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Supplementary Material

8. Additional Discussion on Existing Works

Discussion on Occlusion Methods. Ren et al. [13] sim-
plified occlusion by treating it as a form of corruption, re-
ferred to as “Drop Local,” where k-NN clusters are ran-
domly removed from point clouds. They then proposed
an architecture and an augmentation strategy (based on de-
forming and mixing objects) to address general corruptions
rather than focusing on occlusion. Hamdi et al. [8] intro-
duced a viewpoint prediction module as a component for
multi-view 3D recognition (which rely on 3D-to-2D pro-
jection). By predicting ‘good’ views to render images from
point clouds, indirectly, the recognition model becomes
more robust to occlusion (empirically simulated by ran-
domly cropping the object point clouds along canonical di-
rections). In contrast, our OccTIP method more realistically
simulates self-occlusion through the rendering process and
integrates single-view point clouds during pretraining, im-
proving occlusion robustness for any point cloud encoders.

Comparison with VisionMamba (Vim). While Vim [22]
also has a two-stream design, it has two key limitations:
(1) reliance on one-directional neighborhood aggregation
(CausalConv1D) and (2) only able to utilize a single neigh-
borhood structure due to its simple forward and backward
scanning strategy. In contrast, DuoMamba uses ConvlD
for bidirectional local aggregation and can flexibly process
two diverse orderings (e.g., Hilbert, Trans-Hilbert) simulta-
neously within a single block to fully exploit 3D geometry
of the point clouds. These technical enhancements lead to
improved performance as shown in Table 6.

Dataset Vim [22]  Vim [22] + Hilbert | DuoMamba
ModelNet40-P 65.3 63.8 67.7
ScanObjectNN 61.1 62.7 63.5

Table 6. Zero-shot accuracy of Vim and DuoMamba.
9. Implementation Details

Triplet Generations. We render RBG images with a res-
olution of 512 x 512 and a transparent background. Sim-
ilar to OpenShape [11], descriptions for each object come
from three sources: (1) raw texts from the dataset’s meta-
data, (2) captions generated by BLIP [10] and Azure Cog-
nitive Services, (3) retrieved captions from visually similar
images in the LAION-5B [14] dataset. The first source of
captions (created from metadata) includes three texts: (a)
object name, (b) object category, and (c) concatenation of
the subcategory name.

Training Details. During pretraining, we use a batch size
of 32 and randomly replace point colors with a constant
value of 0.4 with a probability of 0.5. During testing, we
assign the same constant value to point clouds that do not
have color information, such as those in the ScanObjectNN
[17] dataset. For more efficient training, we precompute
and cache text and image features from CLIP [12] and di-
rectly use them as inputs to the text and image projection
heads. Since there is significant fluctuation when training
with partial point clouds, we follow [7] to employ Expo-
nential Moving Average (EMA) [16] with a decay factor of
0.9995 to stabilize the training process. We use a cosine
learning rate scheduler with a base learning rate of 7e—4.

10. Comparisons with Previous Works Pre-
trained on Larger Datasets

We further compare our method (pretrained on 52K
ShapeNetCore [1] objects) with previous works pretrained
on a significantly larger ensemble of 880K 3D objects from
four datasets: ShapeNetCore [1], ABO [3], 3D-FUTURE
[6], and Objaverse [5]. We use the official results reported
in previous papers and evaluate all approaches on the real-
world ScanObjectNN [17] dataset to assess their recogni-
tion performance in practical scenarios.

Model Size and Zero-Shot Object Classification Per-
formance. We compare the parameter counts of various
point cloud encoders and their zero-shot performance in
Figure 5. Despite only being pretrained on ShapeNetCore
[1], our DuoMamba outperforms all existing models of
comparable size that are pretrained on 880K 3D objects —
17 times more data. Notably, the zero-shot accuracy gap
between our model and the best-performing model Uni3D-
giant [21] is just 1.8%, even though our model is only
1/35 its size. This highlights DuoMamba’s superior size-
to-performance efficiency. Scaling up the model and pre-
training on larger datasets is likely to further enhance per-
formance, which we leave as future work.

