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A. Theoretical Results
A.1. Derivation of the formula of h (xt, t)

Below, we prove that h (xt, t) satisfying Eqs. 10, 11 can be expressed as follows:

h (xt, t) = Ep(x0|xt) [h (x0, 0)] (31)
= Ep(x0|xt) [pY (x0)] (32)

where p (x0|xt) is the transition distribution of the base backward Markov process.
We can quickly verify that Eq. 31 is correct for t = 1 since h (x1, 1) =

∫
p (x0|x1)h (x0, 0) dx0 = Ep(x0|x1) [h (x0, 0)]

directly from Eqs. 10, 11. Assuming that Eq. 31 has been correct for t− 1 (t ≥ 2), we will prove that it is correct for t. The
RHS of Eq. 10 can be transformed as follows:

h (xt, t) =

∫
p (xt−1|xt)h (xt−1, t− 1) dxt−1 (33)

=

∫
p (xt−1|xt)Ep(x0|xt−1) [h (x0, 0)] dxt−1 (34)

=

∫
p (xt−1|xt)

(∫
p (x0|xt−1)h (x0, 0) dx0

)
dxt−1 (35)

=

∫ (∫
p (x0|xt−1) p (xt−1|xt) dxt−1

)
h (x0, 0) dx0 (36)

=

∫
p (x0|xt) pY (x0) dx0 (37)

= Ep(x0|xt) [h (x0, 0)] (38)

In Eq. 37, p (x0|xt) equals
∫
p (x0|xt−1) p (xt−1|xt) dxt+1 because this is the Chapman-Kolmogorov equation [30, 32] for

the base backward process. Eq. 38 completes our proof.

A.2. Proof of Proposition 1

First, it can be seen that ph (xt−1|xt) is well normalized since according to Eqs. 9, 10, we have:∫
ph (xt−1|xt) dxt−1 =

∫
p (xt−1|xt)h (xt−1, t− 1) dxt−1

h (xt, t)
(39)

=
h (xt, t)

h (xt, t)
(40)

= 1 (41)

Thus, ph (xt−1|xt) can be viewed as the transition distribution of our bridge. Besides, since xt−1 in ph (xt−1|xt) only
depends on xt, this bridge is a reverse-time Markov process.

Next, we prove that ph (xt) = p(xt)h(xt,t)
Ep(x0)[h(x0,0)]

for all t ∈ [0, T ]. This equation holds for t = T due to our assumption

ph (xT ) =
p(xT )h(xT ,T )
Ep(x0)[h(x0,0)]

. Assuming that this equation holds for time t, we will prove that it holds for time t − 1. Since the

bridge is a reverse-time Markov process, we can compute ph (xt−1) as follows:

ph (xt−1) =

∫
ph (xt−1|xt) p

h (xt) dxt (42)

=

∫
p (xt−1|xt)

h (xt−1, t− 1)

����h (xt, t)

p (xt)����h (xt, t)

Ep(x0) [h (x0, 0)]
dxt (43)

=
h (xt−1, t− 1)

∫
p (xt−1|xt) p (xt) dxt

Ep(x0) [h (x0, 0)]
(44)

=
p (xt−1)h (xt−1, t− 1)

Ep(x0) [h (x0, 0)]
(45)



where Eq. 43 leverages Eq. 9 and the inductive assumption. Eq. 45 completes our proof.
Finally, we prove that ph (xt) is a well normalized distribution as follows:∫

ph (xt) dxt =

∫
p (xt)h (xt, t) dxt

Ep(x0) [h (x0, 0)]
(46)

=

∫
p (xt)Ep(x0|xt) [h (x0, 0)] dxt

Ep(x0) [h (x0, 0)]
(47)

=

∫
p (xt)

(∫
p (x0|xt)h (x0, 0) dx0

)
dxt

Ep(x0) [h (x0, 0)]
(48)

=

∫ (∫
p (xt) p (x0|xt) dxt

)
h (x0, 0) dx0

Ep(x0) [h (x0, 0)]
(49)

=

∫
p (x0)h (x0, 0) dx0

Ep(x0) [h (x0, 0)]
(50)

= 1 (51)

The fact that h (xt, t) = Ep(x0|xt) [h (x0, 0)] in Eq. 47 was proven in Section A.1.

A.3. Closed-form expressions for the explicit and implicit h-Edit updates for Stable Diffusion

In this section, we derive closed-form expressions for the explicit and implicit h-Edit updates corresponding to Eq. 15 and
Eq. 18, respectively, for Stable Diffusion (SD). First, we can express ∇xt log h (xt, t) as follows:

∇xt log h (xt, t) =∇xt log p
h (xt)−∇xt log p (xt) (52)

=
−ϵ̃θ

(
xt, t, c

edit
)

σt
−

−ϵ̃θ
(
xt, t, c

orig
)

σt
(53)

=
−1

σt

(
ϵ̃θ

(
xt, t, c

edit)− ϵ̃θ
(
xt, t, c

orig)) (54)

=
−1

σt

(
weditϵθ

(
xt, t, c

edit)+ (
1− wedit) ϵθ (xt, t,∅)

−
(
worigϵθ

(
xt, t, c

orig)+ (
1− worig) ϵθ (xt, t,∅)

) )
(55)

=
−1

σt

(
weditϵθ

(
xt, t, c

edit)− worigϵθ
(
xt, t, c

orig)+ (
worig − wedit) ϵθ (xt, t,∅)

)
(56)

=
−1

σt
f (xt, t) (57)

Finding the formula of η in Eq. 15 can be somewhat tricky. The key is to examine the equation xbase
t−1 = xt+η∇xt log p (xt)+√

2ηz in Eq. 14, which can be interpreted as sampling xbase
t−1 from the Gaussian backward transition distribution pθ (xt−1|xt).

