Forensic Self-Descriptions Are All You Need for Zero-Shot Detection, Open-Set
Source Attribution, and Clustering of AI-generated Images
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A. Data Composition

In this section, we discuss the composition of the datasets
used in our paper.

Tab. 8 summarizes the real image datasets used in our
experiments, highlighting their diverse range of resolutions
and topics. The datasets include COCO2017 [41], IN-
1k [24], IN-22k [61], and MIDB [8, 9], covering resolutions
from as low as 32 x 25 to as high as 5248 x 6016. This diver-
sity ensures that our method is trained and evaluated on real
images that represent a broad variety of scenes, resolutions,
and domains, minimizing potential biases and enhancing its
generalizability. Notably, our method is trained exclusively
on the training samples of real images and does not see the
synthetic images during training, supporting its zero-shot
detection capability.

Tab. 9 provides an overview of the synthetic image
datasets used in our study, which are drawn from OS-
SIA [28], DMID [19], SB [6], and our own generations.
These datasets include synthetic images generated by a
wide range of models, such as BigGAN, DALLE variants,
StyleGAN, and Stable Diffusion versions, covering diverse
resolutions from 256 x 256 to 1792 x 1792. Notably, DMID
and SB datasets are primarily evaluation-only, with no train-
ing samples, except for Latent Diffusion and Guided Dif-
fusion from DMID. This comprehensive collection ensures
robust evaluation across diverse generative models, demon-
strating the adaptability and generalization of our method to
various synthetic sources.

B. Competing Methods Categories and Taxon-
omy

Tab. 7 presents a comprehensive comparison of various
methods for synthetic image detection and source attribu-
tion, categorizing them based on their capabilities, training
data requirements, training paradigms, and underlying ap-
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proaches. The capabilities considered are zero-shot detec-
tion, open-set recognition, and clustering—Xkey features that
determine a method’s ability to generalize to unseen data
and accurately attribute sources.

Most existing methods rely on supervised learning
paradigms and require both real and synthetic images for
training. For instance, CnnDet [70] and PatchFor [14] train
classifiers on known synthetic sources, focusing on low-
level artifacts or standard classification techniques. While
these methods can sometimes generalize to similar gener-
ative models, they lack zero-shot capabilities and struggle
with open-set scenarios where new types of synthetic im-
ages emerge. They also do not support clustering, limiting
their utility in organizing images based on source similari-
ties.

Some methods, like LGrad [66], UFD [54], DE-
FAKE [63], Aeroblade [59], ZED [22], and NPR [67],
offer zero-shot detection capabilities. LGrad trains clas-
sifiers on gradients of a common CNN, while DE-FAKE
and UFD leverage embeddings from models like CLIP and
BLIP. Aeroblade is unique in being training-free, using re-
construction errors from pretrained diffusion models. ZED
employs a self-supervised approach, using a lossless neural
compressor trained on real images. However, despite their
zero-shot capabilities, these methods generally do not sup-
port open-set recognition or clustering. They are limited to
distinguishing real from synthetic images and often cannot
attribute images to specific unknown sources or organize
them based on source characteristics.

Open-set recognition and clustering are addressed by
methods like RepMix [13], POSE [71], Fang et al. [28], and
Abady et al. [1]. These methods utilize supervised or open-
set training paradigms and require both real and synthetic
images for training. RepMix introduces representational
mixing to handle unseen classes, while POSE progressively
enlarges the embedding space using learned augmentations.



Table 7. Categorization of different capabilities, training data requirement, training paradigm, and high-level idea/approach of competing
methods and ours. % means no ability or achieving poor performance, @ means having moderate ability or performance, and ¥ means
having good to strong ability or performance.

