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A. Data Composition

In this section, we discuss the composition of the datasets
used in our paper.

Tab. 8 summarizes the real image datasets used in our
experiments, highlighting their diverse range of resolutions
and topics. The datasets include COCO2017 [41], IN-
1k [24], IN-22k [61], and MIDB [8, 9], covering resolutions
from as low as 32×25 to as high as 5248×6016. This diver-
sity ensures that our method is trained and evaluated on real
images that represent a broad variety of scenes, resolutions,
and domains, minimizing potential biases and enhancing its
generalizability. Notably, our method is trained exclusively
on the training samples of real images and does not see the
synthetic images during training, supporting its zero-shot
detection capability.

Tab. 9 provides an overview of the synthetic image
datasets used in our study, which are drawn from OS-
SIA [28], DMID [19], SB [6], and our own generations.
These datasets include synthetic images generated by a
wide range of models, such as BigGAN, DALLE variants,
StyleGAN, and Stable Diffusion versions, covering diverse
resolutions from 256×256 to 1792×1792. Notably, DMID
and SB datasets are primarily evaluation-only, with no train-
ing samples, except for Latent Diffusion and Guided Dif-
fusion from DMID. This comprehensive collection ensures
robust evaluation across diverse generative models, demon-
strating the adaptability and generalization of our method to
various synthetic sources.

B. Competing Methods Categories and Taxon-
omy

Tab. 7 presents a comprehensive comparison of various
methods for synthetic image detection and source attribu-
tion, categorizing them based on their capabilities, training
data requirements, training paradigms, and underlying ap-

proaches. The capabilities considered are zero-shot detec-
tion, open-set recognition, and clustering—key features that
determine a method’s ability to generalize to unseen data
and accurately attribute sources.

Most existing methods rely on supervised learning
paradigms and require both real and synthetic images for
training. For instance, CnnDet [70] and PatchFor [14] train
classifiers on known synthetic sources, focusing on low-
level artifacts or standard classification techniques. While
these methods can sometimes generalize to similar gener-
ative models, they lack zero-shot capabilities and struggle
with open-set scenarios where new types of synthetic im-
ages emerge. They also do not support clustering, limiting
their utility in organizing images based on source similari-
ties.

Some methods, like LGrad [66], UFD [54], DE-
FAKE [63], Aeroblade [59], ZED [22], and NPR [67],
offer zero-shot detection capabilities. LGrad trains clas-
sifiers on gradients of a common CNN, while DE-FAKE
and UFD leverage embeddings from models like CLIP and
BLIP. Aeroblade is unique in being training-free, using re-
construction errors from pretrained diffusion models. ZED
employs a self-supervised approach, using a lossless neural
compressor trained on real images. However, despite their
zero-shot capabilities, these methods generally do not sup-
port open-set recognition or clustering. They are limited to
distinguishing real from synthetic images and often cannot
attribute images to specific unknown sources or organize
them based on source characteristics.

Open-set recognition and clustering are addressed by
methods like RepMix [13], POSE [71], Fang et al. [28], and
Abady et al. [1]. These methods utilize supervised or open-
set training paradigms and require both real and synthetic
images for training. RepMix introduces representational
mixing to handle unseen classes, while POSE progressively
enlarges the embedding space using learned augmentations.



Table 7. Categorization of different capabilities, training data requirement, training paradigm, and high-level idea/approach of competing
methods and ours. é means no ability or achieving poor performance, è means having moderate ability or performance, and Ë means
having good to strong ability or performance.

Method
Capabilities Training Data

Requirement
Training

Paradigm Idea / Approach
Zero-Shot Open-Set Clustering

CnnDet [70] è é é Real + Synthetic Supervised Standard Classifier trained on 1 GAN can generalize to
some other GANs

PatchFor [14] Ë é é Real + Synthetic Supervised Ensemble of Patch-based classifiers trained on low-
level artifacts

LGrad [66] Ë é é Real + Synthetic Supervised Classifier trained on 2D gradients of a common CNN
as forensic features

UFD [54] Ë é è Real + Synthetic Supervised Classifier trained based on CLIP’s embedding dis-
tances to real and fake reference embeddings