This implies that if we omit the random term
√
2ηz, the simplified equation xbase

t−1 = xt + η∇xt
log p (xt) corresponds to the

mean of pθ (xt−1|xt), as provided in Eq. 4, and rewritten as follows:

xbase
t−1 =

at−1

at
xt +

(√
σ2
t−1 − ω2

t,t−1 −
σtat−1

at

)
ϵ̃θ

(
xt, t, c

orig)︸ ︷︷ ︸
µ̃θ,ω,t,t−1(xt,corig)

(58)

=
at−1

at
xt +

(√
σ2
t−1 − ω2

t,t−1 −
σtat−1

at

)(
worigϵθ

(
xt, t, c

orig)+ (
1− worig) ϵθ (xt, t,∅)

)
(59)

=
at−1

at
xt −

(√
σ2
t−1 − ω2

t,t−1 −
σtat−1

at

)
σt∇xt

log p (xt) (60)

Eq. 60 suggests that η = −
(√

σ2
t−1 − ω2

t,t−1 −
σtat−1

at

)
σt. One can easily verify that η > 0. It is worth noting that there is

a little mismatch between the coefficients of xt in Eq. 58 and in xbase
t−1 = xt + η∇xt

log p (xt). This is expected because the



standard LMC update assumes a forward diffusion process governed by the SDE dxt =
√
2dwt, which lacks a drift term. In

contrast, the continuous-time forward process of Stable Diffusion follows the SDE dxt =
−βt

2 xtdt+
√
βtdwt, which has the

drift term −βt

2 xt.

It can be inferred that uorig
t mimics the random term

√
2ηz, with the key difference being that it is precomputed during the

forward pass rather than randomly sampled during the backward pass.

According to the above analysis, the explicit h-Edit update for Stable Diffusion is given by:

xbase
t−1 = µ̃θ,ω,t,t−1

(
xedit
t , corig)︸ ︷︷ ︸

xt+η∇ log p(xt)

+ uorig
t︸︷︷︸

√
2ηz

(61)

xedit
t−1 = xbase

t−1 +

(
−
(√

σ2
t−1 − ω2

t,t−1 −
σtat−1

at

)
σt

)
︸ ︷︷ ︸

η

−1

σt
f
(
xedit
t , t

)
︸ ︷︷ ︸
∇ log h(xt,t)

(62)

= xbase
t−1 +

(√
σ2
t−1 − ω2

t,t−1 −
σtat−1

at

)
f
(
xedit
t , t

)
(63)

To derive the implicit h-Edit update, we first write Eq. 58 in the implicit form xt−1 = at−1

at
xt +(√

σ2
t−1 − ω2

t,t−1 −
σtat−1

at

)
ϵ̃θ

(
xt−1, t− 1, corig

)
, which reveals that γ = −

(√
σ2
t−1 − ω2

t,t−1 −
σtat−1

at

)
σt−1. Using

this, we compute xedit
t−1 based on the formula in Eq. 18 as follows:

xedit
t−1 = xbase

t−1 + γ∇xt−1h
(
xbase
t−1, t− 1

)
(64)

= xbase
t−1 +

(
−
(√

σ2
t−1 − ω2

t,t−1 −
σtat−1

at

)
σt−1

)
1

σt−1
f
(
xbase
t−1, t− 1

)
(65)

= xbase
t−1 +

(√
σ2
t−1 − ω2

t,t−1 −
σtat−1

at

)
f
(
xbase
t−1, t− 1

)
(66)

where xbase
t−1 is given in Eq. 61.

One advantage of the natural disentanglement in the h-Edit update is that the guidance scales worig for computing xbase
t−1 in

Eq. 59 and worig for computing ∇ log h (xt, t) in Eq. 56 do not need to be the same. This allows worig in Eq. 59 to follow
the guidance scale used in the forward pass, while worig in Eq. 56 can be chosen arbitrarily. To emphasize this distinction,
we denote worig in Eq. 56 as ŵorig, indicating that it may differ from worig in Eq. 59. This ŵorig can be interpreted as a
hyperparameter controlling how much of the original image’s information is excluded from the editing process. During our
experiments, we observed that worig, ŵorig, and wedit should be chosen such that 0 < worig ≤ ŵorig < wedit.

B. Algorithms

B.1. h-Edit for Combined Editing

In Algorithms 1 and 2, we provide pseudo-codes for the explicit and implicit versions of h-Edit for combined text-guided
and reward-model-based editing.



Algorithm 1 Explicit h-Edit for combined editing, compatible with both deterministic and random inversion, and supporting
integration with the P2P [19].

Require: Original image xorig
0 , reference image xref

0 , original text corig, edited text cedit, guidance weights worig, wedit, ŵorig,
external encoder G, external distance loss L, external guidance weight ρt.

1:
{
xorig
t

}T

t=1
,
{
uorig
t

}T

t=1
= Inversion

(
xorig
0 , corig

)
2: xedit

T = xorig
T

3: for t = T, . . . , 1 do
4: xt = xedit

t

5: ϵ̃θ
(
xt, t, c

orig
)
= worigϵθ

(
xt, t, c

orig
)
+
(
1− worig

)
ϵθ (xt, t,∅)

6: Compute µ̃θ,ω,t,t−1

(
xt, c

orig
)

from ϵ̃θ
(
xt, t, c

orig
)

via Eq. 2
7: xbase

t−1 = µ̃θ,ω,t,t−1

(
xt, c

orig
)
+ uorig

t

8: if text-guided editing then
9: if combined with P2P then

10: Get the attention map M edit
t from ϵθ

(
xt, t, c

edit
)

11: Get the attention map M orig
t from ϵθ

(
xorig
t , t, corig

)
12: M̂ edit

t = P2P
(
M edit

t ,M orig
t , t

)
13: Apply the new attention map M̂ edit

t to ϵθ
(
xt, t, c

edit
)

