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A. The proof of Theorem 1

As shown in Definition 1, within the general Simplex ETF framework, in addition to β, the term
√

K
K−1 in the matrix M

serves as a scaling factor, ensuring that each column vector has a fixed length. This scaling ensures that each column vector
in M has an equal norm, which is crucial for maintaining the isometric property required by a Simplex ETF. The scaling

factor β
√

K
K−1 , plays a crucial role in shaping the model’s probability distribution, output confidence, and ultimately its

classification performance. A detailed analysis of this factor provides a deeper understanding of its adjustment mechanism
and core functionality in classification models.

Class probability expression in softmax function. The softmax function is used to map the raw scores to class probabili-
ties. The probability pi,k for class k is given by:
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To simplify the notation, we define σi = zim̂i, where m̂i is the i-th column vector of the matrix U
(
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)
. The

class probability expression then simplifies to:
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Further neglecting the normalization constant
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, the predicted confidence p̂i is defined as p̂i =

maxk pi,k, which can be approximated as:
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This equation clearly demonstrates the critical role of the scaling factor β
√

K
K−1 in the Softmax function. The magnitude

of the scaling factor directly determines the concentration of the class probability distribution: a larger β
√

K
K−1 significantly

increases the probability of the higher-scoring class, sharpening the confidence for that class; a smaller value leads to a more
uniform probability distribution, increasing the uncertainty of the output of the model.

Impact of scaling factor: Changes in class probability ratios. Further analysis of the relative probability ratio between
the predicted class i and other classes j is formulated as:

p̂i
pj

= exp
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)
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This equation indicates that the relative relationship between the probabilities of classes is governed by the difference

σi − σj , which is scaled by the factor β
√

K
K−1 . In other words, the scaling factor adjusts the impact of the score difference

on the final classification decision by amplifying the difference in σi − σj , thereby strengthening the model’s ability to
discriminate between classes.

It is important to note that while the scaling factor does not alter the absolute ranking of class probabilities, it significantly
adjusts the relative relationships between probabilities, making the model more sensitive to the geometric structure of the
classes and their distinctions.



Limit behavior analysis: from random guessing to determined. To better understand the impact of the scaling factor,
consider its behavior in the limiting cases:

1. When β
√

K
K−1 → 0, the class probability distribution tends towards uniformity:

lim
β
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K
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=
1

K
. (5)

In this case, the probabilities for all classes become equal, and the model behaves as if making random guesses, unable to
effectively distinguish between classes.

2. When β
√

K
K−1 → ∞, the Softmax function approaches the Argmax function, and the class probability distribution

becomes nearly deterministic:
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where i is the class with the highest score. In this extreme case, the model’s output becomes nearly deterministic, always
predicting the highest-scoring class.

Role of scaling factor: from adjustment to optimization. The scaling factor β
√

K
K−1 in the model serves more than just

an adjustment function for the class probability distribution. It amplifies the score differences σi − σj , thereby enhancing
the model’s ability to distinguish between classes. Specifically, by enlarging the differences in class scores, the scaling factor
increases the probability of the higher-scoring classes, improving the model’s discriminative ability. When the factor is
smaller, the class probabilities become more uniform, leading to weaker classification performance.

Thus, the flexible adjustment of the scaling factor allows the model to appropriately calibrate the classification confidence
across different tasks and data distributions. The optimization of this factor not baseline makes the Softmax function’s output
more flexible but also leverages the geometric structure of the classes to enhance confidence calibration.

B. Implementation details
Experimental environment and configuration. All experiments are conducted on the Ubuntu 20.04.4 LTS operating
system, Intel(R) Xeon(R) Gold 5220 CPU @ 2.20GHz with a single NVIDIA A40 48GB GPU, and 512GB of RAM. The
framework is implemented with Python 3.8.19 and PyTorch 2.0.1. Other key packages include numpy 1.23.5, pandas 2.0.3,
and scipy 1.10.1.

Datasets. We conduct model calibration experiments on various benchmark datasets, including CIFAR-10, CIFAR-100 [9],
SVHN [14], and Tiny-ImageNet [11] aiming to evaluate calibration techniques across a spectrum of data complexities and
challenges. CIFAR-10 and CIFAR-100 consist of 32 × 32 RGB images of 10 and 100 classes, respectively, with 50,000
training and 10,000 test samples. They are widely used as benchmarks for computer vision tasks, offering a controlled and
well-understood testing environment for model calibration. SVHN comprises 32× 32 images of digits (0–9) extracted from
real-world street view scenes, containing 73,257 training and 26,032 test images. Its inherent variability and real-world
noise introduce unique challenges for calibration studies. Tiny-ImageNet, a subset of the larger ImageNet dataset, includes
64 × 64 images spanning 200 classes, with 500 training, 50 validation, and 50 test samples per class. Compared to CIFAR
datasets, Tiny-ImageNet demands greater generalization capabilities due to its higher resolution, broader category set, and
limited training samples per class. Overall, these datasets provide a range of conditions to systematically evaluate calibration
methods under varying levels of data complexity and difficulty.