Capabilities ini ini
Method - Tralm.ng Data Tram¥ng Idea / Approach
Zero-Shot | Open-Set | Clustering Requirement Paradigm
) . . Standard Classifier trained on 1 GAN can generalize to
CnnDet [70] o % X Real + Synthetic Supervised some other GAN's
PatchFor [14] v x x Vil - Sigifratts e Ensemb.le of Patch-based classifiers trained on low-
level artifacts
LGrad [66] v x x Real + Synthetic Supervised Classmq trained on 2D gradients of a common CNN
as forensic features
-, . . . Classifier trained based on CLIP’s embedding dis-
UFD [54] v x 4 Real + Synthetic Supervised tances to real and fake reference embeddings
DE-FAKE [63] v x x Real + Synthetic Supervised Clasuher tram;d based on CLIP’s and BLIP’s text and
visual embeddings
The reconstruction errors using pretrained Diffusion
Aeroblade [59] v % % No Data Required Training-Free models of synthetic images are lower than that of real
images
The coding costs using a lossless neural compressor
ZED [22] v X X Real Self-Supervised | (trained on real images) of real images are lower than
that of synthetic images
Classifier trained on neighboring pixel relationships,
NPR [67] v % % Real + Synthetic Supervised which is extracted by subtracting the image by its
down-up-sampled version
DCTCNN [29] x % % Real + Synthetic Supervised Classifier trained on DCT of real and synthetic images
RepMix [13] x v X Real + Synthetic Supervised Classifier trained with representational mixing
POSE [71] x v v Real + Synthetic Open-Set Prpgre551vely enlarge thg embedding space of classes
using learned augmentations
. Learned transferable embeddings using ProxyNCA ap-
2 -
Fang et al. [28] x v v Real + Synthetic Open-Set plied on a CNN
Abady et al. [1] x v v Real + Synthetic Open-Set Learneq embedding 'space of cla§ses using siamese net-
work with learned distance metric
FSM [48] x 1) x Real St Lgarnefi embedding space of dlfferen't camera m(?dels
using siamese network with learned distance metric
ExifNet [75] " 1) x Real Supervised L.earned embeddmg space of images Exif ‘data using
siamese network with learned distance metric
CLIP [57] " v 1) Real St St Learned.transferable visual embeddings grounded by
text captions
ResNet-50 [24] x v 0 Real Supervised Learned transferab@ visual er‘nbeddmgs by training on
large corpus of real images with many classes
The self-descriptions of the forensic microstructures in
real images are naturally different than those of syn-
Ours v v v Real Self-Supervised | thetic images. Self-descriptions of images created by
different generators are also distinct, attributable and
cluster-able.

Table 8. Composition of datasets of real images used in this paper.
We note that our method only sees the training samples of real
images during training.

Real Images Datasets
Source Image Sizes Train Samples | Test Samples
COCO2017 [41] | 51-640 x 59-640 100000 1000
IN-1k [24] 32-5980 x 25-4768 100000 1000
IN-22k [61] 56-1857 x 56-2091 100000 1000
MIDB [8, 9] 480-5248 x 640-6016 22329 1000

Fang et al. and Abady et al. focus on learning transfer-
able embeddings through techniques like ProxyNCA and
siamese networks with learned distance metrics. Although
these methods can perform open-set recognition and clus-
tering, they lack zero-shot detection capabilities, meaning
they require prior exposure to synthetic sources to function
effectively.

Our proposed method distinguishes itself by offering all
three capabilities: zero-shot detection, open-set source at-
tribution, and clustering, while requiring only real images
for training. By modeling forensic microstructures through
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Figure 6. Zero-shot detection performance of our method evaluated on real datasets that are not seen during training. Performance on seen

dataset is also provided for comparison.

Table 9. Composition of datasets of synthetic images used in
this paper. These datasets are pooled together from OSSIA [28],
DMID [19], SB [6], and our own generations. We note that in
the zero-shot experiment, our method does not see any synthetic
images during training.