14: end if
15: f (xt, t) = weditϵθ

(
xt, t, c

edit
)
− ŵorigϵθ

(
xt, t, c

orig
)
+
(
ŵorig − wedit

)
ϵθ (xt, t,∅)

16: x̂t−1 = xbase
t−1 +

(√
σ2
t−1 − ω2

t,t−1 −
σtat−1

at

)
f (xt, t)

17: ϵ̂t = stop_grad
(
weditϵθ

(
xt, t, c

edit
)
+
(
1− wedit

)
ϵθ (xt, t,∅)

)
18: else
19: x̂t−1 = xbase

t−1

20: ϵ̂t = stop_grad
(
worigϵθ

(
xt, t, c

orig
)
+
(
1− worig

)
ϵθ (xt, t,∅)

)
21: end if
22: x0|t =

xt − σtϵ̂t
at

23: gt = −∇xtL
(
G
(
x0|t

)
, G

(
xref
0

))
24: xedit

t−1 = x̂t−1 + ρtgt
25: if text-guided editing and combined with P2P and local blending then
26: xedit

t−1 = local_blend
(
xedit
t−1, x

orig
t−1

)
27: end if
28: end for



Algorithm 2 Implicit h-Edit for combined editing, compatible with both deterministic and random inversions, and supporting
integration with the P2P [19].

Require: Original image xorig
0 , reference image xref

0 , original text corig, edited text cedit, guidance weights worig, wedit, ŵorig,
reconstruction weight λt, external encoder G, external distance loss L, external guidance weight ρt, number of implicit
loops K.

1:
{
xorig
t

}T

t=1
,
{
uorig
t

}T

t=1
= Inversion

(
xorig
0 , corig

)
2: xedit

T = xorig
T

3: for t = T, . . . , 1 do
4: xt = xedit

t

5: ϵ̃θ
(
xt, t, c

orig
)
= worigϵθ

(
xt, t, c

orig
)
+
(
1− worig

)
ϵθ (xt, t,∅)

6: Compute µ̃θ,ω,t,t−1

(
xt, c

orig
)

from ϵ̃θ
(
xt, t, c

orig
)

via Eq. 2
7: xbase

t−1 = µ̃θ,ω,t,t−1

(
xt, c

orig
)
+ uorig

t

8: x
(0)
t−1 = xbase

t−1

9: for k = 0, . . . ,K − 1 do
10: if improving reconstruction then
11: rt−1 = x

(k)
t−1 − xbase

t−1

12: x
(k)
t−1 = x

(k)
t−1 − λt−1rt−1

13: end if
14: if text-guided editing then
15: if combined with P2P then
16: Get the attention map M edit

t−1 from ϵθ

(
x
(k)
t−1, t− 1, cedit

)
17: Get the attention map M orig

t−1 from ϵθ

(
xorig
t−1, t− 1, corig

)
18: M̂ edit

t−1 = P2P
(
M edit

t−1,M
orig
t−1, t− 1

)
19: Apply the new attention map M̂ edit

t−1 to ϵθ

(
x
(k)
t−1, t− 1, cedit

)
20: end if
21: f

(
x
(k)
t−1, t− 1

)
= weditϵθ

(
x
(k)
t−1, t− 1, cedit

)
− ŵorigϵθ

(
x
(k)
t−1, t− 1, corig

)
+(

ŵorig − wedit
)
ϵθ

(
x
(k)
t−1, t− 1,∅

)
22: x̂t−1 = x

(k)
t−1 +

(√
σ2
t−1 − ω2

t,t−1 −
σtat−1

at

)
f
(
x
(k)
t−1, t− 1

)
23: ϵ̂t−1 = stop_grad

(
weditϵθ

(
x
(k)
t−1, t− 1, cedit

)
+

(
1− wedit

)
ϵθ

(
x
(k)
t−1, t− 1,∅

))
24: else
25: x̂t−1 = x

(k)
t−1

26: ϵ̂t−1 = stop_grad
(
worigϵθ

(
x
(k)
t−1, t− 1, corig

)
+

(
1− worig

)
ϵθ

(
x
(k)
t−1, t− 1,∅

))
27: end if
28: x0|t−1 =

x̂t−1 − σt−1ϵ̂t−1

at−1

29: gt−1 = −∇x̂t−1L
(
G
(
x0|t−1

)
, G

(
xref
0

))
30: x

(k+1)
t−1 = x̂t−1 + ρt−1gt−1

31: end for
32: xedit

t−1 = x
(K)
t−1

33: if text-guided editing and combined with P2P and local blending then
34: xedit

t−1 = local_blend
(
xedit
t−1, x

orig
t−1

)
35: end if
36: end for



B.2. Edit Friendly for Combined Editing

In this work, we extend Edit Friendly [24] to combined text-guided and reward-model-based editing tasks by combining it
with the technique in [79]. The pseudo-code for this extension is provided in Algorithm 3. This extension serves as a baseline
for our method in the combined editing setting.

Algorithm 3 Edit Friendly for combined editing, supporting integration with the P2P [19].

Require: Original image xorig
0 , reference image xref

0 , original text corig, edited text cedit, guidance weights worig, wedit, external
encoder G, external distance loss L, external guidance weight ρt.

