the performance of PLeaS while
merging ResNet-50 models trained independently on ImageNet.
The accuracy of a single model on this task is 77.5%. As seen
from Fig. 6a, current methods including ZipIt! [28] and Git
Re-Basin [1] struggle on merging models for this task, with the
accuracy of the merged model being significantly lower than
the accuracy of a single model. This has been referred to as the
accuracy barrier on ImageNet in prior work. PLeaS makes some
progress towards lowering this barrier, and improves over Git
Re-Basin by over 9% at 1.0× FLOPs budget. For context, this
accuracy is at par with that obtained by merging WideResNet-50

1.0 1.2 1.4 1.6 1.8 2.0

Size Ratio

54

60

66

72

78

A
cc

u
ra

cy

Single Model

PLeaS

Permutations

ZipIt!

(a) ImageNet performance

1.00 1.25 1.50 1.75 2.00

Size Ratio

40

50

60

70

A
cc

u
ra

cy

(b) Data-free setting

Figure 6. Merging models trained on ImageNet: In Fig. 6a, we
demonstrate how PLeaS-free can reduce the accuracy barrier
by 8% for merging independently trained ImageNet models. This
is further reduced for larger target model sizes. In Fig. 6b, we show
the effect of using synthetic data for computing the activations on
this task, and find that synthetic data is a viable alternative at larger
model sizes.

models with a width multiplier of 2 using Git Re-Basin. More
promisingly, the flexibility afforded by partially permuting and
merging models gives another avenue to lower the accuracy
barrier, with a model of size 1.4× having an accuracy barrier of
2% with PLeaS. However, further work is needed to reduce this
accuracy barrier. In Fig. 6b, we compare using synthetic data
from [6] for all purposes of activation computation while merging
ImageNet trained models. We find that using PLeaS-free with
synthetic data can come close to using actual data, being within
1% in terms of accuracy at 1.2× model size.

B.3. Detailed Results
Each of our evaluation was run across three random restarts. These
random restarts shuffle the data used for computing activations
and merging the models. They also affect the initialization of the
merged model. Each pair evaluation was also run twice, swapping
the order of pre-trained models used for either of the datasets of
the pair. We hence have 6 runs for each dataset pair. In Tabs. 5
and 6, we provide the results for each dataset pair, reporting the
average and standard deviation across the 6 runs.

B.4. Using task specific heads
In Tab. 7, we report the results computed using the protocol men-
tioned in [28]. We find that PLeaS outperforms ZipIt! in this
evaluation across model budgets.

B.5. PLeaS with weight and activation matching
In Fig. 7, we compare PLeaS-Weight with PLeaS, and find
that PLeaS is better for larger models, while at small sizes the
two methods give a comparable performance.‘

C. Broader Impact
Advances in model merging, especially through methods which
do not require training data, can help further democratize machine
learning by helping practitioners improve the capabilities of open
source models. However, the risk of merged models inheriting
biases of the component models still remains.



Table 4. Comparing different objectives for PLeaS : We compare the performance of different loss functions for the Least Squares
component of PLeaS . We find that Eq. (1) gives the best performance on DomainNet and ImageNet when merging models completely.
Here Z̃i = 0.5(Za

:,i + PiZ
b
:,i) and Z̃i+1 = 0.5(Za

:,i+1 + Pi+1Z
b
:,i+1)

Optimization Objective DomainNet ImageNet

∥Za
:,iW − Z̃i+1∥2 + ∥PiZ

b
:,iW − Z̃i+1∥2 22.3 45.1

∥Za
:,iW − (Za

:,i+1)∥2 + ∥PiZ
b
:,iW − (Pi+1Z

b
:,i+1)∥2 30.6 53.2

∥Z̃iW − Za
:,i+1∥2 + ∥Z̃iW − Pi+1Z

b
:,i+1∥2 34.3 58.1

∥Z̃iW − Z̃i+1∥2 40.1 63.1

Table 5. Detailed Results on DomainNet We report the results for ResNet-50 here

Method Budget Data in-re cl-pa cl-in pa-in cl-re pa-re

PLeaS-Act 1.2 Original 26.3 ±1.2 69.8 ±0.5 57.3 ±0.7 53.6 ±0.1 55.4 ±0.0 26.6 ±0.0 52.7 ±0.2 25.6 ±0.1 59.1 ±1.3 69.2 ±1.2 56.8 ±1.2 70.3 ±0.9

