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6. Hardware Setup
The sensors and hardware included in the data collection
platform are as follows:
• 5 SF3325 automotive GMSL cameras (ONSEMI CMOS

image sensor AR0231), SEKONIX ultra high-resolution
lens with 60 horizontal and 38 vertical FOV, images cap-
tured at a resolution of 1928 × 1208 (2.3M pixel) at 30
Hz.

• 3 SF3324 automotive GMSL cameras, (ONSEMI CMOS
image sensor AR0231), SEKONIX ultra high-resolution
lens with 120 horizontal and 73 vertical FOV, images cap-
tured at a resolution of 1928 × 1208 (2.3M pixel) at 30
Hz.

• 1 OS1-128 Ouster Lidar, with a vertical resolution of 128
beams within a 45 FOV and range of 200 meters, point
cloud captured at 10 Hz.

• 1 NVIDIA DRIVE Pegasus, with two NVIDIA Xavier™
SoCs.
The placement and reference frames of the sensors on

the vehicle are shown in Figure 8. The arrangement of the
cameras and LiDAR sensors allows the vehicle to achieve a
full 360◦ field of view (FOV) of its surroundings.

Figure 8. Sensor setup of the data collection vehicle. The field of
view for the 60-degree and 120-degree cameras is represented in
purple and blue, respectively.

6.1. Extrinsic Calibration
The camera positions on the vehicle were determined
through a LiDAR-camera calibration process in which we
computed the homogeneous transformation matrices from

the LiDAR to each camera. Without ground truth for these
transformations, their accuracy is typically validated visu-
ally by examining the correspondence between objects in
the camera images and the LiDAR point cloud. In this case,
Figure 9 shows the alignment between the LiDAR point
cloud and an image captured by the front camera, illustrat-
ing the accuracy of the calibration process.

Figure 9. Lidar-Camera projection. The point cloud is colored by
distance to the camera.

6.2. Software
A Robotic Operation System (ROS) framework manages
the LiDAR point-cloud acquisition pipeline. Camera data is
captured using the NVIDIA DRIVE Pegasus video capture
and image compression pipeline. All images are encoded
and stored as H.264 video, with associated metadata stored
in a custom ROS message.

7. Data Collection
For staged data collection, we used a diverse collection of
objects, including buckets, indoor garbage bins, brooms,
chairs, pots, stuffed animals, balloons, balls, backpacks,
bags, pillows, shoes, umbrellas, hats, yoga mats, helmets,
swimming noodles, tissue boxes, ladders, car seats, sleep-
ing bags, and bottles. The point cloud captures the three-
dimensional structures of objects at varying distances. Fig-

(a) Chair. (b) Garbage bin. (c) Ladder.

Figure 10. Point cloud of some objects on the road colored by
height.



ure 10 shows the point clouds of a chair, an indoor garbage
can and a ladder, each color-coded according to height to
highlight their spatial dimensions.

7.1. Postprocessing
After data collection, the raw information is post-processed
to estimate vehicle poses and to anonymize the image
data. Point cloud registration was performed using KISS
ICP [57], a lidar odometry pipeline. It includes point
cloud motion compensation, subsampling, adaptive thresh-
olding to determine correspondences, and lidar pose esti-
mation. The calculated LiDAR pose was then exported in
SemanticKITTI format as required for the labeling tool [1].

Ethical considerations for this dataset include
anonymization of camera images to protect individual
privacy. Identifiable information, such as faces and li-
cense plates, is processed using DashcamCleaner [52]
and DeepPrivacy2 [29]. DashcamCleaner uses a license
plate detector to locate and blur license plates, while
DeepPrivacy2 identifies facial features and generates new
unidentifiable photorealistic faces to replace the original
ones. Figure 11 illustrates the anonymization process using
a publicly available image from the internet.

(a) Original image (source: https://tinyurl.com/
3s66za36)

.

(b) Anonymized image.

Figure 11. Anonymization of camera images.

7.2. Ground Plane Segmentation
One of the popular approaches for anomaly detection in
the point-cloud domain involves applying ground-plane re-
moval algorithms to reduce the search space. We used

Patchwork++ [35] to remove the ground plane from the
point-cloud data. While ground plane removal is effective at
short ranges, its performance is reduced at longer distances
and on roads with varying geometries. Under these condi-
tions, Patchwork++ often results in many false positives or
incorrectly segments objects as part of the ground plane. In
addition, manually fine-tuning the parameters of such meth-
ods to adapt to different topographies is a very challenging
task.