To assess model robustness, we explore calibration performance under distributional shifts and out-of-distribution (OOD)
scenarios. For distributional shifts, CIFAR-10 and CIFAR-100 are evaluated on their corrupted versions, CIFAR-10-C and
CIFAR-100-C [6], which feature 15 corruption types (e.g., noise, blur, brightness) at 5 severity levels. For OOD detection,
we test models trained on each dataset against samples from other datasets, leveraging their distinct visual and semantic
characteristics. For instance, models trained on SVHN are evaluated on CIFAR-10 and CIFAR-100, while those trained
on CIFAR datasets are tested on each other and SVHN. This comprehensive evaluation framework highlights the interplay
between calibration quality and model generalization.



Training details. Following [8], we train a Wide Residual Network (WRN) 28-10 [24] across all datasets. Training ex-
periments are conducted for 600 epochs using the Adam optimizer with a learning rate of 10−4, applying early stopping
based on validation loss. All validation experiments are derived from the training set by reserving 15% of the samples for
CIFAR-10 and SVHN, and 5% for CIFAR-100. To further evaluate our method, we also train ResNet50 [5] and ResNet101
[5] backbones using the setting [12] for calibration performance. We employ the SGD optimizer with a momentum of 0.9
and an initial learning rate of 0.1. The learning rate is reduced by factor 10 at predefined intervals during training.

Reproduced details. We provide reproduced hyperparameter details of baseline methods as follows: (a) LS [18]: Following
[13], we report the results obtained with α = 0.05. (b) FL [13]: We train the models with a fixed regularization parameter
γ = 3. (c) Mixup [21]: We use a hyperparameter α of 0.2, the best performing one in [21]. (d) MIT [23]: We specifically use
MIT-L, with hyperparameter α = 1.0, as applied in the main experiments of [23]. (e) FLSD [13]: Following the schedule
in [13], we use the parameter γ = 5 for the samples whose output probability for the ground-truth class is within [0, 0.2),
otherwise we use the parameter γ = 3. (f) CPC [1]: We set the weights of binary discrimination and binary exclusion losses
as 0.1 and 1.0, respectively. (g) ACLS [16]: We set λ1 = 1.0, λ2 = 0.1, margin mgn = 10.0, and α = 0.1 for general
experiments, but adjusted mgn to 6.0 for CIFAR-10 to better suit its characteristics. (h) MMCE [10]: We report the results
obtained with α = 0.5 in CIFAR100 and α = 1.5 in CIFAR10 and SVHN. (i) PLP [22]: We set hyperparameter γ, which
determines the starting epoch at which the top layers begin to be frozen, to 1.25, as mentioned in [22]. (j) TST and VTST
[8]: We set the number of neurons in the final hidden layer output to 128.

Evaluation protocols. We follow standard protocols [4, 15] and utilize the Expected Calibration Error (ECE), and Adaptive
Expected Calibration Error (AECE) for evaluating network calibration performance. Expected Calibration Error (ECE)
quantifies the expected E [|P (ŷi = yi|p̂i)− p̂i|] of the absolute difference between predicted confidence and actual accuracy.
ECE is calculated by dividing the confidence range (0, 1] into 15 equally spaced bins and averaging the absolute differences
within each bin, weighted by bin size:

ECE =

M∑
m=1

|Bm|
n

∣∣∣∣Acc(Bm)− Conf(Bm)

∣∣∣∣, (7)

where |Bm| is the number of samples in bin m, n is the total number of samples, Acc(Bm) denotes the accuracy within
bin Bm, and Conf(Bm) represents the average confidence within the bin. Bins are uniformly spaced over the range (0, 1],
ensuring a consistent confidence interval width of 1/M . Following standard practice, we set bins M = 15. The difference
between Acc and Conf can indicate the calibration gap for model calibration. Adaptive Expected Calibration Error (AECE)
enhances ECE by dynamically adjusting the bin boundaries through the confidence distribution of the samples. In contrast to
ECE with fixed bins, AECE employs an adaptive binning strategy where bin sizes are determined to evenly distribute samples
across bins. This approach facilitates a more effective assessment of calibration performance, particularly for imbalanced or
skewed confidence distributions. Besides, Top-1 classification accuracy is reported for discriminative evaluation. For OOD
detection, we also compare AUROC and FPR95, adhering to standard evaluation protocols [17].