PLeaS-Act 1.2 Imagenet 26.6 ±0.9 69.6 ±0.8 56.4 ±0.9 53.9 ±0.2 55.8 ±0.7 26.3 ±0.5 53.3 ±0.2 25.6 ±0.4 59.1 ±1.3 69.3 ±0.9 56.7 ±1.0 70.2 ±0.9

PLeaS-Act 1.0 Original 17.4 ±1.3 55.0 ±1.5 40.2 ±2.0 39.9 ±1.1 39.5 ±1.5 17.8 ±0.8 35.9 ±0.0 17.3 ±0.0 42.8 ±2.0 54.9 ±2.0 42.3 ±1.7 56.1 ±1.2

PLeaS-Act 1.0 Imagenet 17.0 ±1.3 51.9 ±1.3 39.7 ±2.4 38.8 ±0.8 37.6 ±2.1 16.6 ±0.7 37.1 ±1.6 16.5 ±0.7 42.2 ±2.9 53.9 ±1.5 40.9 ±2.6 54.4 ±0.9

PLeaS-Act 1.55 Original 29.0 ±0.8 72.4 ±0.3 60.6 ±0.6 57.3 ±0.0 59.7 ±0.6 28.7 ±0.3 56.4 ±0.1 27.9 ±0.4 62.5 ±0.8 72.3 ±0.9 60.6 ±1.0 72.7 ±0.7

PLeaS-Act 1.55 Imagenet 29.0 ±0.8 72.5 ±0.6 60.3 ±0.7 57.8 ±0.5 59.9 ±0.6 29.0 ±0.2 56.9 ±0.2 28.1 ±0.3 62.4 ±0.9 72.6 ±0.7 60.1 ±0.9 72.9 ±0.8

PLeaS-Act 1.8 Original 29.5 ±0.8 73.7 ±0.3 62.3 ±0.5 59.0 ±0.2 61.3 ±0.4 29.8 ±0.2 58.3 ±0.2 29.1 ±0.0 63.7 ±0.6 73.8 ±0.6 62.0 ±1.0 73.9 ±0.7

PLeaS-Act 1.8 Imagenet 30.1 ±0.8 73.6 ±0.6 62.1 ±0.2 59.9 ±0.4 61.6 ±0.3 29.9 ±0.1 58.4 ±0.2 28.8 ±0.1 63.7 ±0.7 74.0 ±0.7 61.7 ±0.5 73.9 ±0.7

Permutation-Act 1.2 Original 22.3 ±0.9 62.9 ±1.2 50.7 ±1.2 45.9 ±0.2 48.8 ±0.0 22.1 ±0.0 45.4 ±0.4 21.9 ±0.4 51.4 ±1.0 61.6 ±1.7 49.1 ±1.3 63.9 ±1.1

Permutation-Act 1.0 Original 7.6 ±0.2 24.5 ±1.9 15.4 ±1.7 15.5 ±1.8 15.6 ±0.5 7.6 ±0.5 15.4 ±0.9 6.8 ±0.0 17.1 ±1.4 24.6 ±1.7 18.7 ±0.6 26.6 ±2.0

Permutation-Act 1.55 Original 27.1 ±0.7 69.7 ±0.7 58.2 ±1.0 53.6 ±0.4 56.6 ±0.6 26.8 ±0.1 53.3 ±0.4 25.9 ±0.3 59.3 ±1.1 68.8 ±0.8 57.2 ±0.8 70.3 ±1.0