Synthetic Image Datasets
Generator Sources Image Sizes Train Samples | Test Samples
BigGAN DMID 256-512 x 256-512 0 1000
DALLE 2 DMID, SB | 1024-1024 x 1024-1024 0 2000
DALLE 3 Ours, SB 1024-1792 x 1024-1792 4000 2000
DALLEM DMID 256-256 x 256-256 0 1000
EG3D DMID 512-512 x 512-512 0 1000
FireFly SB 1536-2304 x 1792-2688 0 1000
GigaGAN DMID 256-1024 x 256-1024 0 1000
GLIDE DMID, SB | 256-256 x 256-256 0 2000
Guided Dif DMID 256-256 x 256-256 1000 1000
Latent Dif DMID 256-256 x 256-256 2000 1000
MI v5 SB 896-1360 x 896-1360 0 1000
MJ v6 Ours 768-1344 x 896-1536 25000 1000
ProGAN OSSIA 256-256 x 256-256 25000 1000
Proj.GAN OSSIA 256-256 x 256-256 25000 1000
SD1.3 SB 512-512x 512-512 0 1000
SD1.4 OSSIA, SB | 512-512 x 512-512 25000 2000
SD1.5 Ours 768-768 x 768-768 10000 1000
SD2.1 SB 576-1408 x 704-1728 0 1000
SD3.0 Ours 1024-1024 x 1024-1024 10000 1000
SDXL Ours, SB 576-1408 x 704-1728 25000 2000
StyleGAN OSSIA 256-1024 x 256-1024 25000 1000
StyleGAN2 OSSIA 512-1024 x 512-1024 25000 1000
StyleGAN3 OSSIA 256-1024 x 256-1024 25000 1000
Tam.Xformer | OSSIA 256-256 x 256-256 25000 1000
Total 252000 29000

diverse predictive filters, we extract residuals that encapsu-
late intrinsic forensic properties unique to the image cre-
ation process. These residuals are used to compute foren-
sic self-descriptions, which naturally differ between real
and synthetic images and across different generators. This
enables robust zero-shot detection by modeling real-image
self-description distributions and detecting deviations. Ad-
ditionally, the distinctiveness of self-descriptions supports

open-set attribution and clustering, providing a general-
izable and efficient solution without relying on synthetic
training data.

C. Full Zero-Shot Results

In this section, we present zero-shot performances between
all real-vs-synthetic dataset pairs. These results are shown
in Tab. 10, 11, 12, and 13.

These results, in conjunction with those presented in
Tab. 1 and 2 of the main paper, highlight the exceptional
generalizability and consistency of our method across a
wide range of real sources and synthetic generators. While
some other methods achieve high overall average AUC
scores, their performance often drops significantly in worst-
case scenarios. For instance, NPR demonstrates a strong
overvall average AUC of 0.926 but fails on the Firefly gen-
erator, with worst-case AUCSs as low as 0.239 on the IN-1k
dataset. In contrast, our method not only achieves the high-
est overall average AUC of 0.960 but also maintains consis-
tently high worst-case AUCs, with a minimum of 0.714 on
IN-22k, even for challenging generators like GLIDE. This
stability reflects our method’s ability to generalize effec-
tively to unseen generators.

Compared to other methods that also rely solely on real
images for training, such as ZED, our approach demon-
strates significant advantages. ZED achieves an average
AUC of 0.723 but struggles with specific generators like
ProGAN, with worst-case AUCs around 0.375. By leverag-
ing forensic self-descriptions, our method captures intrinsic
forensic properties that remain robust across diverse gener-
ators, avoiding the pitfalls of methods that depend on syn-
thetic training data or fail to generalize to new generators.

Additionally, our method shows exceptional adaptability
in handling challenging cases that cause other methods to
fail, such as BigGAN and Firefly. The ability to achieve
strong performance even in worst-case scenarios under-



Table 10. Zero-shot detection performance, measured in AUC, between each synthetic generator and COC0O2017.