CIFAR-10 CIFAR-100 SVHN

baseline +Ours baseline +BalCAL baseline +BalCAL

Acc↑ ECE↓ Acc↑ ECE↓ Acc↑ ECE↓ Acc↑ ECE↓ Acc↑ ECE↓ Acc↑ ECE↓

ACLS[16] 93.12 5.26 93.07↓ 2.10↓ 72.36 13.08 72.36↑ 2.07↓ 95.33 3.20 95.35↑ 1.47↓
LS[18] 92.12 2.79 92.16↑ 2.88↑ 73.58 6.03 73.60↑ 3.86↓ 95.50 3.77 95.52↓ 1.52↓
FL[13] 92.11 1.99 92.06↓ 1.32↓ 71.54 14.26 72.06↑ 1.16↓ 94.79 1.24 94.71↓ 1.70↑

FLSD[13] 92.42 1.72 92.35↓ 1.16↓ 71.19 14.20 71.59↑ 1.08↓ 94.60 1.03 94.68↑ 1.74↓
CPC[1] 91.56 6.28 91.71↑ 2.47↓ 73.33 12.53 73.31↓ 7.95↓ 94.73 1.61 94.83↑ 0.85↓

MMCE[10] 90.04 3.60 90.24↑ 1.72↓ 68.77 17.18 70.28↑ 3.09↓ 93.99 2.30 94.60↑ 2.76↑
Mixup[21] 94.71 2.56 94.72↑ 1.25↓ 77.05 4.51 76.40↓ 2.27↓ 94.82 3.75 92.38↓ 1.46↓
MIT[23] 94.27 2.18 94.72↑ 0.69↓ 73.38 12.31 75.05↑ 3.06↓ 93.69 0.78 94.22↑ 0.75↓

Table 1. Results of combination ours with commonly baseline calibration methods. Green arrows indicate improved performance, while
red arrows indicate decreased performance.



C. More evaluation results
Combination ours with baseline calibration methods. We combine BalCAL with common baseline calibration methods,
which consist of loss-based(ACLS[16], LS[18], FL[13], FLSD[13], CPC[1], MMCE[10]) and augment-based (Mixup[21]
and MIT[23]) methods in Table 1. We can find that model performance presents improvements on most baseline methods,
especially ECE. This indicates that our method has strong compatibility and the potential to enhance model performance.

Extended Architectures and Datasets We conducted extensive experiments on additional model architectures, including
WRN-26-10 [24], DenseNet-121 [7], and ViT-B 16 [3], as well as on larger datasets such as ImageNet [2]. We also incorpo-
rated new comparative methods [19, 20] to further validate our approach. The results are presented in Tab. 2 and Tab. 3, where
the experimental setup for Tab. 2 follows [13], and the setup for Tab. 3 adheres to [3]. Our method consistently demonstrates
superior performance across all evaluated scenarios.

Method

WRN-26-10 DenseNet-121

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

Acc↑ ECE↓ Acc↑ ECE↓ Acc↑ ECE↓ Acc↑ ECE↓

Vanilla 96.03 3.37 79.82 10.98 95.05 4.02 77.73 12.07
DualFocal∗ 96.04 0.81 80.09 1.79 94.57 0.57 77.60 1.81

PCS∗ - 0.99 - 1.92 - 0.78 - 2.75
Ours 96.24 0.79 80.27 1.51 95.35 0.53 77.81 1.77

Table 2. Calibration Performance Across Diverse Model Architectures. ∗ denotes paper results.

Methods
CIFAR-100 ImageNet

Acc↑ ECE↓ AECE↓ Acc↑ ECE↓ AECE↓

Vanilla 92.67 1.75 1.45 81.85 5.74 5.72
MMCE[10] 92.76 1.27 1.08 81.68 4.91 4.86
DualFocal 92.73 1.25 1.05 81.94 1.69 1.61

TST[8] 92.10 1.09 1.27 81.04 4.38 4.31
VTST[8] 92.67 1.49 1.34 80.00 2.01 1.91

Ours 92.69 0.96 0.97 82.32 1.48 1.49

Table 3. Calibration Analysis on ViT-B 16.

