A. Experimental and Implementation details

In this section, we provide more details about our experiments.
We conduct all experiments using PyTorch [22]. We use two Im-
ageNet pretrained base models for fine-tuning. One of these is
the default ResNet50_Weights.IMAGENET1K.V1 from Py-
Torch, while we pre-train the other starting from random initial-
ization following the same pipeline. For fine-tuning the models
on each domain, we use the Adam [17] optimizer, and sweep the
learning rates logarithmically between [le-4,1e-1], testing out 4
values for LR. We validate on the validation subset wherever avail-
able, and on 10% of the training dataset where an explicit val set
is not provided. We use standard image augmentation techniques.
Our MoE model has a light-weight router, which is a 3 layer CNN
trained to predict which model to use for classifying an image.

For finding permutation symmetries, we use the official imple-
mentation of Git Re-Basin at this url. We also rely on the imple-
mentation of Ziplt! and MuDSC for the comparisons in Sec. 5.

For solving the least squares objective for PLeas, we use SGD
with a batch size of 32, a learning rate of 10™3. We sample equally
from both datasets in each batch for experiments involving data.
We run our algorithm for 100 steps, and find that it converges
quickly. For the first step of PLea$S, we similarly compute the
activations on 100 batches of data for matching and finding the
optimal permutations. We also reset batch norm parameters using
100 batches of data from the actual domains for all methods.

For evaluations concerning the same label space setting, we
ensure that the final model produces a distribution over the output
classes. For Ziplt!, we achieve this by ensembling the predictions
across multiple task specific heads. PLeasS on the other hand al-
ready produces models with the same output dimensions as the
original models.

For evaluations on different label spaces, we train a linear probe
on the final layer representations for each merged model. We use
training data from the target domains to train this linear probe, run
Adam with a learning rate of 10™%, with a batch size of 64 for 50
epochs.

As an example evaluation for Domainnet, we have 8 models,
two each on Clipart, Infograph, Painting and Real domains. We
merge these pair-wise. We hence have 12 (6 domain pairs and
two models per pair) merged models. For each merged model, we
compute the accuracy on its component domains. Hence, for each
domain, we have 6 performances (3 domain pairs and two models
per pair). We report the average of these 6 numbers in Tab. 1.

ViT To obtain models for merging with CIFAR-50+50 for
Sec. 5.5.1, we follow the protocol from [32]. In particular, we
use ImageNet pretrained ViT models, and train two such models
on disjoint 50 class subsets of CIFAR-100. These are trained with
CLIP language embeddings for the final layer. This process is re-
peated thrice to get different sets of classes and pairs of models.
After merging, the performance of the merged model is measured
on CIFAR-100 as well as the two subsets of classes that the moders
were trained on. The average of these results is reported in Tab. 3.
For the other datasets, we start off with ViT-B/16 model from the
OpenCLIP project[11] which is pretrained on the LAION-400M
dataset. We fix the text encoder, and fine-tune the image encoder
on various datasets. This fine-tuned model achieves an accuracy of

(72%, 91%, 68%, 24%) on CUB, Pets, Dogs and NABirds datasets
resp. We then merge the model pairwise and report the results.

A.1. Compute time and cost

All our experiments (apart from the pretraining and fine-tuning
runs to get the original models) are run on a single RTX 2080 Ti
GPU. The first step of our method runs in 2 minutes, with the ma-
jority of time devoted to computing the activations. This is com-
mensurate with Ziplt! [28] and Git Re-Basin [1] The second step
takes around 4 minutes, which is similar to RegMean [14]. We be-
lieve that this can be significantly reduced with better dataloading
strategies and more efficient implementation, but that is beyond
the scope of this paper.

A.2. Computing the permutation matrices

We use the algorithms of Git Re-Basin to compute the permuta-
tion matrices P;. For activation matching, we collect the repre-
sentations for both models over a batch of data, and measure the
alignment between two neurons as the squared distance between
their representations (closer — better alignment). Then for each
layer, we find the bipartite matching (i.e. permutation) between
the two models that minimizes the total distance using a standard
algorithm (scipy.optimize.linear_sum_assignment).
For weight matching, the alignment between two neurons is the
squared distance between its input and output vectors. This time,
the permutations at adjacent layers interact, so we perform an al-
ternating minimization, solving for the permutations one layer at a
time until we reach a fixed point.