1: xorig
T ,

{
uorig
t

}T

t=1
= RandomInversion(xorig

0 , corig)

2: xedit
T = xorig

T

3: for t = T, . . . , 1 do
4: xt = xedit

t

5: if text-guided editing then
6: if combined with P2P then
7: Get the attention map M edit

t from ϵθ
(
xt, t, c

edit
)

8: Get the attention map M orig
t from ϵθ

(
xorig
t , t, corig

)
9: M̂ edit

t = P2P
(
M edit

t ,M orig
t , t

)
10: Apply the new attention map M̂ edit

t to ϵθ
(
xt, t, c

edit
)

11: end if
12: ϵ̃θ (xt, t) = weditϵθ

(
xt, t, c

edit
)
+
(
1− wedit

)
ϵθ (xt, t,∅)

13: else
14: ϵ̃θ (xt, t) = worigϵθ

(
xt, t, c

orig
)
+
(
1− worig

)
ϵθ (xt, t,∅)

15: end if
16: Compute µ̃θ,ω,t,t−1 (xt, t) from ϵ̃θ (xt, t) via Eq. 2

17: x0|t =
xt − σtϵ̃θ (xt, t)

at
where at =

√
ᾱt and σt =

√
1− ᾱt

18: gt = −∇xt
L
(
G
(
x0|t

)
, G

(
xref
0

))
19: xedit

t−1 = µ̃θ,ω,t,t−1 (xt, t) + ρtgt + uorig
t

20: if text-guided editing and combined with P2P and local blending then
21: xedit

t−1 = local_blend
(
xedit
t−1, x

orig
t−1

)
22: end if
23: end for
24: return xedit

0

C. Additional Discussion on Related Work

C.1. Training-based Editing

Training-based approaches, such as DiffusionCLIP [33] and Asyrp [35], modify the noise network of a pretrained diffusion
model through fine-tuning or by incorporating an auxiliary network, resulting in a new noise network that supports generating
images with the desired editing attributes. The local directional CLIP loss [17] is commonly used as the training objective.
However, these methods require training a new network for each specific editing target, limiting their adaptability to diverse
editing scenarios in practice. In contrast, InstructPix2Pix [4] trains an entirely new diffusion model that generates images
based on editing instructions. The instruction texts and target edited images for training are generated by GPT-3 [5] and P2P
[19], respectively, meaning that the quality of the edits is inherently tied to P2P’s performance. Additionally, the high training
cost remains a significant drawback of this method.



C.2. Conditional Generation with Diffusion Models

The goal of conditional generation is to sample data from the joint distribution p (x0) p (y|x0), which can be achieved by
learning the score ∇ log p (xt, y) of the joint distribution p (xt, y) via the score matching framework [25, 65]. Class-guided
diffusion model [12] learns a noisy classifier p (y|xt) and combines its gradient with the score ∇ log p (xt) learned by an-
other unconditional diffusion model (e.g., DDPM [22]) to obtain ∇ log p (xt, y). Meanwhile, classifier-free guidance [21]
simultaneously learn both ∇ log p (xt) and ∇ log p (xt|y) using a single noise network. Energy-guided SDE (EGSDE) [83]
extends class-guided diffusion models to solve the image-to-image translation problem. It utilizes a noisy classifier pre-
trained on both the source and target domains to define a similarity score between noisy samples from the two domains. This
score acts as a negative energy guiding the generation of target domain samples toward preserving some properties of the
corresponding source domain samples. The energy-based perspective have also been considered in works on generating com-
positional concepts with diffusion models [40]. FreeDom [79] approximates the time-dependent energy function in EGSDE
using Tweedie’s formula: E (c, xt, t) = Ep(x0|xt) [E (c, x0, t)] ≈ E

(
c, x0|t, t

)
[9, 16]. This eliminates the reliance on a noisy

classifier which is often difficult to obtain in practice and allows FreeDom to leverage any available pretrained model on
clean samples x0 to define the energy function. As a result, FreeDom supports conditional information from segmentation
maps, style images, and face IDs. Similarly, UGD [2] utilizes Tweedie’s formula but employs a different reparameterization
for guidance using external networks.

The EGSDE framework can be considered as a special case of our reverse-time bridge modeling framework, as ours
applies to more general Markov processes rather than just diffusion SDEs. Our framework also provides a formula for the
bridge’s transition distribution, enabling ancestral sampling in a discrete-time setting. Meanwhile, EGSDE usually relies on
the Euler-Maruyama method for approximate sampling because it only has access to the instantaneous velocity at time t.

C.3. Diffusion Bridges and Doob’s h-Transform

Most diffusion bridge methods [10, 39, 41, 63, 85] focus on the image-to-image translation problem which involves matching
two explicit distributions of two domains A, B. They typically assume a diffusion model that generates domain A from
Gaussian noise is given, and apply Doob’s h-transform [15] to the forward process of this diffusion model to map samples of
domain A to those of domain B rather than Gaussian noise. Some approaches like [41, 63] directly learn the h-function, while
others [85] utilize an analytical form of the h-function and learn the score of the reverse bridge. Our method, in contrast,
applies Doob’s h-transform to the backward process to map Gaussian noise to samples with the desired target attributes.

D. Further Details on Experimental Settings
D.1. Text-guided Editing

The P2P hyperparameters for deterministic-inversion-based methods with P2P (including h-Edit-D + P2P) were configured
based on the setup in [27]. Specifically, the sampling step proportions for self-attention and cross-attention controls were set
to 0.6 and 0.4, respectively. For h-Edit-R and EF with P2P, the proportion of sampling steps for self-attention control was
adjusted to 0.35, as 0.6 was found to be excessive for effective editing with these methods. For h-Edit-R and EF without P2P,
the first 15 steps were skipped to ensure faithful reconstruction, as recommended in [24]. This skipping was not required for
their P2P counterparts. For LEDITS++ [3], we adhered to the hyperparameters specified in the original paper.