Uncertainty evaluation in OOD detection. In Table 4, we examine model confidence and entropy for OOD samples. Ide-
ally, OOD samples should present low confidence and high entropy, reflecting the model’s caution with unknown data. Our
method can align with this trend and achieve the best performance with lower confidence and higher entropy, indicating sig-
nificant uncertainty regarding unfamiliar samples. Such uncertainty enhances the model’s self-correction ability, improving
adaptability in OOD detection and ensuring reliable performance across diverse samples.

Methods
CIFAR-10 CIFAR-100 SVHN

SVHN CIFAR-100 SVHN CIFAR-10 CIFAR-10 CIFAR-100

Conf↓ Entropy↑ Conf↓ Entropy↑ Conf↓ Entropy↑ Conf↓ Entropy↑ Conf↓ Entropy↑ Conf↓ Entropy↑

Vanilla 86.35 34.96 89.69 27.02 86.17 40.02 83.24 47.72 81.65 51.08 81.38 51.41
ACLS[16] 90.55 26.74 90.73 26.56 68.33 134.92 67.73 136.49 77.95 66.44 79.18 62.84

LS[18] 85.76 53.63 85.33 55.88 52.89 238.43 55.55 226.29 65.93 116.51 67.47 112.34
mixup[21] 82.04 56.27 81.51 61.30 64.21 149.04 59.25 175.28 60.38 121.14 62.16 116.57
MIT[23] 71.20 77.50 79.03 56.81 59.67 133.32 67.18 106.62 79.03 56.37 77.40 60.68
FL[13] 75.52 63.65 75.07 65.44 69.43 96.71 70.82 89.72 62.97 106.21 63.79 104.49

FLSD[13] 73.15 69.53 75.42 64.58 69.10 101.06 70.10 91.70 66.39 95.83 66.45 95.61

CPC[1] 89.64 37.11 86.97 45.70 66.52 171.02 60.79 200.46 57.38 140.76 57.67 140.22
PLP[22] 87.55 32.94 86.85 35.59 70.25 110.65 68.29 113.99 81.84 50.55 82.32 49.34

MMCE[10] 66.51 97.36 71.26 84.60 68.71 102.19 71.71 91.51 36.41 185.99 36.84 184.77
TST[8] 68.51 95.73 72.08 84.35 60.95 144.44 58.13 149.60 61.80 118.68 61.93 118.30

VTST[8] 76.34 71.87 77.12 70.79 54.50 191.72 54.78 184.83 70.71 87.10 70.99 86.85
Ours 64.74 120.08 68.79 105.86 36.66 305.63 45.07 257.74 60.27 130.03 60.97 127.84

Table 4. Confidence and entropy analysis for OOD samples.



Underconfidence problem with mixup Mixup is a data augmentation method that improves accuracy by taking convex
combinations of pairs of examples and labels. Given a sample (xi, yi), Mixup generates a new sample by mixing it and
another sample (xj , yj) as follows:

x̃ = λxi + (1− λ)xj , ỹ = λyi + (1− λ)yj , (8)

where (xi, yi) and (xj , yj) are randomly sampled from the training set D, and λ ∈ [0, 1] is a mixing coefficient sampled
from the Beta distribution Beta(α, α). This process applies the same mixing coefficient λ to both the input samples and their
corresponding labels. The hyperparameter α controls the interpolation strength between the input pairs and their labels.

(a) CIFAR-10 (b) CIFAR-100 (c) SVHN

Figure 1. Effect of α on model confidence and underconfidence.

Recent work (MIT) [23] has indicated that Mixup improves model calibration performance but can lead to underconfidence
problems. As illustrated in Fig. 1, we can find that when α becomes large, model confidence rapidly decreases and exhibits
the underconfidence phenomenon. To investigate whether our approach effectively mitigates the underconfidence problem
with Mixup, we evaluate the accuracy and ECE results of Mixup, MIT, and Mixup+Ours with various settings in Tab. 5.
Mixup+Ours method significantly surpasses Mixup and MIT under different ratios α across various datasets.