Method Avg. | ProG Prj.G SG SG2 SG3 BigG GigaG Eg3dd TmXf Glide G.Dif. L.Dif. SD1.3 SD14 SD1.5 SD2.1 SDXL SD3.0 DLEM DLE2 DLE3 MJv5S MJv6 Firefly
CnnDet 0.756 | 0.999 0.803 0.994 0944 0940 0923 0.726 0939 0.654 0733 0775 0752 0.702 0.685 0.521 0.683 0.725 0.702 0.657 0.804 0477 0.598 0.570 0.834
PatchFor 0.833 | 0.806 0.953 0.995 0845 0.772 0939 0.831 0.890 0918 0850 0.819 0952 0917 0896 0885 0.547 0.887 0.751 0943 0.884 0.564 0.687 0.846 0.620
LGrad 0.819 | 0954 0.800 0972 0896 0.890 0.862 0.837 0913 0729 0819 0.773 0.871 0818 0818 0.827 0.617 0.808 0.859 0778 0.851 0.734 0.795 0.774 0.657
UFD 0.903 | 1.000 0976 0.995 0.896 0.990 0.997 0964 0988 0976 0.872 0.894 0916 0934 0928 0.740 0.946 0.813 0.732 0976 0980 0.680 0.780 0.709 0.992
DE-FAKE | 0.765 | 0.728 0.799 0.727 0.894 0.590 0.534 0.646 0.601 0.839 0.905 0.723 0812 0.795 0.839 0.850 0.694 0.791 0943 0.795 0.560 0.922 0.775 0.900 0.694
Aeroblade | 0.728 | 0.520 0.718 0.891 0472 0.664 0425 0537 0.714 0566 0.883 0.720 0.719 0811 0.872 0.982 0.828 0.792 0.741 0.730 0.596 0.745 0900 0.938 0.706
ZED 0.751 | 0462 0.667 0.880 0811 0.840 0.713 0.727 0.824 0.766 0.663 0.682 0.729 0812 0814 0.777 0.702 0.798 0.813 0830 0.847 0.715 0.803 0.801 0.563
NPR 0.945 | 0.993 0.988 0.994 0.992 0986 0.981 0.959 0.993 0992 0984 0916 0.992 0986 0985 0971 0921 0975 0982 0970 0985 0.844 0.935 0.969 0.396
Ours 0.968 | 0.989 0979 0905 0942 0973 0990 0.987 0955 0991 0992 0991 0989 0951 0944 0.892 0926 0971 0994 0987 0993 0963 0977 0.976 0.987
Table 11. Zero-shot detection performance, measured in AUC, between each synthetic generator and ImageNet-1K.
Method Avg. | ProG Prj.G SG SG2 SG3 BigG GigaG Eg3dd TmXf Glide G.Dif. L.Dif. SD1.3 SD14 SD1.5 SD2.1 SDXL SD3.0 DLEM DLE2 DLE3 MJv5S MJv6 Firefly
CnnDet 0.714 | 0999 0.751 0995 0946 0926 0903 0.673 0922 0599 0.678 0729 0702 0.644 0.626 0458 0.627 0.675 0.646 0.600 0.760 0.424 0.539 0510 0.792
PatchFor 0.823 | 0.799 0.948 0994 0841 0.763 0.934 0.821 0.876 0907 0.829 0.804 0942 00905 0882 0871 0543 0.874 0.739 0933 0868 0.564 0.679 0.834 0.613
LGrad 0.770 | 0914 0.738 0938 0.891 0.820 0.774 0.782 0.812 0.676 0.787 0.728 0.809 0.720 0.731 0.839 0.658 0.777 0.769 0.731 0.803 0.696 0.716 0.742 0.625
UFD 0.862 | 1.000 0.952 0985 0850 0978 0.993 0.939 0971 0953 0811 0.804 0.874 0895 0.884 0.661 0913 0751 0.643 0956 0960 0.607 0.705 0.623 0.982