DE-FAKE [63] Ë é é Real + Synthetic Supervised Classifier trained based on CLIP’s and BLIP’s text and
visual embeddings

Aeroblade [59] Ë é é No Data Required Training-Free
The reconstruction errors using pretrained Diffusion
models of synthetic images are lower than that of real
images

ZED [22] Ë é é Real Self-Supervised
The coding costs using a lossless neural compressor
(trained on real images) of real images are lower than
that of synthetic images

NPR [67] Ë é é Real + Synthetic Supervised
Classifier trained on neighboring pixel relationships,
which is extracted by subtracting the image by its
down-up-sampled version

DCTCNN [29] é é é Real + Synthetic Supervised Classifier trained on DCT of real and synthetic images

RepMix [13] é Ë é Real + Synthetic Supervised Classifier trained with representational mixing

POSE [71] é Ë Ë Real + Synthetic Open-Set Progressively enlarge the embedding space of classes
using learned augmentations

Fang et al. [28] é Ë Ë Real + Synthetic Open-Set Learned transferable embeddings using ProxyNCA ap-
plied on a CNN

Abady et al. [1] é Ë Ë Real + Synthetic Open-Set Learned embedding space of classes using siamese net-
work with learned distance metric

FSM [48] é è é Real Supervised Learned embedding space of different camera models
using siamese network with learned distance metric

ExifNet [75] é è é Real Supervised Learned embedding space of images’ Exif data using
siamese network with learned distance metric

CLIP [57] é Ë è Real Self-Supervised Learned transferable visual embeddings grounded by
text captions

ResNet-50 [24] é Ë è Real Supervised Learned transferable visual embeddings by training on
large corpus of real images with many classes

Ours Ë Ë Ë Real Self-Supervised

The self-descriptions of the forensic microstructures in
real images are naturally different than those of syn-
thetic images. Self-descriptions of images created by
different generators are also distinct, attributable and
cluster-able.

Table 8. Composition of datasets of real images used in this paper.
We note that our method only sees the training samples of real
images during training.

Real Images Datasets

Source Image Sizes Train Samples Test Samples

COCO2017 [41] 51-640 x 59-640 100000 1000

IN-1k [24] 32-5980 x 25-4768 100000 1000

IN-22k [61] 56-1857 x 56-2091 100000 1000

MIDB [8, 9] 480-5248 x 640-6016 22329 1000

Fang et al. and Abady et al. focus on learning transfer-
able embeddings through techniques like ProxyNCA and
siamese networks with learned distance metrics. Although
these methods can perform open-set recognition and clus-
tering, they lack zero-shot detection capabilities, meaning
they require prior exposure to synthetic sources to function
effectively.

Our proposed method distinguishes itself by offering all
three capabilities: zero-shot detection, open-set source at-
tribution, and clustering, while requiring only real images
for training. By modeling forensic microstructures through



Figure 6. Zero-shot detection performance of our method evaluated on real datasets that are not seen during training. Performance on seen
dataset is also provided for comparison.

Table 9. Composition of datasets of synthetic images used in
this paper. These datasets are pooled together from OSSIA [28],
DMID [19], SB [6], and our own generations. We note that in
the zero-shot experiment, our method does not see any synthetic
images during training.