Permutation-Act 1.8 Original 28.9 ±0.8 71.8 ±0.6 60.7 ±0.6 56.8 ±0.3 59.7 ±0.6 28.6 ±0.3 56.5 ±0.4 27.7 ±0.5 62.4 ±1.0 71.4 ±0.8 60.2 ±0.8 72.4 ±0.9

PLeaS-Weight 1.2 Original 27.3 ±1.0 70.5 ±0.5 58.8 ±0.2 54.6 ±0.3 56.6 ±0.8 27.2 ±0.3 53.5 ±0.1 26.1 ±0.5 60.9 ±0.2 68.8 ±0.1 58.3 ±0.9 70.5 ±0.8

PLeaS-Weight 1.2 Imagenet 27.4 ±0.9 70.2 ±0.6 57.5 ±0.9 54.3 ±0.3 56.9 ±0.4 27.3 ±0.3 53.7 ±0.4 26.0 ±0.6 59.6 ±1.0 69.9 ±1.1 57.6 ±0.8 70.8 ±0.9

PLeaS-Weight 1.0 Original 19.2 ±2.0 56.8 ±1.4 45.6 ±0.2 39.9 ±0.2 41.0 ±1.5 19.0 ±1.5 39.6 ±1.3 17.1 ±0.9 45.7 ±3.5 57.3 ±2.1 43.2 ±2.5 58.1 ±1.4

PLeaS-Weight 1.0 Imagenet 17.8 ±1.9 55.0 ±1.2 41.0 ±2.9 40.8 ±1.0 40.2 ±1.8 17.9 ±1.2 38.7 ±1.4 16.7 ±0.7 43.7 ±3.7 56.4 ±1.7 40.7 ±2.7 56.1 ±0.7

PLeaS-Weight 1.55 Original 28.5 ±0.9 72.9 ±0.4 61.3 ±0.0 58.2 ±0.0 60.0 ±0.4 29.1 ±0.2 56.7 ±0.1 28.1 ±0.2 63.2 ±0.6 72.1 ±0.7 60.4 ±0.8 73.0 ±0.6

PLeaS-Weight 1.55 Imagenet 29.1 ±1.1 72.7 ±0.5 60.4 ±1.0 57.4 ±0.6 60.4 ±0.2 29.4 ±0.4 56.9 ±0.3 28.1 ±0.4 62.9 ±0.7 72.2 ±0.8 60.6 ±0.9 72.9 ±0.6

PLeaS-Weight 1.8 Original 29.7 ±1.1 73.8 ±0.4 62.7 ±0.2 59.4 ±0.3 61.2 ±0.2 30.1 ±0.2 58.2 ±0.4 29.1 ±0.3 64.1 ±0.5 73.2 ±0.5 62.3 ±0.9 73.8 ±0.7

PLeaS-Weight 1.8 Imagenet 29.7 ±1.0 74.0 ±0.5 62.0 ±0.8 58.9 ±0.5 61.5 ±0.1 30.3 ±0.1 58.7 ±0.1 29.1 ±0.1 63.6 ±0.7 73.7 ±0.5 61.7 ±0.6 74.4 ±0.6

Permutation-Weight 1.2 Original 24.8 ±1.1 65.0 ±0.7 55.0 ±0.0 48.4 ±0.0 51.8 ±0.8 24.0 ±0.3 48.5 ±0.9 23.3 ±0.3 56.3 ±0.3 63.7 ±0.2 52.3 ±0.5 65.5 ±1.1

Permutation-Weight 1.0 Original 10.5 ±0.7 34.6 ±2.7 28.3 ±0.1 22.9 ±0.1 21.8 ±1.2 9.7 ±0.7 21.1 ±1.9 9.4 ±0.1 29.1 ±1.3 38.1 ±2.9 26.5 ±1.5 38.1 ±1.2

Permutation-Weight 1.55 Original 27.5 ±0.9 69.7 ±0.7 59.9 ±0.2 54.9 ±0.1 57.7 ±0.8 27.7 ±0.5 54.1 ±0.7 26.3 ±0.2 60.6 ±0.8 69.4 ±0.8 57.4 ±0.9 70.4 ±0.9