DE-FAKE | 0.749 | 0.641 0.725 0.768 0.872 0.627 0.487 0554 0.581 0.778 0.814 0.644 0738 0.823 0.841 0.880 0.710 0834 0911 0.735 0.635 0.894 0810 0.889 0.785
Aeroblade | 0.741 | 0.554 0.734 0.884 0.508 0.690 0458 0.566 0.733 0.598 0.883 0.735 0.732 0.814 0.869 0.973 0828 0802 0.753 0.744 0.618 0.759 0.896 0.931 0.721
ZED 0.676 | 0402 0.562 0.790 0.741 0.750 0.632 0.646 0.743 0.692 0.594 0.618 0.672 0.740 0.733 0.690 0.623 0.732 0.756 0.752 0.783 0.651 0.719 0.734 0473
NPR 0.900 | 0.979 0.969 0983 0978 0964 0.943 0.902 0.980 0975 0954 0.882 0974 0960 0964 0917 0.816 0.938 0948 0908 0956 0.713 0.847 0918 0.239
Ours 0.962 | 0.955 0.930 0.984 0.995 0999 0912 0903 0975 0927 0949 0922 0925 0923 0979 0977 0978 0.993 0978 0944 0976 1.000 0.985 0.986 0.994
Table 12. Zero-shot detection performance, measured in AUC, between each synthetic generator and ImageNet-22k.
Method Avg. | ProG PrjG SG SG2 SG3  BigG GigaG Eg3dd TmXf Glide G.Dif. L.Dif. SD1.3 SD14 SD1.5 SD2.1 SDXL SD3.0 DLEM DLE2 DLE3 MJv5S MJv6 Firefly
CnnDet 0.733 | 0999 0779 0997 0956 0940 0918 0.694 0936 0.622 0704 0.751 0727 0.670 0.650 0474 0.651 0.697 0.668 0.622 0.783 0.439 0.560 0.530 0.817
PatchFor 0.845 | 0.821 0.958 0.998 0852 0.789 0945 0.844 0.897 00925 0859 0.832 0957 0925 0904 0894 0565 0.895 0.769 0949 0.892 0.594 0.709 0.856 0.643
LGrad 0.866 | 0.951 0.850 0965 0936 0.897 0.871 0.876 0.895 0812 0859 0.836 0.893 0.840 0845 0910 0.798 0.873 0.867 0844 088 0.816 0.836 0.849 0.776
UFD 0.815 | 0999 0921 0972 0772 0959 0.988 0.904 00949 0919 0732 0.771 0.807 0.845 0838 0.568 0.875 0.676 0.553 0931 0933 0.527 0.614 0534 0970
DE-FAKE | 0.617 | 0.584 0.648 0.558 0.753 0424 0383 0492 0431 0706 0.782 0.580 0.672 0.643 0.699 0.706 0.533 0.642 0825 0.644 039 0.795 0618 0.769 0.527
Aeroblade | 0.582 | 0.405 0.544 0.713 0.378 0499 0336 0420 0.527 0437 0752 0.584 0583 0.617 0.696 0.862 0.637 0.637 0.605 0.579 0468 0.588 0.742 0.792 0.565
ZED 0.716 | 0.375 0.603 0.830 0.771 0.789 0.789 0.689 0.775 0.738 0.643 0.665 0.729 0.765 0.766 0.725 0.668 0.782 0.791 0.791 0.809 0.686 0.757 0.752 0.507
NPR 0.900 | 0.966 0.958 0969 0966 0953 0.936 0.903 0967 0962 0947 0.891 0.962 00949 0948 0915 0.844 0968 0940 0908 0929 0.750 0.867 0917 0.295
Ours 0.941 | 0.930 0.895 0933 0975 0991 0912 0917 0970 0917 0.714 0.852 0.893 0971 0.969 0.977 0966 0.988 0.983 0913 0976 0.971 0.982 0.989 0.992