A.3. Computing the layerwise merging ratio

Note that k; can be different for each layer. Given a configura-
tion K = {Z—Z : ¢ € [L]}, we can model the FLOPs/memory
of the merged model as a quadratic function of k;, which we de-
note as Footprint(K'). For a given relative memory/FLOPs bud-
get B, we want to find K s.t. Footprint(K) < B to maximize
the accuracy of a model merged with the configuration K. We
scale everything so that B = 1 corresponds to the footprint of
a single model. This problem is NP-Hard. We propose a re-
laxation of the problem in order to get an approximate solution.
First, we measure the performance of a set of models merged
with “leave one out” configurations of K, where for each layer
i, we construct K = {k; : k; = d; if j = i, O otherwise}
and K} = {k; : k; = 0if j = 4, d; otherwise}. K7 corre-
sponds to merging only layer ¢, keeping all other layers unmerged,
and K} corresponds to merging every other layer while keeping
¢ unmerged. We also compute the accuracies of the fully merged
model (denoted by K 9) and the ensemble (denoted by K'). Then,
we approximate the accuracy of any given K with a linear function
as
L b
Acc(K) =" di_ ((2 — B)(Acc(K*') — Acc(KY))

i=1
—(1 — B)(Acc(K7Y) — Acc(KO)))
This approximates the effect of k; on model performance at bud-

get B by linearly interpolating between the performance with fully
merging layer ¢ and keeping it separate. We then propose to solve

https://github.com/samuela/git-re-basin

o
&
s

o
s

40 A

[
s

30 4

Mean Accuracy
Mean Accuracy

—8— Our
—k - Linear 201 Linear

Our

-

S
!
N

T T T T T T T T T T
1.0 1.2 1.4 1.6 1.8 2.0 1.0 1.2 1.4 1.6 1.8 2.0
Size Ratio Size Ratio

(a) PLeas (b) Permutations

Figure 5. Comparing our strategy for layer-wise merging with
a linear baseline: We merge models using PLeaS and permu-
tations using the strategy described in Appendix A.3 and a linear
strategy where % is held constant.

a quadratically constrained linear program to maximize Acc(K)
subject to Footprint(K) < B. This program is non-convex how-
ever Gurobi [8] is able to solve the program to global optimality
in a few seconds. To faithfully compute the performance of the
merged model, one would require validation samples from the tar-
get domain. However, we empirically observe that using the ac-
curacy of a configuration K on ImageNet is a good proxy for its
performance on other merging tasks as well, and we hence use it
to compute the layer-wise merging ratio for all our experiments.

A.3.1. Empirical Results

In Figs. 5a and 5b, we compare the QP method with a baseline
strategy which assigns the number of units in each layer to be a
constant ratio. We find that our strategy outperforms this baseline
for both PLeaS and Permutations.

B. Additional Results
B.1. What to optimize for Least Squares?

In Eq. (1), we propose to solve a least squares problem involving
the permuted average activations from each layer of the compo-
nent models. In Tab. 4, we demonstrate that this choice is not
only natural, but also performs better than other alternatives. It
is also interesting to note that the second row in the table corre-
sponds to a permuted version of RegMean[14]. This formulation
performs better than RegMean, indicating that using permutations
is necessary to align features for networks which were differently
initialized. Further, row 3 is similar to the objective proposed by
[10], but we show that PLeas outperforms this objective as well.

B.2. Reducing the accuracy barrier on ImageNet

In this section, we show the performance of PLeaS while
merging ResNet-50 models trained independently on ImageNet.
The accuracy of a single model on this task is 77.5%. As seen
from Fig. 6a, current methods including Ziplt! [28] and Git
Re-Basin [1] struggle on merging models for this task, with the
accuracy of the merged model being significantly lower than
the accuracy of a single model. This has been referred to as the
accuracy barrier on ImageNet in prior work. PLeaS makes some
progress towards lowering this barrier, and improves over Git
Re-Basin by over 9% at 1.0x FLOPs budget. For context, this
accuracy is at par with that obtained by merging WideResNet-50

60 4

2 66 g

g W Single Model g >(X

< 60 - PL:aS =507 7

54 Permutations 40 _/
—8— Ziplt! >é
T T T T T T T T T T T
1.0 1.2 1.4 1.6 1.8 2.0 1.00 1.25 1.50 1.75 2.00
Size Ratio Size Ratio