Permutation-Weight 1.8 Original 28.9 ±0.8 71.7 ±0.5 61.6 ±0.1 57.3 ±0.1 60.5 ±0.7 29.0 ±0.3 56.8 ±0.7 28.1 ±0.6 63.1 ±0.9 71.1 ±0.7 60.8 ±0.8 72.2 ±1.0

ZipIt! 1.2 Original 60.0 ±1.2 21.9 ±1.1 52.4 ±1.4 44.8 ±0.7 49.8 ±0.3 21.4 ±0.6 45.7 ±0.8 20.6 ±0.2 54.1 ±2.2 59.6 ±1.3 50.3 ±1.3 63.6 ±0.7

ZipIt! 1.0 Original 35.8 ±1.3 13.2 ±0.6 29.3 ±2.6 26.1 ±0.5 26.1 ±1.2 12.4 ±0.8 24.4 ±1.2 10.9 ±0.7 33.4 ±2.8 37.0 ±0.5 31.0 ±1.8 39.4 ±1.5

ZipIt! 1.55 Original 66.3 ±0.7 26.6 ±1.0 61.2 ±1.0 53.6 ±0.2 58.6 ±0.2 25.9 ±0.3 52.6 ±0.4 25.5 ±0.3 62.9 ±1.1 67.5 ±0.3 58.3 ±1.1 69.9 ±0.2

ZipIt! 1.8 Original 68.4 ±0.1 28.7 ±1.2 63.1 ±0.7 56.6 ±0.4 60.8 ±0.3 27.9 ±0.3 55.1 ±0.7 27.3 ±0.2 65.0 ±0.6 69.8 ±0.2 61.0 ±0.9 72.5 ±0.6

C.1. Using synthetic data for merging
We use synthetic images (e.g. procedurally generated data
which can mimic the broad structure of real images) for merg-
ing. In Fig. 8, we present the results of using such images with
PLeaS-free. This leads to a slight drop over using images
from ImageNet, but the performance is close, and the gap closes
as model size increases.



Table 6. Detailed Results on Different Label Spaces We report the results for ResNet-50 here

Method Budget Data na-ox na-st cu-na cu-st cu-ox st-ox

PLeaS-Act 1.2 Imagenet 69.2 ±0.2 88.6 ±0.2 67.0 ±0.3 68.6 ±0.5 78.5 ±0.6 69.4 ±0.3 71.9 ±0.5 71.3 ±0.7 75.0 ±1.1 89.4 ±0.7 77.9 ±0.4 90.5 ±0.4

PLeaS-Act 1.2 Original 71.6 ±0.2 89.5 ±0.2 70.0 ±0.5 71.0 ±1.0 80.1 ±0.5 72.0 ±0.3 74.0 ±0.5 75.2 ±0.6 76.4 ±0.8 90.2 ±0.5 79.9 ±0.5 91.9 ±0.6

PLeaS-Act 1.0 Imagenet 66.2 ±0.7 80.3 ±1.1 63.6 ±0.8 56.1 ±0.5 76.6 ±0.4 65.4 ±0.6 67.4 ±1.2 62.5 ±1.4 70.9 ±0.6 84.1 ±1.1 73.1 ±0.8 87.4 ±0.3

PLeaS-Act 1.0 Original 70.2 ±0.2 81.1 ±0.2 68.2 ±0.5 61.2 ±0.6 79.7 ±0.4 69.8 ±0.4 71.5 ±0.7 69.3 ±1.2 74.4 ±0.6 87.2 ±0.5 78.2 ±0.4 90.6 ±0.4

PLeaS-Act 1.8 Imagenet 73.4 ±0.2 91.6 ±0.2 71.3 ±0.4 75.7 ±0.2 80.2 ±0.3 72.3 ±0.4 75.9 ±0.4 77.4 ±0.3 77.1 ±1.1 91.8 ±0.5 81.3 ±0.3 92.3 ±0.4