D.2. Face Swapping

We utilized the official pretrained models for MegaFS, AFS, and DiffFace, available at MegaFS, AFS, and DiffFace, re-
spectively. Since the official pretrained model for FaceShifter is unavailable, we used an unofficial pretrained model from
this repository. For evaluation, we employed a pretrained ArcFace model with the IR-SE-50 backbone ([68, 79]), available
through the InsightFace library for evaluation. This model was also used in h-Edit-R, EF, and FaceShifter1 for generating
swapped faces. For DiffFace, the ArcFace model with the ResNet101 backbone from its official code was used for face
swapping. MegaFS and AFS relied on the ArcFace model with the IR-SE-50 backbone during training but not during face
swapping. Additional evaluations using other face identity representation models are provided in Appendix E.2. CelebA-HQ
images were resized to 256×256 and cropped as x=x[:, :, 35:223, 32:220] to prepare them for input into the
ArcFace model. Following [79], we defined the coefficient ρt for the identity similarity reward gradient (Algorithms 2, 1,
3) as ρface ×

√
ᾱt, where ᾱt is the Stable Diffusion scheduler coefficient at time step t. For h-Edit-R and EF, ρface was set

to 100.0. For h-Edit-R (3s),ρface was reduced to 50.0, which provided a better balance between editing effectiveness and

1FaceShifter uses the ArcFace model with the IR-SE-50 backbone to extract face identity embeddings during both training and generating swapped faces.

https://github.com/zyainfal/One-Shot-Face-Swapping-on-Megapixels
https://github.com/truongvu2000nd/AFS
https://github.com/hxngiee/DiffFace
https://github.com/richarduuz/Research_Project/tree/master/ModelC
https://github.com/TreB1eN/InsightFace_Pytorch


faithfulness when using three optimization steps. To further enhance faithfulness to the original image, we incorporated the
negative LPIPS score as an additional reward alongside identity similarity. The LPIPS score, computed using a pretrained
VGG network, measures the perceptual similarity between xedit

0 and xorig
0 . The coefficient for this reward is similar to that

of the identity similarity reward. For post-processing, we applied a mask generated by the face parsing model in [78] to
preserve the original background while applying edits to the face. This procedure was consistent across all baselines. The
face swapping results without using masks are provided in Appdx. F.5.

D.3. Combined Text-guided and Style Editing

In combined text-guided and style editing, we disabled local blending in P2P as our experiments indicated that it negatively
impacts style editing performance. For EF + P2P, following [79], we scaled the gradient norm of the style loss reward at each
time t by the norm of

[
ϵ
(
xt, t, c

edit
)
− ϵ (xt, t,∅)

]
. This corresponds to defining the coefficient ρt for style editing in EF +

P2P as:

ρt := ρsty ∗
∥∥(ϵ (xt, t, c

edit
)
− ϵ (xt, t,∅)

)∥∥
2

∥gt∥2
(67)

For h-Edit-R + P2P, we scaled the gradient norm of the style reward to match the norm of the text-guided editing function
f (·) in Eq. 24. This approach leverages the disentangled update mechanism unique to our method (Sections 3 and A.3).
Accordingly, the coefficient ρt for the style editing term in h-Edit-R + P2P is defined as:

ρt := ρsty ∗
∥f (xt, t)∥2

∥gt∥2
(68)

E. Additional Experimental Results
E.1. Text-guided Editing

E.1.1 Deterministic-inversion-based methods

Fig. 5 shows additional edited images produced by h-Edit-D + P2P alongside other deterministic-inversion-based editing
methods with P2P [7, 27, 38, 45, 46]. h-Edit-D + P2P consistently outperforms the baselines in handling difficult edits, while
maintaining faithful reconstruction, as reflected in the quantitative results in Table 1. For instance, our method successfully
removes the boy’s tie (first row, right) and transforms the car into a motorcycle (seventh row, right), tasks where most other
methods struggle. Although NP + P2P and NT + P2P demonstrate strong editing capabilities, as evidenced by their high local
CLIP similarity scores in Table 1, they are not good at preserving non-edited content compared to other methods. Conversely,
NMG + P2P, StyleD + P2P, and PnP Inv + P2P achieve high fidelity to the original image, but fail to deliver effective edits in
many cases.

E.1.2 Random-inversion-based methods

In Fig. 6, we present additional visual comparisons of h-Edit-R + P2P against EF + P2P and LEDITS++. These visualizations
are consistent with the quantitative results in Table 1, confirming that our method surpasses both EF + P2P and LEDITS++ in
editing effectiveness and faithfulness. Further qualitative results of h-Edit-R and EF without P2P are shown in Fig. 7, where
our method once again demonstrates superior performance.

E.2. Face Swapping

Since h-Edit-R, EF, and FaceShifter utilize the same ArcFace model for both face swapping and evaluation, this may lead
to more favorable identity matching results for these methods compared to other baselines. To ensure a fair comparison,
we reassessed the identity transfer quality of all methods using alternative face identity representation models. Specifically,
we used VGG-Face [49], FaceNet128, FaceNet512 [59] and ArcFace with the ResNet34 backbone. These models were
implemented in TensorFlow with pretrained weights available through the DeepFace repository [60, 61]. Quantitative results
of this evaluation are provided in Table 2.

Interestingly, DiffFace achieves the best performance across all face identity representation models used for evaluation.
h-Edit-R (3s) and h-Edit-R rank second and third, respectively, outperforming EF and FaceShifter but falling slightly short
of DiffFace. This demonstrates that our method is capable of effective face swapping, even without being explicitly trained
for this task like DiffFace, as further illustrated by the qualitative results in Fig. 8. We hypothesize that DiffFace’s good

https://github.com/serengil/deepface


Figure 5. Additional visual comparisons between h-Edit-D + P2P and other deterministic-inversion-based methods with P2P.

Model Metric FaceShifter MegaFS AFS DiffFace EF h-edit-R h-edit-R (3s)

ArcFace (ResNet34) Cosine Sim. ↑ 0.54 0.33 0.44 0.56 0.50 0.52 0.55

VGG-Face L2 Dist. ↓ 0.99 1.12 1.03 0.96 1.02 1.00 0.97

FaceNet128 L2 Dist. ↓ 0.83 1.02 0.86 0.77 0.83 0.80 0.77

FaceNet512 L2 Dist. ↓ 0.81 1.01 0.87 0.77 0.83 0.81 0.77

Table 2. Face identity transfer results evaluated using face identity representation models different from the ArcFace model with the
IR-SE-50 backbone.

performance may be attributed to (i) its use of an ArcFace model with a larger backbone (ResNet101) for face swapping and
(ii) training on a larger dataset compared to the pretrained diffusion model employed by our method.