(a) ImageNet performance (b) Data-free setting

Figure 6. Merging models trained on ImageNet: In Fig. 6a, we
demonstrate how PLeaS—-free can reduce the accuracy barrier
by 8% for merging independently trained ImageNet models. This
is further reduced for larger target model sizes. In Fig. 6b, we show
the effect of using synthetic data for computing the activations on
this task, and find that synthetic data is a viable alternative at larger
model sizes.

models with a width multiplier of 2 using Git Re-Basin. More
promisingly, the flexibility afforded by partially permuting and
merging models gives another avenue to lower the accuracy
barrier, with a model of size 1.4 x having an accuracy barrier of
2% with PLeas. However, further work is needed to reduce this
accuracy barrier. In Fig. 6b, we compare using synthetic data
from [6] for all purposes of activation computation while merging
ImageNet trained models. We find that using PLeaS-free with
synthetic data can come close to using actual data, being within
1% in terms of accuracy at 1.2x model size.

B.3. Detailed Results

Each of our evaluation was run across three random restarts. These
random restarts shuffle the data used for computing activations
and merging the models. They also affect the initialization of the
merged model. Each pair evaluation was also run twice, swapping
the order of pre-trained models used for either of the datasets of
the pair. We hence have 6 runs for each dataset pair. In Tabs. 5
and 6, we provide the results for each dataset pair, reporting the
average and standard deviation across the 6 runs.

B.4. Using task specific heads

In Tab. 7, we report the results computed using the protocol men-
tioned in [28]. We find that PLeas$S outperforms Ziplt! in this
evaluation across model budgets.

B.5. preas with weight and activation matching

In Fig. 7, we compare PLeaS-Weight with PLeas, and find
that PLeas$S is better for larger models, while at small sizes the
two methods give a comparable performance.*

C. Broader Impact

Advances in model merging, especially through methods which
do not require training data, can help further democratize machine
learning by helping practitioners improve the capabilities of open
source models. However, the risk of merged models inheriting
biases of the component models still remains.

Table 4. Comparing different objectives for PLeaS : We compare the performance of different loss functions for the Least Squares
component of PLeas . We find that Eq. (1) gives the best performance on DomainNet and ImageNet when merging models completely.
Here Z; = 0.5(Z% + P,Z%) and Ziy1 = 0.5(Z% 1 + Pis120:11)

Optimization Objective DomainNet ImageNet
|1Z8W — Zia || + | P22 W — Zpa || 223 45.1
1Z2W = (ZE) + IR Z0W — (P 20 0)|? 30,6 53.2
1ZW = Z% 0 |1P + 1ZW = Pia 225 4|1 343 58.1
1ZiW — Ziya 2 40.1 63.1