Dataset α
Mixup MIT Mixup+Ours

ACC↑ ECE↓ ACC↑ ECE↓ ACC↑ ECE↓

CIFAR-10

0.1 94.30 2.39 93.67 3.62 94.72 1.25
0.3 94.83 3.38 94.40 2.62 95.28 1.13
0.5 94.64 6.00 93.29 2.97 94.78 1.39
0.8 95.18 10.22 93.60 2.68 95.05 1.71
1.0 94.93 9.93 94.27 2.18 95.06 1.21
2.0 95.37 12.50 93.10 2.61 95.13 1.37

CIFAR-100

0.1 75.48 8.48 73.48 14.18 76.40 2.27
0.3 77.16 2.64 74.23 12.41 78.22 1.89
0.5 76.89 3.97 74.55 11.11 78.15 2.47
0.8 77.55 6.12 73.25 12.00 77.88 2.93
1.0 76.80 6.43 73.38 12.31 78.06 2.16
2.0 75.93 8.64 72.16 11.44 76.68 1.67

SVHN

0.1 95.25 1.65 95.02 1.76 95.47 1.46
0.3 95.17 6.92 94.21 0.55 95.37 1.13
0.5 94.82 9.36 94.10 1.14 95.39 1.13
0.8 94.94 11.46 93.91 0.83 95.80 1.01
1.0 94.91 13.22 93.69 0.78 95.84 1.30
2.0 93.93 13.13 93.11 1.43 95.65 3.16

Table 5. Comparison Performance across datasets under different ratios α.

Computational cost We rigorously evaluate the training efficiency by comparing the per-epoch time costs between our
method and vanilla implementations across multiple architectures and datasets. As systematically documented in Tab. 6, our
approach improves calibration performance at an acceptable cost.



WRN-26-10 DenseNet-121

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

Vanilla 63.06 63.84 54.01 54.43
Ours 65.73 67.64 55.91 57.79

Table 6. Computational cost (s) per training epoch.

Dynamic and Fixed γ: In this paper, we employ a dynamic γ, derived from Eq. (7). The parameter γ in Eq. (6) and Eq. (8)
balances the learnable classifier and the fixed ETF classifier. Our ablation study in Tab. 7 indicates that γ in Ltotal is relatively
insensitive, and a fixed γ (e.g., 0.5) achieves competitive performance. However, using a dynamic γ in Ltotal provides slight
improvements without additional computational cost. In contrast, for pfused, γ is more sensitive and dataset-dependent,
making a dynamic γ essential for performance enhancement. To ensure consistency, we adopt the same dynamic γ for both
Ltotal and pfused, although its impact is more pronounced in pfused.

γ of γ of CIFAR-10 CIFAR-100 SVHN

Ltotal pfused ACC↑ ECE↓ ACC↑ ECE↓ ACC↑ ECE↓

fixed fixed 91.95 1.14 73.12 4.94 95.40 0.44
fixed dynamic 92.12 0.83 72.74 3.97 95.42 0.39

dynamic dynamic 92.23 0.76 73.21 4.21 95.47 0.24

Table 7. Ablation study on the impact of γ.

Evolution of prototype distances We analyze the evolution of prototype representations between two classifiers during
training, as illustrated in Figure 2. For CIFAR-10 and SVHN datasets, the cosine distance between prototypes steadily
decreased, indicating improved alignment of class representations, while the L2 distance consistently increased, reflecting
an expansion in prototype distributions. Conversely, the CIFAR-100 dataset exhibited a distinct trend: the cosine distance
sharply declined in the early stages, followed by a gradual rise, likely due to the dataset’s complex and dispersed class
structures. These observations highlight the significant impact of dataset-specific feature distributions on learning dynamics.
For CIFAR-10 and SVHN, reduced cosine distance facilitated consistent high-level feature representations, enhancing class
separability. Simultaneously, increased L2 distance broadened prototype distributions, contributing to varied confidence
outputs between classifiers. On CIFAR-100, the rapid initial alignment in cosine distance was followed by divergence, as
seen in the increasing L2 distance, signaling a more dispersed feature space.

By leveraging these dynamics, the growing L2 distance, indicating the difference in output confidence between the two
classifiers, serves as a foundation to balance learnable and ETF classifiers, refining calibration. Using a shared feature
extractor and distinct learning strategies, the complementary interactions between classifiers improve model calibration,
robustness, and accuracy.

(a) CIFAR-10 (b) CIFAR-100 (c) SVHN

Figure 2. Dynamic changes of cosine and L2 distances between classifier prototypes during training.



Visualization results and analysis We present t-SNE visualizations of more training-time methods on CIFAR-10, as shown
in Figure 3. We observe that our method yields well-clustered intra-class representations and more discriminative inter-
class distances. This demonstrates that our approach effectively enhances representation learning and improves the balance
between confidence and accuracy, which is crucial for addressing the overconfidence and underconfidence issues commonly
encountered in model calibration.

Figure 3. t-SNE visualizations of representations on CIFAR-10.
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