Synthetic Image Datasets

Generator Sources Image Sizes Train Samples Test Samples

BigGAN DMID 256-512 x 256-512 0 1000

DALLE 2 DMID, SB 1024-1024 x 1024-1024 0 2000

DALLE 3 Ours, SB 1024-1792 x 1024-1792 4000 2000

DALLE M DMID 256-256 x 256-256 0 1000

EG3D DMID 512-512 x 512-512 0 1000

FireFly SB 1536-2304 x 1792-2688 0 1000

GigaGAN DMID 256-1024 x 256-1024 0 1000

GLIDE DMID, SB 256-256 x 256-256 0 2000

Guided Dif DMID 256-256 x 256-256 1000 1000

Latent Dif DMID 256-256 x 256-256 2000 1000

MJ v5 SB 896-1360 x 896-1360 0 1000

MJ v6 Ours 768-1344 x 896-1536 25000 1000

ProGAN OSSIA 256-256 x 256-256 25000 1000

Proj.GAN OSSIA 256-256 x 256-256 25000 1000

SD1.3 SB 512-512 x 512-512 0 1000

SD1.4 OSSIA, SB 512-512 x 512-512 25000 2000

SD1.5 Ours 768-768 x 768-768 10000 1000

SD2.1 SB 576-1408 x 704-1728 0 1000

SD3.0 Ours 1024-1024 x 1024-1024 10000 1000

SDXL Ours, SB 576-1408 x 704-1728 25000 2000

StyleGAN OSSIA 256-1024 x 256-1024 25000 1000

StyleGAN2 OSSIA 512-1024 x 512-1024 25000 1000

StyleGAN3 OSSIA 256-1024 x 256-1024 25000 1000

Tam.Xformer OSSIA 256-256 x 256-256 25000 1000

Total 252000 29000

diverse predictive filters, we extract residuals that encapsu-
late intrinsic forensic properties unique to the image cre-
ation process. These residuals are used to compute foren-
sic self-descriptions, which naturally differ between real
and synthetic images and across different generators. This
enables robust zero-shot detection by modeling real-image
self-description distributions and detecting deviations. Ad-
ditionally, the distinctiveness of self-descriptions supports

open-set attribution and clustering, providing a general-
izable and efficient solution without relying on synthetic
training data.

C. Full Zero-Shot Results

In this section, we present zero-shot performances between
all real-vs-synthetic dataset pairs. These results are shown
in Tab. 10, 11, 12, and 13.

These results, in conjunction with those presented in
Tab. 1 and 2 of the main paper, highlight the exceptional
generalizability and consistency of our method across a
wide range of real sources and synthetic generators. While
some other methods achieve high overall average AUC
scores, their performance often drops significantly in worst-
case scenarios. For instance, NPR demonstrates a strong
overvall average AUC of 0.926 but fails on the Firefly gen-
erator, with worst-case AUCs as low as 0.239 on the IN-1k
dataset. In contrast, our method not only achieves the high-
est overall average AUC of 0.960 but also maintains consis-
tently high worst-case AUCs, with a minimum of 0.714 on
IN-22k, even for challenging generators like GLIDE. This
stability reflects our method’s ability to generalize effec-
tively to unseen generators.

Compared to other methods that also rely solely on real
images for training, such as ZED, our approach demon-
strates significant advantages. ZED achieves an average
AUC of 0.723 but struggles with specific generators like
ProGAN, with worst-case AUCs around 0.375. By leverag-
ing forensic self-descriptions, our method captures intrinsic
forensic properties that remain robust across diverse gener-
ators, avoiding the pitfalls of methods that depend on syn-
thetic training data or fail to generalize to new generators.

Additionally, our method shows exceptional adaptability
in handling challenging cases that cause other methods to
fail, such as BigGAN and Firefly. The ability to achieve
strong performance even in worst-case scenarios under-



Table 10. Zero-shot detection performance, measured in AUC, between each synthetic generator and COCO2017.

Method Avg. ProG Prj.G SG SG2 SG3 BigG GigaG Eg3d Tm.Xf Glide G.Dif. L.Dif. SD1.3 SD1.4 SD1.5 SD2.1 SDXL SD3.0 DLEM DLE2 DLE3 MJv5 MJv6 Firefly

CnnDet 0.756 0.999 0.803 0.994 0.944 0.940 0.923 0.726 0.939 0.654 0.733 0.775 0.752 0.702 0.685 0.521 0.683 0.725 0.702 0.657 0.804 0.477 0.598 0.570 0.834

PatchFor 0.833 0.806 0.953 0.995 0.845 0.772 0.939 0.831 0.890 0.918 0.850 0.819 0.952 0.917 0.896 0.885 0.547 0.887 0.751 0.943 0.884 0.564 0.687 0.846 0.620

LGrad 0.819 0.954 0.800 0.972 0.896 0.890 0.862 0.837 0.913 0.729 0.819 0.773 0.871 0.818 0.818 0.827 0.617 0.808 0.859 0.778 0.851 0.734 0.795 0.774 0.657