Table 5. Detailed Results on DomainNet We report the results for ResNet-50 here

Method Budget Data in-re cl-pa cl-in pa-in cl-re pa-re

PLeaS-Act 12 Original 263 x12 69.8 x05 573 x07 53.6 zo1 554 100 26.6 x00 527102 25601 591215 692112 568 :12 703 oo
PLeaS-Act 1.2 Imagenet 26.6 0.0 69.6 +0.s 564 109 539 102 558 +07 263 105 533 402 256 204 59.1 113 693 £o9 56.7 1.0 70.2 +o0
PLeaS-Act 1.0 Original 174 15 55.0 x15 402420 399210 395:15 178 208 359100 173200 428 120 549120 423 :17 56.1 112
PLeaS-Act 1.0 Imagenet 17.0 15 51.9 215 39.7 424 388 205 37.6 1210 166207 37.1 216 165207 422120 539115 409 126 544 200
PLeaS-Act 1.55 Original 29.0 +o.s 724 103 60.6 r06 573 x00 59.7 +o6 28.7 x03 564 101 27.9 r04 625105 723 100 60.6 10 72.7 +o7
PLeaS-Act 1.55 Imagenet 29.0 zos 72.5 0.6 603 t07 57.8 205 59.9 06 29.0 02 56.9 x02 281105 624 100 72.6 x07 60.1 100 729 zos
PLeaS-Act 1.8 Original ~ 29.5 205 737205 62305 59.0:02 613404 29.8:02 583 +02 29.1200 637106 738106 62010 73907
PLeaS-Act 1.8 Imagenet 30.1 o5 73.6 z06 62.1 02 599 x0a 61.6 x0s 299 :01 584 :02 288101 637 x07 740 x0r 61.7 105 739 o
Permutation-Act 1.2 Original 223 z00 629 +12 50.7 +12 459 202 488 +00 22.1 x00 454 104 21904 514110 616217 49.1:15 639210
Permutation-Act 1.0 Original 7.6 +0.2 245 410 154 417 155+ 15.6 05 7.6 x05 154 100 6.8 0.0 17.1 +14 24.6 +1.7 18.7 +06 26.6 +2.0
Permutation-Act 1.55 Original ~ 27.1 o7 69.7 x07 582 +10 53.6 x0a 56.6 t06 26.8 to1 533 104 259 :0s 593 111 688 108 572x0s 703 110
Permutation-Act 1.8 Original 289 +0s 71.8 x06 60.7 x06 56.8 203 59.7 +06 28.6 x03 56.5 404 27.7 205 624 £10 714 r0s 602 208 724 4000
PLeaS-Weighl 1.2 Original 273 10 70.5 05 588 02 54.6:0s 56.6 05 272 x0s 535101 26.1 zos 609 102 688 to1 583 :00 70.5 tos
PLeaS-Weight 1.2 Imagenet 274 t00 70.2 0.6 57.5 100 543 03 569 r0a 273 05 53.7 104 26006 59.6x10 699111 57.6 105 70.8 zoo
PLeaS-Weight 1.0 Original ~ 19.2 420 568 14 456102 399102 41.0+15 19.0+15 39.6 115 17.1 200 457 155 57321 432425 581414
PLeaS-Weight 1.0 Imagenet 17.8 x10 55.0 x12 41.0 220 408 10 402115 179212 387414 167 207 437 157 564 217 40.7 227 56.1 +o7
PLeaS-Weight 1.55 Original ~ 28.5 00 729 204 613100 582:00 60.0+04 29.1 202 56.7x01 281202 632x06 721207 604105 73.0+00
PLeaS-WCighl 1.55 Imagenet 29.1 +11 727 205 604 £10 574 106 604102 294 104 569 105 281 104 629107 722 :0s 60.6 x00 729 1o
PLeaS-Weight 1.8 Original ~ 29.7 211 738 0.4 627 202 594 105 612102 30.1 202 582104 29.1 1035 641 205 732:05 623200 73.8 07
PLeaS-Weight 1.8 Imagenet 29.7 +10 74.0+05 62.0+0s 589 :05 61.5+01 303201 587 x01 291101 63607 73.7:05 61.7+06 T44z0s
Permutation-Weight 1.2 Original ~ 24.8 211 65.0 z07 55.0 00 484 x00 51.8 :0s 24.0:0s 485100 233105 563 x0s 63.7x02 523 :05 655+
Permutation-Weight 1.0 Original 105 o7 34.6 +27 283 100 229200 218 412 97 207 211110 9.4 son 29.1 £15 381 220 265115 381 12
Permutalion»Weight 1.55 Original 27.5 00 69.7 z0r 599 x02 549 01 577 +0s 277 05 541107 263102 60.6+0s 694 :t0s 574 100 704 too
Permutation-Weight 1.8 Original 289 05 71.7 205 61.6 01 573 201 60.5 207 29.0 205 56.8 xor 28.1:06 63.1 x00 71107 60.8 205 72.2 110
Ziplt! 1.2 Original ~ 60.0 x12 219411 524 +14 448107 498 405 214206 457 05 206202 541122 59615 50315 63.6 407
Ziplt! 1.0 Original ~ 35.8 x15 13.2x06 293 426 26.1 205 261 +12 124208 244112 109 207 334125 37.0x05 31.0:1s 394115
Ziplt! 1.55 Original ~ 66.3 z07 26.6+10 612+10 53.6:02 58602 259:05 526104 255205 629111 675105 58311 69.9 402
ZipIt! 1.8 Original 68.4 +01 28712 63.1 07 56.6x0a 60.8 05 27.9:0s 551 x07 273102 650106 698 02 61.0 00 72.5 tos

C.1. Using synthetic data for merging

We use synthetic images (e.g. procedurally generated data
which can mimic the broad structure of real images) for merg-
ing. In Fig. 8, we present the results of using such images with
PLeaS-free. This leads to a slight drop over using images
from ImageNet, but the performance is close, and the gap closes
as model size increases.