Figure 12. Patchwork++ performance in a wide environment.

Figure 13. Patchwork++ performance in a narrow urban street.

8. Low Performance of the 3D Models
8.1. Relation of Performance to Distance and Size
We calculated the AP metric for different distance thresh-
olds, as shown in Table 4. In the lower ranges, from 0 to
10, and from 10 to 20 range models perform better, then
at other distances. Note, that methods evaluate on points
within this range, treating points outside of the range as un-
labeled, i.e. evaluation on 10–20 meters means that points
at least as far as 10 meters are considered for evaluation.
Expectedly, we see a decrease in performance as the dis-
tance to the anomaly increases. In addition, we looked at

https://tinyurl.com/3s66za36
https://tinyurl.com/3s66za36


Size Ens AP
Large 14.35
Medium 4.30
Small 2.50

(a) Mean AP for the Category.
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Figure 14. Deep Ensembles AP for differently sized objects over
validation and test datasets.

Method 0–10m 10–20m 20–30m 30–40m 40–50m
Deep Ensemble [34] 7.63 8.49 3.42 0.38 0.03
MC Dropout [50] 0.16 0.53 0.06 0.04 0.01
Max Logit [24] 2.25 1.53 1.20 0.27 0.01
Void Classifier [4] 2.95 1.78 1.98 0.28 0.03
RbA [41] 1.85 1.28 0.73 0.15 0.01

Table 4. Anomaly segmentation performance per distance mea-
sured by AP.

Method Aux Data AUROC↑ FPR@95 ↓ AP↑
DenseHybrid [21] ✗ 87.09 76.36 26.63
RbA [41] ✗ 89.58 75.21 37.12
UNO [16] ✓ 89.52 62.29 37.10
Mask2Anomaly [47] ✓ 90.54 78.09 36.38

Table 5. Evaluation of 2D methods on our the validation set using
only a front-view camera.

the relation between the size of the object and anomaly seg-
mentation performance in a sequence. We observe a drop in
performance for small objects in Figure 14b.

8.2. Number of Foreground Points
The class imbalance remains a challenge for Point-Level
evaluation, as it is more pronounced in terms of the occu-
pied space and number of points. If we compare to a Seg-
mentMeIfYouCan setup (see Table 1 from [10]), our dataset
has 0.03% of anomaly and 36.9% inlier points; that is twice
as few anomaly points. In addition, we evaluate objects with
at least 5 anomaly points (instead of 50 or more [10]). How-
ever, for some sequences, we observe performance similar
to 2D methods, especially for large objects. On Figure 14a
we show performance of the Ensemble method on a com-
bined validation and test dataset for better illustration. Here,
we split our data into sequences base on the effective size
of an object. We divide the maximum number of points
for an instance by the maximum height of an instance in
a sequence, and separate sequences into three categories:
sequence with an object that has 0 − 33 points per meter,
33 − 99 and 999+ points per meter. We observe that deep
ensembles perform better on sequences with larger objects.

9. Results on Validation Datasets
We show results for the SemanticKITTI [1] validation set in
Table 6 and our dataset in Table 7. For the OOD validation

set, we evaluate in three sequences and provide scores in
Table 8.

9.1. Evaluation of 2D Methods
We focus on automotive applications, where it is common
practice to evaluate multimodal methods on 3D LiDAR an-
notations, since 3D distances to objects are important for
driving. As a control experiment, we applied 2D-only meth-
ods to the frontal camera and evaluated only within the cor-
responding frustum of LiDAR points (see Table 5). Meth-
ods that use only RGB images have a higher false-positive
rate in this setup compared to 2D benchmarks. We attribute
this to a domain gap of the Cityscapes and SemanticKitti,
partially because of label conventions, i.e., parking lots
or backs of traffic signs are “unlabeled” in Cityscapes but
are “inlier” in SemanticKitti and these regions contribute
to higher FPR. As well as to the LiDAR-Camera points
misalignment, i.e. at image boundaries. However, in our
dataset, anomalies appear in images from cameras with
other perspectives, and evaluating a full 360-degree view
would be more difficult.

10. Annotation and Qualitative Examples
We visualize the annotation interface with an example of a
correctly annotated scene in the figure 15. Anomaly points
are cyan, unlabeled regions are black, and inliers are pur-
ple. We provide further visualizations of the dataset and the
predictions shown in the Figure 16.