UFD 0.903 1.000 0.976 0.995 0.896 0.990 0.997 0.964 0.988 0.976 0.872 0.894 0.916 0.934 0.928 0.740 0.946 0.813 0.732 0.976 0.980 0.680 0.780 0.709 0.992
DE-FAKE 0.765 0.728 0.799 0.727 0.894 0.590 0.534 0.646 0.601 0.839 0.905 0.723 0.812 0.795 0.839 0.850 0.694 0.791 0.943 0.795 0.560 0.922 0.775 0.900 0.694

Aeroblade 0.728 0.520 0.718 0.891 0.472 0.664 0.425 0.537 0.714 0.566 0.883 0.720 0.719 0.811 0.872 0.982 0.828 0.792 0.741 0.730 0.596 0.745 0.900 0.938 0.706

ZED 0.751 0.462 0.667 0.880 0.811 0.840 0.713 0.727 0.824 0.766 0.663 0.682 0.729 0.812 0.814 0.777 0.702 0.798 0.813 0.830 0.847 0.715 0.803 0.801 0.563

NPR 0.945 0.993 0.988 0.994 0.992 0.986 0.981 0.959 0.993 0.992 0.984 0.916 0.992 0.986 0.985 0.971 0.921 0.975 0.982 0.970 0.985 0.844 0.935 0.969 0.396

Ours 0.968 0.989 0.979 0.905 0.942 0.973 0.990 0.987 0.955 0.991 0.992 0.991 0.989 0.951 0.944 0.892 0.926 0.971 0.994 0.987 0.993 0.963 0.977 0.976 0.987

Table 11. Zero-shot detection performance, measured in AUC, between each synthetic generator and ImageNet-1K.

Method Avg. ProG Prj.G SG SG2 SG3 BigG GigaG Eg3d Tm.Xf Glide G.Dif. L.Dif. SD1.3 SD1.4 SD1.5 SD2.1 SDXL SD3.0 DLEM DLE2 DLE3 MJv5 MJv6 Firefly

CnnDet 0.714 0.999 0.751 0.995 0.946 0.926 0.903 0.673 0.922 0.599 0.678 0.729 0.702 0.644 0.626 0.458 0.627 0.675 0.646 0.600 0.760 0.424 0.539 0.510 0.792

PatchFor 0.823 0.799 0.948 0.994 0.841 0.763 0.934 0.821 0.876 0.907 0.829 0.804 0.942 0.905 0.882 0.871 0.543 0.874 0.739 0.933 0.868 0.564 0.679 0.834 0.613

LGrad 0.770 0.914 0.738 0.938 0.891 0.820 0.774 0.782 0.812 0.676 0.787 0.728 0.809 0.720 0.731 0.839 0.658 0.777 0.769 0.731 0.803 0.696 0.716 0.742 0.625

UFD 0.862 1.000 0.952 0.985 0.850 0.978 0.993 0.939 0.971 0.953 0.811 0.804 0.874 0.895 0.884 0.661 0.913 0.751 0.643 0.956 0.960 0.607 0.705 0.623 0.982

DE-FAKE 0.749 0.641 0.725 0.768 0.872 0.627 0.487 0.554 0.581 0.778 0.814 0.644 0.738 0.823 0.841 0.880 0.710 0.834 0.911 0.735 0.635 0.894 0.810 0.889 0.785

Aeroblade 0.741 0.554 0.734 0.884 0.508 0.690 0.458 0.566 0.733 0.598 0.883 0.735 0.732 0.814 0.869 0.973 0.828 0.802 0.753 0.744 0.618 0.759 0.896 0.931 0.721

ZED 0.676 0.402 0.562 0.790 0.741 0.750 0.632 0.646 0.743 0.692 0.594 0.618 0.672 0.740 0.733 0.690 0.623 0.732 0.756 0.752 0.783 0.651 0.719 0.734 0.473

NPR 0.900 0.979 0.969 0.983 0.978 0.964 0.943 0.902 0.980 0.975 0.954 0.882 0.974 0.960 0.964 0.917 0.816 0.938 0.948 0.908 0.956 0.713 0.847 0.918 0.239

Ours 0.962 0.955 0.930 0.984 0.995 0.999 0.912 0.903 0.975 0.927 0.949 0.922 0.925 0.923 0.979 0.977 0.978 0.993 0.978 0.944 0.976 1.000 0.985 0.986 0.994

Table 12. Zero-shot detection performance, measured in AUC, between each synthetic generator and ImageNet-22k.