PLeaS-Act 1.8 Original 75.3 ±0.3 91.3 ±0.2 74.0 ±0.6 76.9 ±0.3 81.5 ±0.4 75.0 ±0.3 77.0 ±0.4 79.5 ±0.4 78.8 ±0.5 92.4 ±0.5 82.9 ±0.5 92.8 ±0.4

PLeaS-Act 1.55 Imagenet 71.5 ±0.3 90.7 ±1.1 69.8 ±0.7 73.7 ±1.1 79.5 ±0.5 71.1 ±0.6 74.9 ±0.3 75.4 ±0.4 76.3 ±0.8 91.2 ±0.5 80.3 ±0.5 91.7 ±0.3

PLeaS-Act 1.55 Original 73.2 ±0.2 90.4 ±0.2 72.5 ±0.4 75.5 ±0.7 81.2 ±0.6 73.8 ±0.3 75.9 ±0.4 78.3 ±0.6 78.0 ±0.3 92.1 ±0.5 81.9 ±0.4 92.8 ±0.5

RegMean 1.0 Original 44.1 ±0.2 56.0 ±0.2 51.8 ±14.8 39.0 ±16.4 54.1 ±10.1 42.5 ±13.4 45.5 ±21.2 37.7 ±22.3 55.1 ±20.8 61.7 ±21.4 37.4 ±15.5 56.4 ±16.2

PLeaS-Weight 1.2 Imagenet 71.0 ±0.2 88.1 ±0.2 68.5 ±1.0 70.1 ±0.5 79.2 ±0.6 70.4 ±0.3 73.7 ±1.2 73.4 ±0.7 73.5 ±1.8 89.1 ±0.5 77.5 ±0.6 89.9 ±0.3

PLeaS-Weight 1.2 Original 72.5 ±0.2 88.5 ±0.2 70.9 ±0.5 72.5 ±0.5 80.5 ±0.4 72.5 ±0.3 75.2 ±0.8 76.4 ±0.4 77.2 ±0.9 90.7 ±0.6 79.9 ±0.3 91.5 ±0.9

PLeaS-Weight 1.0 Imagenet 68.6 ±0.5 79.4 ±1.0 66.2 ±0.8 58.9 ±0.6 76.5 ±0.6 65.8 ±1.0 69.1 ±1.3 63.9 ±0.7 71.7 ±1.1 83.7 ±0.7 70.9 ±0.4 84.6 ±0.7

PLeaS-Weight 1.0 Original 70.6 ±0.3 79.2 ±0.4 69.6 ±0.6 62.2 ±0.4 79.4 ±0.6 69.8 ±0.4 72.4 ±0.7 69.1 ±0.5 75.2 ±0.8 87.0 ±0.4 76.1 ±0.4 89.4 ±0.5

PLeaS-Weight 1.8 Imagenet 73.4 ±0.6 91.7 ±0.5 71.2 ±0.7 75.8 ±0.5 80.0 ±0.6 72.2 ±0.2 75.5 ±0.8 77.2 ±0.5 76.1 ±0.7 92.0 ±0.7 80.9 ±0.5 91.9 ±0.6

PLeaS-Weight 1.8 Original 74.8 ±0.2 91.6 ±0.2 73.9 ±0.3 77.5 ±0.6 81.7 ±0.4 74.8 ±0.4 76.5 ±0.5 80.2 ±0.3 78.8 ±0.4 92.3 ±0.5 82.8 ±0.5 92.9 ±0.5

PLeaS-Weight 1.55 Imagenet 72.5 ±0.2 89.9 ±0.3 70.1 ±1.0 74.1 ±0.8 79.4 ±0.6 71.6 ±0.3 74.9 ±0.6 75.8 ±0.7 75.8 ±1.1 91.0 ±0.7 79.8 ±0.7 91.4 ±0.5