Table 6. Detailed Results on Different Label Spaces We report the results for ResNet-50 here

Method Budget Data na-ox na-st cu-na cu-st cu-0x st-0X
PLeaS-Act 1.2 Imagenet 69.2 0> 88.6+02 67.0+03 686105 785106 694 :03 T1.9x0s T13 107 750:10 894 :07 779104 905 104
PLeaS-Act 1.2 Original ~ 71.6 z0> 89.5:02 70.0 405 71.0:10 80.1 105 72005 74.0z05 752106 764105 902105 799105 919 o6
PLeaS-Act 1.0 Imagenet 66.2 tor 803 11 63.6+0s 56.1 x05 76.6 04 654 06 674112 625114 709 106 841 i1a 7301 i0s 874 i0s
PLeaS-Act 1.0 Original 702 02 81.1 +02 682 x05 61.2:06 797 204 69.8 04 71507 693112 744106 872205 782104 90.6 zo4
PLeaS-Act 1.8 Imagenet 73.4 02 91.6 02 713204 757 202 802z0s 72304 759 x04 774105 771 x1a 91.8 105 813 :0s 923 104
PLeaS-Act 1.8 Original 753 05 91.3 02 740206 769 :05 815104 750203 77.0x0a 79.5z04 788105 924205 829 :05 928 :04
PLeaS-Act 1.55 Imagenet 715205 90.7 +11 69.8 x0r 73711 795205 Tllzos 749 z0s 754104 763 x0s 912105 80305 917 xos
PLeaS-Act 1.55 Original 732 20> 904 x0> 725404 755107 812206 738203 759 x0s 783106 780x0s 921 x5 819 x0a 928 105
RegMean 1.0 Original ~ 44.1 20> 56.0 z0> 51.8 +1as 39.0 x164 541 £100 425 2130 4552212 37.7 2225 551 2205 61.7 2214 374 2155 564 2162
PLeaS-Weight 1.2 Imagenet 71.0 zo> 88.1 o2 685410 701205 792206 704205 737112 734107 735:1s 891 x5 775106 899 o
PLeaS-Weight 1.2 Original ~ 72.5 0> 885402 709 405 725105 805104 725105 752105 764 10s 772400 90.7 xo6 799 0 915 1o
PLeaS-Weight 1.0 Imagenet 68.6 to5 794 110 662105 589 106 765106 658110 69.01 113 639107 717 iia 837 :0r 709 104 84.6 ror
PLeaS-Weight 1.0 Original ~ 70.6 z05 79.2 t04 69.6 +0.6 622 104 794 206 69.8 x0a 724 107 69.1 z05 752 :0s 87.0:04 761 204 894 o5
PLeaS-Weight 1.8 Imagenet 73.4 s06 91.7 x05 712407 758 05 80.0 206 722202 755105 772105 761 xor 920107 809 105 919 o6
PLeaS-Weight 1.8 Original ~ 74.8 z02 91.6 02 739403 775106 8171204 748104 765105 802105 788 :04 923105 828105 929 105
PLeaS-Weight 1.55 Imagenet 72.5 02 89.9:0s 70.1+10 741105 794106 T1.6:0s 749 +0s 758 z07 75811 91.0:0r 798 :07 914 105
PLeaS-Weight 1.55 Original 739 04 90.0 t0.2 728 +05 76.0 t0.6 814 205 74.0 105 761 o5 787 05 779 07 919204 817 205 923 sor
SimpleAvg 1.0 Original 5.2 400 21.3 417 5.0 +or 11.2 200 8.7 o 4.1 +o.a 6.8 +1.0 9.0 +o0.a 6.9 +o.s 18.0 12 8.7 +ou 17.9 o
Permutation-Weight 1.2 Original ~ 67.9 07 87.5 407 668 05 69.6 x0.4 782 x05 683103 720x0s 723105 739100 889 x0s 772107 89.7 zor
Permutation-Weight 1.0 Original ~ 60.6 z0.4 78.1 +0.5 57.0 xor 59.1 x05 723 206 59.9 x05 598 xos 604 z0s 66.5 06 821205 67.0 07 82505
Permutation-Weight 1.8 Original ~ 74.0 zo6 91.0 207 73.0 204 763 x05 812x05 738102 76.0x05 785:05 77.7 206 9201206 822104 925110
Permutation-Weight 1.55 Original 714 t06 904 x05 71.1 204 739 105 80.1 205 71.9 203 75.0 07 762104 765100 91.0 205 804 03 91.9 z05
Permutation-Act 1.2 Original ~ 67.1 z06 85.7 06 64.6 +0.r 653 200 774 204 67.0x05 702200 694 205 73.0x0r 877204 767 05 89.8 xo0.
Permutation-Act 1.0 Original ~ 61.2 x0r 759 x11 558 +0r 548 200 739 204 612207 609205 594115 66.6 127 80.0:22 71605 864 ro6
Permutation-Act 1.8 Original ~ 74.1 z0a 912 :05 73.0 405 76.1 x5 81.0 20 739204 764 105 786 +05 785504 921106 824104 93.0 104
Permutation-Act 1.55 Original ~ 71.6 z0a 89.6 o5 704 03 724 100 79.7 20a 715202 744105 755105 763 05 909 04 809 205 92.3 106
Ziplt! 1.2 Original ~ 62.6 x4 85.0 06 62.0 +0.0 63.1 +0s 749 207 63.6 zor 703 107 66.5 04 Tl.1 oo 851 :06 722105 882 10
Ziplt! 1.0 Original ~ 56.7 z06 76.7 15 55.1 +0.6 523 411 729 204 57.8 204 64.6 206 583 100 67.1 206 80.8 103 67.6:13 855 o0
Ziplt! 1.8 Original ~ 70.0 z04 91.0 04 694 405 750 x07 789 206 704 205 757 204 76.0x05 759 107 91.0:05 787 206 92.2 06
Ziplt! 1.55 Original ~ 67.0 z04 90.0 0.7 66.4 +05 729 s05 777 204 673 205 737 206 732x05 T40:05 899106 76607 914 105