Method Avg. ProG Prj.G SG SG2 SG3 BigG GigaG Eg3d Tm.Xf Glide G.Dif. L.Dif. SD1.3 SD1.4 SD1.5 SD2.1 SDXL SD3.0 DLEM DLE2 DLE3 MJv5 MJv6 Firefly

CnnDet 0.733 0.999 0.779 0.997 0.956 0.940 0.918 0.694 0.936 0.622 0.704 0.751 0.727 0.670 0.650 0.474 0.651 0.697 0.668 0.622 0.783 0.439 0.560 0.530 0.817

PatchFor 0.845 0.821 0.958 0.998 0.852 0.789 0.945 0.844 0.897 0.925 0.859 0.832 0.957 0.925 0.904 0.894 0.565 0.895 0.769 0.949 0.892 0.594 0.709 0.856 0.643

LGrad 0.866 0.951 0.850 0.965 0.936 0.897 0.871 0.876 0.895 0.812 0.859 0.836 0.893 0.840 0.845 0.910 0.798 0.873 0.867 0.844 0.886 0.816 0.836 0.849 0.776

UFD 0.815 0.999 0.921 0.972 0.772 0.959 0.988 0.904 0.949 0.919 0.732 0.771 0.807 0.845 0.838 0.568 0.875 0.676 0.553 0.931 0.933 0.527 0.614 0.534 0.970

DE-FAKE 0.617 0.584 0.648 0.558 0.753 0.424 0.383 0.492 0.431 0.706 0.782 0.580 0.672 0.643 0.699 0.706 0.533 0.642 0.825 0.644 0.396 0.795 0.618 0.769 0.527

Aeroblade 0.582 0.405 0.544 0.713 0.378 0.499 0.336 0.420 0.527 0.437 0.752 0.584 0.583 0.617 0.696 0.862 0.637 0.637 0.605 0.579 0.468 0.588 0.742 0.792 0.565

ZED 0.716 0.375 0.603 0.830 0.771 0.789 0.789 0.689 0.775 0.738 0.643 0.665 0.729 0.765 0.766 0.725 0.668 0.782 0.791 0.791 0.809 0.686 0.757 0.752 0.507

NPR 0.900 0.966 0.958 0.969 0.966 0.953 0.936 0.903 0.967 0.962 0.947 0.891 0.962 0.949 0.948 0.915 0.844 0.968 0.940 0.908 0.929 0.750 0.867 0.917 0.295

Ours 0.941 0.930 0.895 0.933 0.975 0.991 0.912 0.917 0.970 0.917 0.714 0.852 0.893 0.971 0.969 0.977 0.966 0.988 0.983 0.913 0.976 0.971 0.982 0.989 0.992

Table 13. Zero-shot detection performance, measured in AUC, between each synthetic generator and MISL Image Database (MIDB).

Method Avg. ProG Prj.G SG SG2 SG3 BigG GigaG Eg3d Tm.Xf Glide G.Dif. L.Dif. SD1.3 SD1.4 SD1.5 SD2.1 SDXL SD3.0 DLEM DLE2 DLE3 MJv5 MJv6 Firefly

CnnDet 0.683 1.000 0.720 0.999 0.950 0.932 0.900 0.635 0.927 0.551 0.637 0.696 0.664 0.597 0.581 0.407 0.581 0.638 0.604 0.555 0.734 0.373 0.487 0.457 0.769

PatchFor 0.790 0.777 0.919 0.970 0.819 0.741 0.897 0.786 0.836 0.855 0.779 0.765 0.892 0.856 0.832 0.820 0.536 0.832 0.713 0.886 0.818 0.573 0.665 0.790 0.610