Table 13. Zero-shot detection performance, measured in AUC,

between each synthetic generator and MISL Image Database (MIDB).

Method Avg. | ProG PrjiG SG SG2 SG3 BigG GigaG Egdd TmXf Glide G.Dif. L.Dif. SD1.3 SD1.4 SD15 SD2.1 SDXL SD3.0 DLEM DLE2 DLE3 MJv5 MJv6 Firefly
CnnDet 0.683 | 1.000 0.720 0.999 0.950 0.932 0.900 0.635 0.927 0.551 0.637 0.696 0.664 0.597 0.581 0407 0.581 0.638 0.604 0555 0.734 0373 0.487 0.457 0.769
PatchFor 0.790 | 0.777 0919 0970 0819 0.741 0897 0.786 0.836 0855 0.779 0.765 0.892 0.856 0.832 0.820 0.536 0.832 0713 0886 0818 0573 0665 0.790 0.610
UFD 0.612 | 0.994 0.745 0856 0.504 0831 0947 0727 0776 0723 0425 0495 0547 0.621 0.608 0.272 0.690 0415 0255 0786 0.776 0270 0312 0244 0.883
LGrad 0.824 | 0.959 0.808 0978 0.900 0900 0872 0.844 0923 0.730 0.815 0.771 0.881 0.828 0.826 0.839 0.606 0815 0864 0.780 0.859 0.732 0.802 0.777 0.655
DE-FAKE | 0.791 | 0.753 0.825 0.759 0915 0.624 0563 0.675 0.636 0862 0924 0.748 0.836 0.823 0.863 0.875 0.725 0.818 0960 0.822 0.594 0.941 0804 0921 0.728
Aeroblade | 0.646 | 0440 0.606 0.813 0406 0547 0360 0457 0578 0477 0826 0.645 0645 0.695 0783 0954 0719 0708 0.669 0.647 0.517 0.657 0.831 0.885 0.627
ZED 0.747 | 0331 0599 0872 0801 0835 0729 0744 0.898 0763 0.699 0.745 0.760 0.836 0.803 0.774 0.647 0.800 0.812 0855 0891 0713 0.730 0.775 0513
NPR 0.957 | 0.994 0990 0995 0.994 0991 0985 0966 0.994 0.994 0987 0963 0.993 0.990 0.986 0.980 0.947 0.990 0987 0977 0988 0876 0955 0.989 0.449
Ours 0.971 | 1.000 1.000 1.000 0.989 0.998 0.993 0.995 1.000 0.998 1.000 0.993 0.996 0.959 0.941 0952 0903 0962 0956 0.995 0993 00931 0965 0.896 0.896

scores the effectiveness of our forensic self-description ap-
proach. This resilience, combined with the exclusive use of
real images during training, positions our method as a re-
liable and generalizable solution for zero-shot detection of
synthetic images.

D. Zero-Shot Performance vs. Thresholds

In this section, we study the detection performance’s impact
as a result of varying the decision threshold. To do this, we
vary a normalized threshold and measure the average accu-
racy over all real-vs-synthetic dataset pairs with respect to
a real dataset. We note that the accuracy is balanced be-
cause the number of real and synthetic samples in each pair

is identical.
Fig. 8.

The results in Fig. 8 show that the average accuracy gen-
erally increases as the normalized threshold approaches an
optimal range, peaking at a certain value before declining.
This behavior is consistent across all datasets, though the
precise peak accuracy and the threshold at which it occurs
vary slightly between datasets. However, all peaks gener-
ally occur within the narrow range of thresholds between
-0.10 and -0.14. This narrow range highlights the stability
of our method’s performance across different real datasets,
indicating that forensic self-descriptions offer robust gener-
alization to varying real-vs-synthetic scenarios.

This stability has practical implications: a system em-

the results of this experiment is provided in
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Figure 7. Visualization of the average power spectrum of different filters in the forensic self-descriptions obtained from four real datasets.
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Figure 8. Zero-shot detection performance of our method versus
different normalized thresholds.

ploying forensic self-descriptions for zero-shot detection
may not require extensive threshold calibration for different
datasets. Instead, it can rely on a pre-set threshold deter-
mined from a small validation set, simplifying deployment
while maintaining consistently high performance across di-
verse datasets.

E. Impact of Real Training Dataset Choice

In this section, we examine the impact of the choice of the
real dataset used for training to the overall zero-shot de-
tection performance. We do this by evaluating the perfor-
mance of forensic self-descriptions derived from residuals
produced by scene content predictive models trained on one
real dataset and tested on entirely different real datasets.

The results of this experiment are provided in Fig. 6.

The results in Fig. 6 illustrates the robustness and gener-
alization capability of our proposed method when applied to
unseen real datasets. Specifically, we achieve consistently
high performance across all scenarios, with average AUC
values typically remain around 0.94, regardless of the real
dataset used for training or testing. This result highlights
the fact that our method can maintain its strong performance
even when the specific characteristics of real data available
during training may differ from those encountered in the
wild.