Table 7. Evaluating merged models with task specific heads: For each pair of datasets, we merge models and compute the final accuracy
on the pair. To compute the final accuracy on a dataset, we average the accuracies across the pairs that it is a part of. These accuracies are
computed by using the task specific head for each pair of models.

Method FLOPs CUB NABird Dogs Pets
ZipIt[28] 1.0 47.8 46.3 357 68.6
Git Re-Basin[1] 1.0 353 327 26.1 50.4
PLea$sS 1.0 63.1 632 453 684
Ziplt 1.2 68.7 64.1 60.9 8438
Permutation 1.2 67.8 64.7 60.9 83.7
PLea$sS 1.2 71.6 69.6 70.2 86.9
Ziplt 1.55 729 69.2 719 89.7
Permutation 1.55 71.8 69.8 71.8 882
PLeaS$S 1.55 745 724 74.8 89.8
Ziplt 1.8 75.1 727 740 91.6
Permutation 1.8 74.1 72.6 75.8 89.9
PLea$sS 1.8 77.0 743 755 89.6

Ensemble 20 77.0 76.0 80.8 91.6

—— PLeaS —— PLeaS-Weight

56 1 60
50 1
>
g 451 g 2
< 248 40 1
= 40 A g =
it 5] <
= = = 30 1
35 1 40 4
20 1
T T T T T T T T T T T T
1.0 1.2 1.4 1.6 1.8 2.0 1.0 1.2 1.4 1.6 1.8 1.0 1.2 1.4 1.6 1.8 2.0
Size Ratio Size Ratio Size Ratio
(a) ResNet-18 (Shared) (b) ResNet-50 (Shared) (c) ResNet-101 (Shared)
85 1
76 4
z & 80.0 1 ». 807
2 71 E £
= 72 = 77.54 = 704
E] < <
S 2 =
“ 70 = -6
75.0 1 60 4
T T T T T T T T T T T T T T T T T
10 12 14 16 1.8 20 1.0 1.2 1.4 1.6 1.8 1.0 1.2 14 16 18 20
Size Ratio Size Ratio Size Ratio
(d) ResNet-18 (Different) (e) ResNet-50 (Different) (f) ResNet-101 (Different)

Figure 7. Comparing PLeaS and PLeaS-Weight : We find that PLeas$ is better for larger models while PLeaS-Weight is better
for smaller models.

- 70 1
g € 50 1 &
g g £ 901 4
= S 2 N —— PLeaS
o = S 50 A = PLeaS-Act
§ 724 / § < I —8— Actual Data
= YA =40 A 1044 -k ImageNet
)(‘/'){ =%+ Synthetic
X . : : . .
1.0 1.2 14 1.6 18 0 s W 6 s 100 125 150 175 200
Size Ratio Size Ratio Size Ratio
(a) Different Label Spaces (b) Same Label Spaces (c) Imagenet

Figure 8. PLeaS—-free with procedurally generated synthetic data. We find that using synthetic data is similar to using ImageNet