Few-Shot Linear Probing. We perform a few-shot exper-
iment similar to the one in Section 6.2 (main paper), this
time comparing our approach against models pretrained on
the ensemble of 880K 3D objects. As illustrated in Figure 6,
our method consistently outperforms all other works across
all few-shot settings, highlighting our pretraining frame-
work’s data efficiency and effectiveness in learning robust
and generalizable features for real-world recognition.



I Method [ Mean | Cab  Bed Chair Sofa Tabl Door Wind Bksf Pic  Cnr Desk Curt Fridg ShwrCurt Toil  Sink  Bath  Bin
PointCLIP [9] 6.00 3.99 4.82 4516 4.82 7.36 4.62 2.19 1.02 4.00 1340  6.46 -
AP PointCLIP V2 [23] | 18.97 | 19.32 2098 61.89 1555 2378 1322 17.42 - - 1243 2143 - - - - 14.54  16.77 -
= OpenShape™ [11] 20.40 | 9.63 38.62 73.05 5728 37.00 29.52 574 2394 207 3.37 16.25 125 445 0.84 9.00 2276 1621 16.23
MixCon3D' [7] | 24.11 | 11.55 4321 7933 6397 4291 2994 485 2526 398 149 2558 200 495 081 1323 20.58 38.03 22.25
TAMM™ [20] 23.07 | 10.03 32.68 75.16 5573 36.72 3244 526 2482 252 204 2253 211 326 1.23 17.83 23.87 46.50 20.48
OccTIP 2892 | 12.85 5643 8041 68.78 40.11 37.68 7.09 3051 321 246 3155 518 854 214 2989 3564 4193 2624
PointCLIP [19] 4.76 1.67 433 3953  3.65 597 2.61 0.52 - - 0.42 245 - - - - 5.27 1.31 -
APs PointCLIP V2 [23] | 11.53 | 1043 1354 4123 6.60 1521 623 1135 - - 6.23 10.84 - - - - 1143  10.14 -
? OpenShape™ [11] 16.12 | 378 3699 6248 4948 33.05 1740 212 2197 061 134 1197 045 418 0.59 838 10.68 16.16 855
MixCon3D' [7] | 19.09 | 3.61 4190 67.67 5113 3822 1734 156 2344 156 036 18.63 059 471 043 1207 9.8 37.69 13.51
TAMM™ [20] 18.11 | 3.10 31.64 6435 4251 3082 2055 211 2126 0.85 050 1771 0.80 3.09 0.81 17.00 1044 46.27 12.26
OccTIP 2273 | 544 5477 6891 5553 3455 2255 292 2571 098 0.84 2291 234 836 1.31 27.27 16.86 41.65 16.27

Table 7. Zero-shot 3D object detection results on ScanNetV2 [4]. Our method OccTIP achieves the highest mAP and consistently has
the highest or second-highest AP scores across most categories, showing the superiority of the proposed approach in complex real-world
recognition. (*: results obtained using released pretrained weights, : results reproduced using the authors’ public code.)

\ Method [ Mean [ Bed Table Sofa  Chair Toilet Desk Dresser Night Stand  Bookshelf  Bathtub
OpenShape* [11] | 18.61 | 33.09 24.18 2896 4551 1042 13.58 2.75 11.77 11.13 4.71
AP MixCon3D' [7] 18.69 | 2825 2675 3444 4777 6.05 15.76 2.31 11.56 6.91 7.14
» TAMM* [20] 1891 | 18.15 27.78 27.67 47.00 2141 1454 243 10.81 11.14 8.20
OccTIP 24.37 | 4345 29.21 3422 51.19 1278 18.16 3.76 11.14 13.96 25.90
OpenShape* [11] | 9.78 | 23.71 9.0 20.85 2437 7.74 3.02 1.00 547 1.77 0.89
AP MixCon3D' [7] 9.63 1797 1022 24.53 26.00 3.80 338 0.51 6.30 1.73 1.86
50 TAMM* [20] 9.96 | 1237 11.01 2036 2541 1796 322 0.81 4.87 1.71 1.90
OccTIP 13.01 | 32.67 11.21 2546 28.04 8.50 433 1.71 5.11 1.92 11.18