Notably, on MIDB where we observe a slight gap in per-
formance when other datasets are used for training. This
effect can be qualitatively explained by examining Fig. 7 in
Sec. F, where we observe that the self-descriptions obtained
from real images in MIDB are significantly different from
those in other datasets. This is because in constrast to other
datasets where images are often downloaded from the inter-
net, images in MIDB come directly from a camera without
any subsequent post processing or compression. Therefore,
for practical applications, this finding shows that better per-
formance may be achievable by training the scene content
predictive models on a larger, combined set of real images
from diverse sources.

F. Qualitative Study of Forensic Self-
Descriptions of Different Real Datasets

In this section, we explore the characteristics of the foren-
sic self-descriptions of real images from different sources.
In particular, we examine the power spectrum of differ-
ent filters in the forensic self-descriptions across real im-
age datasets (COCO2017, IN-1k, IN-22k, and MIDB). We
show these visualizations in Fig. 7.

From Fig. 7, we can observe that the power spectra of
the filters exhibit consistent patterns across the different



Table 14. Runtime as Images per second (im/s) and Number of
Parameters for our method and competing methods in this paper.

Method Time (im/s) # Params
Ours 0.11 2K
CnnDet 22.72 23M
PatchFor 22.93 191K
LGrad 19.53 46M
UFD 11.13 427TM
DE-FAKE 4.90 620M
Aeroblade 5.66 14M
ZED 0.88 809M
NPR 22.92 1.4M
DCTCNN 192.67 170K
RepMix 186.85 24M
Fang et al. 289.54 1.2M
POSE 24.53 22M
Abady et al. 17.02 150M
FSM 24.06 437K
ExifNet 19.56 76M
CLIP-ViT-Base 159.31 151IM
CLIP-ViT-Large 25.84 427TM
ResNet-50 20.74 23M

datasets. For instance, similar spectral structures are ob-
served in F'FT(¢2) and FFT(¢3) of COCO2017, IN-1k,
and IN-22k. While the spectral structures of other filters
are slightly different across these three datasets, we observe
that they are still significantly distinct from those produced
by synthetic images (see Fig. 4 in our main paper). This
shows that our method of using forensic self-descriptions
can accurately distinguish Al-generated images from real
images. This is also supported by our experimental results
in Sec. 5.3 of our main paper, where our average zero-shot
detection performance is 0.960 with a standard deviation
of only 0.01. In contrast, other methods have significantly
more deviations between different real sources. For in-
stance, NPR suffers big performance drops in IN-1k and
IN-22k, ZED in IN-1k, and Aeroblade in IN-22k.

Notably, we see a much bigger difference in the spec-
tral patterns of the self-descriptions of images in the MIDB
dataset. This is because real images in this dataset come
directly from a camera without subsequent post processing
or compression. The fact that our forensic self-descriptions
can capture these differences show that our method is highly
generalizable and adaptable to many real-world image pro-
cessing conditions.

G. Space-Time Complexity Analysis

In this section, we examine the runtime and memory cost
in terms of the number of parameters of ours and compet-
ing methods. We record the average inference runtime per
image by performing inference for each method using 1000
images from the ImageNet-1k dataset using a machine with
an NVIDIA A6000 GPU.

The runtime and parameter comparison in Table 14 high-
lights a significant trade-off in our method. Our approach
has the lowest number of parameters (2K), making it highly
efficient in terms of model size and memory requirements.
However, it takes the longest time per image (0.11 image/s),
primarily due to the iterative residual modeling process,
which requires optimization for each image to accurately
capture forensic microstructures. In contrast, other methods
such as Fang et al. achieve much faster runtimes (289.54
image/s) by leveraging pre-trained models or architectures
optimized for inference speed, albeit at the cost of signifi-
cantly larger parameter sizes. These results underscore that
while our method is highly compact and lightweight, the
computational complexity of its residual modeling process
remains a bottleneck. In future work, we will address this
issue by exploring faster optimization techniques or approx-
imations to further enhance the practicality of our approach
without sacrificing its accuracy and generalization capabil-
ities.
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