UFD 0.612 0.994 0.745 0.856 0.504 0.831 0.947 0.727 0.776 0.723 0.425 0.495 0.547 0.621 0.608 0.272 0.690 0.415 0.255 0.786 0.776 0.270 0.312 0.244 0.883

LGrad 0.824 0.959 0.808 0.978 0.900 0.900 0.872 0.844 0.923 0.730 0.815 0.771 0.881 0.828 0.826 0.839 0.606 0.815 0.864 0.780 0.859 0.732 0.802 0.777 0.655

DE-FAKE 0.791 0.753 0.825 0.759 0.915 0.624 0.563 0.675 0.636 0.862 0.924 0.748 0.836 0.823 0.863 0.875 0.725 0.818 0.960 0.822 0.594 0.941 0.804 0.921 0.728

Aeroblade 0.646 0.440 0.606 0.813 0.406 0.547 0.360 0.457 0.578 0.477 0.826 0.645 0.645 0.695 0.783 0.954 0.719 0.708 0.669 0.647 0.517 0.657 0.831 0.885 0.627

ZED 0.747 0.331 0.599 0.872 0.801 0.835 0.729 0.744 0.898 0.763 0.699 0.745 0.760 0.836 0.803 0.774 0.647 0.800 0.812 0.855 0.891 0.713 0.730 0.775 0.513

NPR 0.957 0.994 0.990 0.995 0.994 0.991 0.985 0.966 0.994 0.994 0.987 0.963 0.993 0.990 0.986 0.980 0.947 0.990 0.987 0.977 0.988 0.876 0.955 0.989 0.449

Ours 0.971 1.000 1.000 1.000 0.989 0.998 0.993 0.995 1.000 0.998 1.000 0.993 0.996 0.959 0.941 0.952 0.903 0.962 0.956 0.995 0.993 0.931 0.965 0.896 0.896

scores the effectiveness of our forensic self-description ap-
proach. This resilience, combined with the exclusive use of
real images during training, positions our method as a re-
liable and generalizable solution for zero-shot detection of
synthetic images.

D. Zero-Shot Performance vs. Thresholds

In this section, we study the detection performance’s impact
as a result of varying the decision threshold. To do this, we
vary a normalized threshold and measure the average accu-
racy over all real-vs-synthetic dataset pairs with respect to
a real dataset. We note that the accuracy is balanced be-
cause the number of real and synthetic samples in each pair

is identical. the results of this experiment is provided in
Fig. 8.

The results in Fig. 8 show that the average accuracy gen-
erally increases as the normalized threshold approaches an
optimal range, peaking at a certain value before declining.
This behavior is consistent across all datasets, though the
precise peak accuracy and the threshold at which it occurs
vary slightly between datasets. However, all peaks gener-
ally occur within the narrow range of thresholds between
-0.10 and -0.14. This narrow range highlights the stability
of our method’s performance across different real datasets,
indicating that forensic self-descriptions offer robust gener-
alization to varying real-vs-synthetic scenarios.

This stability has practical implications: a system em-
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Figure 7. Visualization of the average power spectrum of different filters in the forensic self-descriptions obtained from four real datasets.

Figure 8. Zero-shot detection performance of our method versus
different normalized thresholds.

ploying forensic self-descriptions for zero-shot detection
may not require extensive threshold calibration for different
datasets. Instead, it can rely on a pre-set threshold deter-
mined from a small validation set, simplifying deployment
while maintaining consistently high performance across di-
verse datasets.

E. Impact of Real Training Dataset Choice

In this section, we examine the impact of the choice of the
real dataset used for training to the overall zero-shot de-
tection performance. We do this by evaluating the perfor-
mance of forensic self-descriptions derived from residuals
produced by scene content predictive models trained on one
real dataset and tested on entirely different real datasets.

The results of this experiment are provided in Fig. 6.
The results in Fig. 6 illustrates the robustness and gener-

alization capability of our proposed method when applied to
unseen real datasets. Specifically, we achieve consistently
high performance across all scenarios, with average AUC
values typically remain around 0.94, regardless of the real
dataset used for training or testing. This result highlights
the fact that our method can maintain its strong performance
even when the specific characteristics of real data available
during training may differ from those encountered in the
wild.