E.3. Combined Text-guided and Style Editing

Fig. 9 illustrates the changes in style loss, local CLIP similarity, and LPIPS score as the style editing coefficient ρsty is
varied from 0.1 to 1.0 for h-Edit-R + P2P and from 1.1 to 2.0 for EF + P2P. While the ranges of ρsty differ, the resulting
style loss, local CLIP similarity, and LPIPS score ranges are comparable, validating the appropriateness of our parameter
selection. Increasing ρsty improves style transfer (lower style loss) but compromises text-guided editing quality in terms
of both effectiveness and faithfulness (lower local CLIP similarity and higher LPIPS respectively). Since determining the



Figure 6. Additional qualitative results of h-Edit-R, EF, and LEDITS+++ with P2P.

optimal value of ρsty for achieving a balance between style and text-guided editing is nontrivial, we identified candidate
values near the intersection of the style loss and LPIPS curves. Combining this with visual inspection, we selected ρsty value
of 0.6 for h-Edit-R and 1.5 for EF.

Although EF exhibits similar quantitative trends to our method when ρsty is varied, its qualitative behavior is notably differ-
ent. As shown in Fig. 10, our method smoothly incorporates more style information into the edited images while preserving
their global structure as ρsty increases. In contrast, EF often modifies the global structure of the images to accommodate the
increased ρsty. This advantage of our approach likely stems from the natural decomposition of the update into reconstruc-
tion and editing terms (Eq. 18), enabling style edits to be added to the text-guided editing term with minimal impact on the
reconstruction term. EF, on the other hand, lacks such a decomposition, meaning the introduction of the style editing term
directly affects reconstruction. These findings highlight the limitations of relying solely on quantitative metrics to compare
our method with EF, as they may fail to capture important qualitative differences.



Figure 7. Additional qualitative results of h-Edit-R, EF (without P2P), and LEDITS++.

In Fig. 11, we present addition visualizations comparing h-Edit-R + P2P and EF + P2P, with ρsty set to the optimal values
for each method. The results clearly demonstrate that our method combined with P2P surpasses EF + P2P in both style
transfer and text-guided editing, achieving superior quality and consistency.

E.4. Results when Combining with MasaCtrl and Plug-and-Play

In this section, we compare the performance of h-Edit with other baselines when combined with MasaCtrl [6] and Plug-and-
Play (PnP) [70]. For MasaCtrl, we adopted the implementation from the PnP Inversion paper [27] which omits the source
prompt during editing. We observed that this approach yields more stable results compared to using the source prompt.
Since editing methods like NT, NP and NMG are incompatible with this setting, they were excluded in our experiments with
MasaCtrl.

As shown in Table 3, both h-Edit-R and h-Edit-D significantly outperform EF and deterministic-inversion-based baselines
when combined with either MasaCtrl or PnP. For example, with PnP, h-Edit-D and h-Edit-R surpass NT and EF by 0.014
and 0.029 on the local directional CLIP metric, while achieving about 0.70 and 0.90 lower LPIPS scores, respectively. It is
also evident that PnP is a more effective attention control method than MasaCtrl on the PIE-Bench dataset. However, both
PnP and MasaCtrl are less effective and stable than P2P [19], as indicated by our quantitative results in Tables 1 and 3, and
through our observations.

https://github.com/cure-lab/PnPInversion


Figure 8. Additional qualitative comparisons between our method and other face swapping baselines. Identity similarity scores (higher is
better) computed using ArcFace with the ResNet34 backbone are displayed below each output.
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Figure 9. Changes in style loss, local CLIP similarity, and LPIPS score of h-Edit-R + P2P and EF + P2P when ρsty is varied from 0.1 to
1.0 for h-Edit-R + P2P and from 1.1 to 2.0 for EF + P2P.

Attn. Inv. Method CLIP Sim.↑ Local CLIP↑ DINO Dist.×102↓ LPIPS×102↓ SSIM×10↑ PSNR↑

MasaCtrl
Deter. PnP Inv 0.243 0.068 2.47 8.79 8.13 22.64

h-Edit-D 0.243 0.071 2.38 8.62 8.16 22.85

Random EF 0.241 0.059 2.75 8.57 8.15 22.49
h-Edit-R 0.242 0.065 2.46 8.42 8.18 22.68

PnP
Deter.

NP 0.250 0.152 1.84 8.55 8.19 25.05
NT 0.251 0.144 1.58 7.94 8.24 25.53

NMG 0.253 0.101 2.08 9.96 8.02 23.20
PnP Inv 0.253 0.109 1.75 9.29 8.15 24.18
h-Edit-D 0.254 0.158 1.51 7.28 8.33 25.68

Random EF 0.253 0.118 1.48 6.87 8.32 24.77
h-Edit-R 0.255 0.147 1.39 5.97 8.43 25.75

Table 3. Text-guided editing results with MasaCtrl [6] and Plug-n-Play [70] on PIE-Bench. h-Edit significantly outperforms other baselines
in all metrics.
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Figure 11. Additional qualitative results of h-Edit-R + P2P and EF + P2P for the combined style and text-guided editing task. Style loss
values (lower is better) are displayed below each output image.

F. Ablation Studies
F.1. Impact of ŵorig

ŵorig CLIP Sim.↑ Local CLIP↑ DINO Dist.×102↓ LPIPS×102↓ SSIM×10↑ PNSR↑
1.0 0.256 0.118 1.64 6.00 8.38 25.75
3.0 0.255 0.137 1.52 5.49 8.44 26.36
5.0 0.256 0.159 1.45 5.08 8.50 26.97
7.0 0.254 0.173 1.60 5.22 8.51 26.94
9.0 0.241 0.172 2.30 6.44 8.40 26.03

Table 4. Quantitative results of h-Edit-R + P2P when varying ŵorig from 1.0 to 9.0 while keeping wedit and worig fixed at 7.5 and 1.0,
respectively. The best value for each metric is highlighted in bold.