PLeaS-Weight 1.55 Original 73.9 ±0.4 90.0 ±0.2 72.8 ±0.5 76.0 ±0.6 81.4 ±0.3 74.0 ±0.3 76.1 ±0.5 78.7 ±0.5 77.9 ±0.7 91.9 ±0.4 81.7 ±0.5 92.3 ±0.7

SimpleAvg 1.0 Original 5.2 ±0.9 21.3 ±1.7 5.0 ±0.7 11.2 ±0.9 8.7 ±0.5 4.1 ±0.4 6.8 ±1.0 9.0 ±0.4 6.9 ±0.8 18.0 ±1.2 8.7 ±0.4 17.9 ±0.6

Permutation-Weight 1.2 Original 67.9 ±0.7 87.5 ±0.7 66.8 ±0.3 69.6 ±0.4 78.2 ±0.5 68.3 ±0.3 72.0 ±0.8 72.3 ±0.5 73.9 ±0.9 88.9 ±0.3 77.2 ±0.7 89.7 ±0.7

Permutation-Weight 1.0 Original 60.6 ±0.4 78.1 ±0.5 57.0 ±0.7 59.1 ±0.5 72.3 ±0.6 59.9 ±0.3 59.8 ±0.8 60.4 ±0.8 66.5 ±0.6 82.1 ±0.8 67.0 ±0.7 82.5 ±0.5

Permutation-Weight 1.8 Original 74.0 ±0.6 91.0 ±0.7 73.0 ±0.4 76.3 ±0.5 81.2 ±0.3 73.8 ±0.2 76.0 ±0.5 78.5 ±0.5 77.7 ±0.6 92.1 ±0.6 82.2 ±0.4 92.5 ±1.0

Permutation-Weight 1.55 Original 71.4 ±0.6 90.4 ±0.5 71.1 ±0.4 73.9 ±0.5 80.1 ±0.5 71.9 ±0.3 75.0 ±0.7 76.2 ±0.4 76.5 ±0.9 91.0 ±0.5 80.4 ±0.3 91.9 ±0.5

Permutation-Act 1.2 Original 67.1 ±0.6 85.7 ±0.6 64.6 ±0.7 65.3 ±0.9 77.4 ±0.4 67.0 ±0.5 70.2 ±0.9 69.4 ±0.8 73.0 ±0.7 87.7 ±0.4 76.7 ±0.5 89.8 ±0.4

Permutation-Act 1.0 Original 61.2 ±0.7 75.9 ±1.1 55.8 ±0.7 54.8 ±0.9 73.9 ±0.4 61.2 ±0.7 60.9 ±0.8 59.4 ±1.3 66.6 ±2.7 80.0 ±2.2 71.6 ±0.5 86.4 ±0.6

Permutation-Act 1.8 Original 74.1 ±0.4 91.2 ±0.5 73.0 ±0.5 76.1 ±0.8 81.0 ±0.3 73.9 ±0.4 76.4 ±0.4 78.6 ±0.5 78.5 ±0.4 92.1 ±0.6 82.4 ±0.4 93.0 ±0.4

Permutation-Act 1.55 Original 71.6 ±0.4 89.6 ±0.5 70.4 ±0.3 72.4 ±0.9 79.7 ±0.4 71.5 ±0.2 74.4 ±0.5 75.5 ±0.5 76.3 ±0.5 90.9 ±0.4 80.9 ±0.5 92.3 ±0.6

ZipIt! 1.2 Original 62.6 ±0.4 85.0 ±0.6 62.0 ±0.9 63.1 ±0.8 74.9 ±0.7 63.6 ±0.7 70.3 ±0.7 66.5 ±0.4 71.1 ±0.9 85.1 ±0.6 72.2 ±0.5 88.2 ±0.3

ZipIt! 1.0 Original 56.7 ±0.6 76.7 ±1.3 55.1 ±0.6 52.3 ±1.1 72.9 ±0.4 57.8 ±0.4 64.6 ±0.6 58.3 ±0.9 67.1 ±0.6 80.8 ±0.3 67.6 ±1.3 85.5 ±0.9