Notably, on MIDB where we observe a slight gap in per-
formance when other datasets are used for training. This
effect can be qualitatively explained by examining Fig. 7 in
Sec. F, where we observe that the self-descriptions obtained
from real images in MIDB are significantly different from
those in other datasets. This is because in constrast to other
datasets where images are often downloaded from the inter-
net, images in MIDB come directly from a camera without
any subsequent post processing or compression. Therefore,
for practical applications, this finding shows that better per-
formance may be achievable by training the scene content
predictive models on a larger, combined set of real images
from diverse sources.

F. Qualitative Study of Forensic Self-
Descriptions of Different Real Datasets

In this section, we explore the characteristics of the foren-
sic self-descriptions of real images from different sources.
In particular, we examine the power spectrum of differ-
ent filters in the forensic self-descriptions across real im-
age datasets (COCO2017, IN-1k, IN-22k, and MIDB). We
show these visualizations in Fig. 7.

From Fig. 7, we can observe that the power spectra of
the filters exhibit consistent patterns across the different



Table 14. Runtime as Images per second (im/s) and Number of
Parameters for our method and competing methods in this paper.

Method Time (im/s) # Params

Ours 0.11 2K

CnnDet 22.72 23M

PatchFor 22.93 191K

LGrad 19.53 46M

UFD 11.13 427M

DE-FAKE 4.90 620M

Aeroblade 5.66 14M

ZED 0.88 809M

NPR 22.92 1.4M

DCTCNN 192.67 170K

RepMix 186.85 24M

Fang et al. 289.54 1.2M

POSE 24.53 22M

Abady et al. 17.02 150M

FSM 24.06 437K

ExifNet 19.56 76M

CLIP-ViT-Base 159.31 151M

CLIP-ViT-Large 25.84 427M

ResNet-50 20.74 23M

datasets. For instance, similar spectral structures are ob-
served in FFT (ϕ2) and FFT (ϕ3) of COCO2017, IN-1k,
and IN-22k. While the spectral structures of other filters
are slightly different across these three datasets, we observe
that they are still significantly distinct from those produced
by synthetic images (see Fig. 4 in our main paper). This
shows that our method of using forensic self-descriptions
can accurately distinguish AI-generated images from real
images. This is also supported by our experimental results
in Sec. 5.3 of our main paper, where our average zero-shot
detection performance is 0.960 with a standard deviation
of only 0.01. In contrast, other methods have significantly
more deviations between different real sources. For in-
stance, NPR suffers big performance drops in IN-1k and
IN-22k, ZED in IN-1k, and Aeroblade in IN-22k.

Notably, we see a much bigger difference in the spec-
tral patterns of the self-descriptions of images in the MIDB
dataset. This is because real images in this dataset come
directly from a camera without subsequent post processing
or compression. The fact that our forensic self-descriptions
can capture these differences show that our method is highly
generalizable and adaptable to many real-world image pro-
cessing conditions.

G. Space-Time Complexity Analysis
In this section, we examine the runtime and memory cost
in terms of the number of parameters of ours and compet-
ing methods. We record the average inference runtime per
image by performing inference for each method using 1000
images from the ImageNet-1k dataset using a machine with
an NVIDIA A6000 GPU.

The runtime and parameter comparison in Table 14 high-
lights a significant trade-off in our method. Our approach
has the lowest number of parameters (2K), making it highly
efficient in terms of model size and memory requirements.
However, it takes the longest time per image (0.11 image/s),
primarily due to the iterative residual modeling process,
which requires optimization for each image to accurately
capture forensic microstructures. In contrast, other methods
such as Fang et al. achieve much faster runtimes (289.54
image/s) by leveraging pre-trained models or architectures
optimized for inference speed, albeit at the cost of signifi-
cantly larger parameter sizes. These results underscore that
while our method is highly compact and lightweight, the
computational complexity of its residual modeling process
remains a bottleneck. In future work, we will address this
issue by exploring faster optimization techniques or approx-
imations to further enhance the practicality of our approach
without sacrificing its accuracy and generalization capabil-
ities.
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