In this section, we study the impact of ŵorig in Eq. 24 by varying its value within {1.0, 3.0, 5.0, 7.0, 9.0} while keeping worig =
1 and wedit = 7.5 fixed for h-Edit-R + P2P. Quantitative and qualitative results are shown in Table 4 and Fig. 12, respectively.
The results indicate that increasing ŵorig to a suitable value enhances both editing accuracy and fidelity. For example, raising
ŵorig from 1.0 to 7.0 restores the woman’s armor suit in the first row on the left of Fig. 12 while also straightening her hair.
Similarly, it effectively removes the balloons in the background while preserving the original appearance of the girl in a red
dress in the twelfth row on the left. As discussed in Section A.3, ŵorig controls how much of the original image’s information
is excluded during editing. Larger values of ŵorig helps isolate essential information, enabling precise localization of edits.
However, excessively high values (i.e., exceeding wedit) may degrade reconstruction quality by removing too much original



information. This is evident in the case of changing colorful paint to drab paint in the last row on the right. These observations
suggest that the optimal value of ŵorig is case-dependent, for wedit = 7.5, we found ŵorig = 5.0 achieves the best balance
between editing effectiveness and faithfulness.

F.2. Impact of wedit

We investigate the influence of wedit in Eq. 24 for h-Edit-R + P2P by analyzing edited images across different
(
wedit, ŵorig

)
pairs: {(7.5, 3.0) , (7.5, 5.0) , (10.0, 7.0) , (10.0, 9.0) , (12.5, 9.0) , (12.5, 11.0)}. Qualitative results are provided in Fig. 13.
In general, higher wedit values enhance editing effectiveness, allowing to handle difficult edits. For example, increasing wedit

from 7.5 to 12.5 successfully introduces dragons to the images in the final row of Fig. 13. However, higher wedit can degrade
reconstruction quality in non-edited regions, requiring a proportional increase in ŵorig to mitigate this effect. Even so, this
approach may not succeed in all scenarios. We can overcome this issue by using multiple optimization steps (available for
implicit h-Edit). This technique progressively refines edits via applying the score function iteratively, effectively handling
challenging cases while maintaining good reconstruction.

F.3. Impact of multiple optimization steps in implicit h-Edit

Fig. 14 highlights the advantage of the implicit version of h-Edit when utilizing multiple optimization steps. Increasing the
number of optimization steps significantly enhances editing accuracy while maintaining minimal degradation in reconstruc-
tion quality. This capability is unique to the implicit version and cannot be replicated by simply increasing the number of
sampling steps. For instance, the explicit version, even with 200 sampling steps, performs only comparably or slightly better
than the default implicit version with 50 sampling steps and one optimization step, yet it falls notably short compared to the
implicit version with three optimization steps.

Additionally, the effectiveness of multiple optimization steps is evident in the face swapping task, where h-Edit-R with
three optimization steps outperforms its one-step counterpart, as presented in Section E.2.

F.4. Comparison between explicit and implicit versions

Attn. Steps Method CLIP Sim. Local CLIP↑ DINO Dist.×102↓ LPIPS×102↓ SSIM×10↑ PSNR↑

None
25 h-Edit-R (ex) 0.252 0.139 1.10 5.10 8.49 26.79

h-Edit-R (im) 0.255 0.148 1.39 5.98 8.41 25.77

50 h-Edit-R (ex) 0.253 0.141 1.10 5.07 8.51 27.00
h-Edit-R (im) 0.255 0.148 1.28 5.55 8.46 26.43

P2P
25 h-Edit-R (ex) 0.254 0.153 1.38 5.04 8.50 26.81

h-Edit-R (im) 0.255 0.150 1.38 5.03 8.50 26.88

50 h-Edit-R (ex) 0.256 0.158 1.47 5.10 8.50 26.85
h-Edit-R (im) 0.256 0.159 1.45 5.08 8.50 26.97

Table 5. Quantitative comparison of h-Edit-R implicit and explicit forms, with and without P2P, evaluated over 25 and 50 sampling steps.

In this section, we compare the explicit and implicit versions of h-Edit-R with and without P2P, using either 25 or 50
sampling steps. Without P2P, the implicit version generally performs more accurate edits than the explicit counterpart,
though the results vary by case, as shown in Table 5 and Fig. 15. However, when combined with P2P, the two versions
perform comparably. Instances where implicit h-Edit-R outperforms the explicit version, and vice versa, are illustrated in
Fig. 16. Our preference for the implicit version as the default is not primarily due to its performance relative to the explicit
version but rather its ability to support multiple optimization steps, which offers greater flexibility.

F.5. Face swapping without masks

We demonstrate that our h-Edit-R method can perform face swapping without relying on mask postprocessing techniques
for reconstruction, with qualitative results of h-Edit-R (3s) shown in Fig. 17. h-Edit-R without masks achieves near-perfect
faithful reconstruction, with minor background changes. For instance, in the third row (left), it preserves background text,
while in more complex backgrounds, such as dense text (last row, right) or intricate shirt patterns (last row, left), it maintains
individual features with slight background blurring. This capability is unique to our method, as state-of-the-art approaches
like DiffFace and FaceShifter rely on masks for faithful reconstruction. These findings suggest that in scenarios where masks
are unavailable, our method is a robust choice for face editing with minimal reconstruction error.