ZipIt! 1.8 Original 70.0 ±0.4 91.0 ±0.4 69.4 ±0.8 75.0 ±0.7 78.9 ±0.6 70.4 ±0.5 75.7 ±0.4 76.0 ±0.5 75.9 ±0.7 91.0 ±0.5 78.7 ±0.6 92.2 ±0.6

ZipIt! 1.55 Original 67.0 ±0.4 90.0 ±0.7 66.4 ±0.3 72.9 ±0.5 77.7 ±0.4 67.3 ±0.8 73.7 ±0.6 73.2 ±0.5 74.0 ±0.5 89.9 ±0.6 76.6 ±0.7 91.4 ±0.5

Table 7. Evaluating merged models with task specific heads: For each pair of datasets, we merge models and compute the final accuracy
on the pair. To compute the final accuracy on a dataset, we average the accuracies across the pairs that it is a part of. These accuracies are
computed by using the task specific head for each pair of models.

Method FLOPs CUB NABird Dogs Pets

ZipIt[28] 1.0 47.8 46.3 35.7 68.6
Git Re-Basin[1] 1.0 35.3 32.7 26.1 50.4
PLeaS 1.0 63.1 63.2 45.3 68.4

ZipIt 1.2 68.7 64.1 60.9 84.8
Permutation 1.2 67.8 64.7 60.9 83.7
PLeaS 1.2 71.6 69.6 70.2 86.9

ZipIt 1.55 72.9 69.2 71.9 89.7
Permutation 1.55 71.8 69.8 71.8 88.2
PLeaS 1.55 74.5 72.4 74.8 89.8

ZipIt 1.8 75.1 72.7 74.0 91.6
Permutation 1.8 74.1 72.6 75.8 89.9
PLeaS 1.8 77.0 74.3 75.5 89.6

Ensemble 2.0 77.0 76.0 80.8 91.6



PLeaS PLeaS-Weight

1.0 1.2 1.4 1.6 1.8 2.0

Size Ratio

35

40

45

50

M
ea

n
A

cc
u

ra
cy

(a) ResNet-18 (Shared)

1.0 1.2 1.4 1.6 1.8

Size Ratio

40

48

56

M
ea

n
A

cc
u
ra

cy

(b) ResNet-50 (Shared)

1.0 1.2 1.4 1.6 1.8 2.0

Size Ratio

20

30

40

50

60

M
ea

n
A

cc
u

ra
cy

(c) ResNet-101 (Shared)

1.0 1.2 1.4 1.6 1.8 2.0

Size Ratio

70

72

74

76

M
ea

n
A

cc
u

ra
cy

(d) ResNet-18 (Different)

1.0 1.2 1.4 1.6 1.8

Size Ratio

75.0

77.5

80.0

M
ea

n
A

cc
u

ra
cy

(e) ResNet-50 (Different)

1.0 1.2 1.4 1.6 1.8 2.0

Size Ratio

60

65

70

75

80

85

M
ea

n
A

cc
u

ra
cy

(f) ResNet-101 (Different)

Figure 7. Comparing PLeaS and PLeaS-Weight : We find that PLeaS is better for larger models while PLeaS-Weight is better
for smaller models.

1.0 1.2 1.4 1.6 1.8

Size Ratio

72

78

M
ea

n
A

cc
u

ra
cy

(a) Different Label Spaces

1.0 1.2 1.4 1.6 1.8

Size Ratio

40

50

M
ea

n
A

cc
u
ra

cy

(b) Same Label Spaces

1.00 1.25 1.50 1.75 2.00

Size Ratio

40

50

60

70

A
cc

u
ra

cy

(c) Imagenet

PLeaS

PLeaS-Act

Actual Data

ImageNet

Synthetic

Figure 8. PLeaS-free with procedurally generated synthetic data. We find that using synthetic data is similar to using ImageNet