Table 8. Zero-shot 3D object detection results on SUN RGB-D [15]. Our method OccTIP achieves the highest mAP and consistently has
the highest or second-highest AP scores across most categories, showing the superiority of the proposed approach in complex real-world
recognition. (*: results obtained using released pretrained weights, : results reproduced using the authors’ public code.)
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Figure 5. Comparisons of model size and zero-shot accuracy on
ScanObjectNN [17]. Our model is pretrained on 52K ShapeNet-
Core [1] objects, whereas all other approaches are pretrained on
an ensemble of 880K objects from four datasets: Objaverse [5],
ABO [3], 3D-FUTURE [6], and ShapeNetCore [1]. Despite be-
ing pretrained on a less diverse set of objects and having the
smallest size, DuoMamba demonstrates competitive performance.
Among models with fewer than 50M parameters (DuoMamba,
PointBERT [18], SparseConv [2]), our model outperforms all oth-
ers by a significant margin of 3% in zero-shot accuracy. While
Uni3D-giant [21] achieves a slightly higher accuracy with a gap of
1.8%, it comes at the cost of a substantially larger model size, with
1016.5M parameters — 35 times the size of DuoMamba. This high-
lights the optimal balance between model size and performance
offered by our method compared to existing approaches.

11. Additional Quantitative Results

Evaluate Pretrained DuoMamba on ModelNet40. To
evaluate DuoMamba (pretrained with OccTIP) on complete
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Figure 6. Few-shot linear probing on ScanObjectNN [17]. Our
method is pretrained on 52K ShapeNetCore [1] objects, whereas
other models are pretrained on 880K objects. Despite using signif-
icantly less data, our framework OccTIP outperforms all existing
methods across all few-shot settings, demonstrating the data effi-
ciency and the high-quality latent space learned by our approach.

point clouds, we generate partial point clouds from 12 views
(as in pretraining) and use majority voting for class pre-
diction. Figure 7 shows that on ModelNet40, we perform
competitively with previous works pretrained on full point
clouds and even surpass OpenShape by 1.3%.

Complete Results for Zero-Shot 3D Object Detection.
The average precision (AP) for each class and the mean Av-
erage Precision (mAP) for the zero-shot 3D object detection

experiments (Section 6.4 in the main paper) are provided in
Table 7 (for ScanNetV2 [4] benchmark) and Table 8 (for
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Figure 7. Comparison with methods pretrained on complete point
clouds.

SUN RGB-D [15] benchmark). Our method OccTIP con-
sistently achieves the best or second-best AP across most
categories and achieves the highest mAP, with a significant
margin over existing techniques on both datasets. These
results highlight the effectiveness of OccTIP and its appli-
cability to complex, real-world recognition tasks.

Pretraining with Complete vs. Partial Point Clouds.
Table 9 shows that our synthetic partial data consistently
improves all models’ accuracy on real-world ScanOb-
jectNN, with DuoMamba performing best in both settings.

Pretraining data | SparseConv ~ PointBERT | DuoMamba
Complete 56.0 55.5 57.5
Partial (OccTIP) | 61.7 (+5.7)  60.6 (+5.1) | 63.5 (+6.0)

Table 9. ScanObjectNN accuracy when pretraining with full vs
partial data.

Architecture Influence on Object Detection Perfor-
mance. Table 10 compares object detection performance
of DuoMamba and PointBERT pretrained with OccTIP
against PointBERT’s best performance by previous pre-
training baselines. OccTIP consistently enhances Point-
BERT’s performance, and its combination with DuoMamba
achieves the best results.

Pretraining Encoder ScanNetV2 SUN RGB-D
method mAP2;  mAP5g | mAP2s  mAP5g

Best current | PointBERT 24.1 19.1 18.9 10.0
OccTIP 25.4 19.3 21.9 11.7
OccTIP DuoMamba 28.9 22.7 24.4 13.0

Table 10. Detection results of different models and pretraining
methods.
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