11. SemanticKITTI Other-object Examples
Several examples of the other-object class in the Se-
manticKITTI dataset can be seen in Figure 17, Figure 18,
and Figure 19. The other-object class consists of many mis-
cellaneous items, including trash bins, advertisement posts,
and small pots. We superimposed the class label on the
front-facing camera, with light blue denoting the other ob-
ject class.

12. Note on Training
Initially, jointly training with both SemanticKITTI and
Panoptic-CUDAL led to diverging losses for Mask4Former-
3D. This also occurred during training runs solely on
Panoptic-CUDAL. Lowering the preset learning rate from
0.0004 to 0.0002 was enough to mitigate the loss divergence
in both cases.



Table 6. Class-wise PQ scores on SemanticKITTI validation set.
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Mask-PLS∗ [40] – 94.12 83.19 44.55 61.44 59.36 77.08 91.64 0.0 93.94 78.67 37.19 0.0 86.99 84.85 53.28 57.06 21.35 59.85 53.62 59.9
Mask-PLS [40] – 91.90 77.93 16.96 51.28 45.66 65.85 83.36 0.0 93.86 77.69 31.39 0.0 86.97 87.61 50.40 59.10 22.79 60.77 53.34 55.62
Mask4Former-3D∗ [60] – 93.81 70.95 62.92 68.97 56.79 81.98 87.35 24.06 93.94 78.05 27.33 0.0 88.39 88.65 50.93 60.82 25.38 57.89 58.59 61.94
Mask4Former-3D – 93.53 59.39 62.55 64.82 54.36 79.61 89.16 25.01 93.24 77.90 28.79 0.0 87.27 87.28 51.08 59.92 24.85 56.76 58.14 60.72
Mask4Former-3D-void 6.08 74.36 47.00 32.19 43.34 33.30 42.90 68.75 00.33 93.35 77.07 19.01 0.0 82.77 81.34 47.56 56.94 19.98 54.48 36.82 47.97

Table 7. Class-wise PQ scores on STU-inlier Validation Set.
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Mask-PLS∗ [40] – 78.88 1.89 0.0 70.92 56.34 26.18 0.0 54.96 74.69 1.36 55.20 48.00 41.51 44.51 39.60
Mask-PLS – 78.66 22.16 0.0 75.33 81.77 41.46 0.0 78.79 89.16 49.92 25.53 46.53 56.79 66.94 50.93
Mask4Former-3D∗ [60] – 78.45 11.29 10.59 69.44 59.07 41.99 0.27 84.70 88.46 0.0 0.0 36.51 25.92 57.50 42.80
Mask4Former-3D – 80.99 37.28 47.65 80.99 71.46 17.74 0.0 84.08 89.73 29.34 30.79 47.6 59.62 60.96 52.73
Mask4Former-3D-void 0.07 23.88 20.78 1.01 43.30 38.24 20.03 11.11 48.45 43.09 20.20 17.31 30.80 27.26 33.16 26.96

Table 8. Anomaly Segmentation Performance on the Validation Set with Anomalies

Method Point-Level OOD Object-Level OOD
AUROC ↑ FPR@95 ↓ AP ↑ RecallQ SQ RQ UQ PQ

Deep Ensemble [34] 90.93 37.34 6.94 17.70 79.96 9.10 14.15 7.27
MC Dropout [50] 65.76 79.82 0.17 3.54 74.36 3.48 2.63 2.59
Max Logit [24] 87.27 68.76 2.02 26.64 79.26 2.06 21.12 1.63
Void Classifier [4] 89.77 79.50 2.62 17.35 81.27 8.98 14.10 7.30
RbA [41] 73.00 100.0 1.64 21.84 78.58 2.75 17.16 2.16



Figure 15. Data Annotation Example: Each color represents a specific label — Purple for inlier, Green for anomaly, and Black for void.
Boxes represent instance boundaries.



(a) Anomaly Label. (b) Instance Label. (c) Inlier Prediction. (d) RBA.

Figure 16. Visualization of the proposed dataset with anomaly labels, instance labels, inlier class predictions, and anomaly scores of the
selected anomaly methods.



Figure 17. Example of the other-object class: a billboard, a smaller billboard, a phone booth, and a small table, all of which belong to the
other-object class.

Figure 18. Example of the other-object class: a car dealership sign and two garbage cans, all belonging to the other-object class.

Figure 19. Example of the other-object class: a potted plant and a power adapter, all of which belong to the other-object class.
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