Inv. Attn. Method Time (s)↓

Deter. P2P

NP 21.68
NT 186.84

StyleD 467.16
NMG 35.67

PnP Inv 37.65
h-Edit-D 48.63

Random
None

EF 23.20
LEDITS++ 18.31
h-Edit-R 33.07

P2P EF 32.95
h-Edit-R 50.21

(a) Editing time for text-guided editing methods

Method Time (s)↓

FaceShifter 1.31
MegaFS 2.29

AFS 1.03
DiffFace 46.42

EF 26.11

h-edit-R 26.34
h-edit-R (3s) 51.36

(b) Editing time for face swapping methods

Inv. Attn. Method Time (s)↓

Random P2P EF 44.32
h-Edit-R 50.68

(c) Editing time for combined text-guided and style edit-
ing methods

Table 6. Editing times per image (in seconds) of our method and baselines across three tasks: text-guided editing (left), face swapping (top
right), and combined text-guided and style-based editing (bottom right). Experiments were conducted on an NVIDIA V100 GPU 32GB.

F.6. Running time

Table 6 shows the editing times per image of our method and baselines for three editing tasks: text-guided editing, face
swapping, and combined text-guided and style editing.

In the text-guided setting, among deterministic-inversion-based methods, h-Edit-D + P2P requires longer computation
time (48.63s) than NP + P2P (21.68s), PnP Inv + P2P (37.65s), and NMG + P2P (35.67s) due to additional U-Net calls for
reconstruction and editing term computation. However, this additional 12-second overhead compared to PnP Inv + P2P yields
significantly improved performance, with a 0.05 increase in local CLIP Similarity and 0.6 × 10−2 better LPIPS (Table 1).
While NP + P2P achieves the fastest processing time by simply substituting source embedding for null embedding during
editing, it suffers from substantially lower reconstruction quality. Our favorable trade-off between computation time and
editing quality extends to comparisons with random-inversion-based methods. LEDITS++ is the fastest as they leverage
high-order solvers [13, 43, 84] - a feature that could also be incorporated into our method.

In the face swapping task, diffusion-based methods generally require longer processing time per image compared to
GAN-based methods (FaceShifter [37]: 1.31s) or StyleGAN-based approaches (MegaFS [86]: 2.29s, AFS [71]: 1.03s) due
to their iterative sampling nature. Among diffusion-based methods, h-Edit-R (26.34s) and EF (26.11s) achieve the fastest
processing times. Despite sharing the same sampling steps, h-Edit-R outperforms DiffFace (46.42s) in efficiency as DiffFace
requires additional gaze detection and face parsing models at each step, beyond the common ArcFace computation. While
our h-Edit-R with 3 optimization steps variant shows slightly increased computation time (51.36s), it achieves better ArcFace
ID similarity compared to DiffFace with comparable reconstruction quality. Notably, as training-free approaches, our method
and EF offer immediate deployment advantages over DiffFace and GAN-based methods that require task-specific training.

In the combined text-guided and style editing task, h-Edit-R + P2P (50.68s) shows only a moderate increase from its
text-guided variant (50.21s) by avoiding U-Net backpropagation for style editing. In contrast, EF + P2P with FreeDom [79]’s
technique requires additional backpropagation computation, resulting in a larger time increase from its text-guided counter-
part (32.95s to 44.32s).

G. Analysis on Metrics
During our text-guided editing experiments, we observed that CLIP similarity and DINO distance metrics could yield in-
consistencies between quantitative and qualitative results. For CLIP similarity, we hypothesize that this occurs because the
attribute being edited often constitutes only a small portion of the target prompt. In such cases, even accurate edits may re-
sult in minor improvements in CLIP similarity, whereas unintended changes to other attributes can lead to significant drops.
Consequently, methods that make no edits and simply preserve the original image may achieve comparable or better CLIP
similarity scores than methods that successfully perform challenging edits. This phenomenon is evident with NP and NT
- the two strong editing methods capable of handling challenging edits more effectively than PnP Inv, as shown in Fig. 5.



However, their CLIP similarity scores are lower than that of PnP Inv, as illustrated in Table 1.
In the case of DINO distance, since this metric is computed on the entire image rather than the non-editing region, it can

yield poor results in significant editing scenarios like changing background color or removing objects even when original
non-editing content is perfectly preserved.

H. Ethical Considerations
Our work aims to advance the development of effective and efficient diffusion-based image editing methods, fostering con-
tributions to both academic research and real-world applications. However, we recognize that these advancements could be
misused for harmful purposes, such as generating misinformation or damaging individuals’ reputations. To address these
risks, it is crucial to implement safeguards that detect and prevent unethical applications. One potential approach is to em-
ploy a detection framework that analyzes edited images and flags or discards outputs that violate ethical guidelines or pose
potential harm to society. Such proactive measures can help ensure that this technology is used responsibly and ethically.



Figure 12. Qualitative results of h-Edit-R + P2P when varying ŵorig from 1.0 to 9.0 while keeping wedit and worig fixed at 7.5 and 1.0,
respectively. Increasing ŵorig to an appropriate value improves both editing accuracy and fidelity.



Figure 13. Qualitative results of h-Edit-R + P2P when varying
(
wedit, ŵorig) within {(7.5, 3.0), (7.5, 5.0), (10.0, 7.0), (10.0, 9.0),

(12.5, 9.0) (12.5, 11.0)}. Higher wedit values effectively handle challenging edits but may compromise reconstruction quality.



Figure 14. Qualitative examples of implicit h-Edit-R + P2P with 50 sampling steps using one, two and three optimization steps (1s/2s/3s),
compared to its explicit counterpart with 200 sampling steps. More optimization steps effectively handle challenging cases, outperforming
increased sampling steps in the explicit form.
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Figure 15. Qualitative visualizations comparing the explicit and implicit versions of h-Edit-R with 25 sampling steps.
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Figure 16. Qualitative visualizations comparing the explicit and implicit versions of h-Edit-R + P2P with 25 sampling steps.

Figure 17. Swapped faces generated by h-Edit-R (3s) with and without masks.
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