
Decompositional Neural Scene Reconstruction with Generative Diffusion Prior

Supplementary Material

We provide details on the decompositional reconstruction
process, training procedures, experimental setup, and a dis-
cussion of limitations. Additionally, we highly recommend
watching the demo video on our webpage for a more intu-
itive and visually engaging presentation of the results.

A. Generalizability to in-the-wild videos
Our method demonstrates robust generalizability to in-the-
wild indoor scenes. Fig. S.1 presents reconstruction re-
sults of in-the-wild YouTube videos using 15 input views,
with camera poses calibrated via COLMAP [24] and object
masks obtained from SAM2 [21].

B. Decompositional Reconstruction
We first present preliminary of decompositional scene re-
construction, also known as object-compositional recon-
struction, which aims to reconstruct each object in the scene
individually—including both foreground objects and the
background—rather than representing the entire scene as a
single, inseparable mesh.

B.1. Decompositional Representation

Following previous work [13, 17, 28, 29], we utilize a set of
posed RGB images and their corresponding instance masks
to achieve decompositional reconstruction of objects, treat-
ing the background also as an object.

As described in the main paper, for a scene with k ob-
jects, we predict k signed distance function (SDF)s for each
point p and the j-th (1 ≤ j ≤ k) SDF sj(p) is for the j-th
object. The scene SDF s(p) is the minimum of the object
SDFs:

s(p) = min
1≤j≤k

sj(p), (S.1)

The normal n(p) is the gradient of s(p), while normal
nj(p) is the gradient of sj(p):

n(p) = ∇s(p), nj(p) = ∇sj(p) (S.2)

Next, we transform each point’s SDFs into instance se-
mantic logits h(p) = [h1(p), h2(p), . . . , hk(p)], where

hj(p) = γ/(1 + exp(γ · sj(p))), (S.3)

where γ = 10 is a fixed parameter in our implementation.

B.2. Volume Rendering

For each camera ray r = (o,d) with o as the ray origin
(camera center) and d as the viewing direction, n points

{pi = o+ tid | i = 0, 1, . . . , n− 1} are sampled, where ti
is the distance from the sample point to the camera cen-
ter. We predict k SDFs and the color ci for each point pi

along the ray. Then we compute scene SDF si, normal ni

and instance sematic logits hi for point pi by Eqs. (S.1)
to (S.3). Next, we convert the scene SDF s(p) into den-
sity σ for volume rendering as in NeRF [16] following the
method introduced in VolSDF [33]:

σ(s) =

{
1
2β exp( s

β ) s ≤ 0
1
β (1− exp(− s

β )) s ≥ 0
, (S.4)

where β is a learnable parameter. We then calculate the
discrete accumulated transmittance Ti and discrete opacity
αi as follows:

Ti =

i−1∏
j=0

(1− αj), αi = 1− exp(−σiδi), (S.5)

where δi represents the distance between neighboring sam-
ple points along the ray.

Using volume rendering, the predicted scene color Ĉ(r),
depth D̂(r), normal N̂(r) and instance semantic Ŝ(r) for
the ray r are computed as:

Ĉ(r) =

n−1∑
i=0

Tiαici, D̂(r) =

n−1∑
i=0

Tiαiti,

N̂(r) =

n−1∑
i=0

Tiαini, Ŝ(r) =

n−1∑
i=0

Tiαihi,

(S.6)

Additionally, replacing the scene SDF s with j-th object
SDF sj in Eqs. (S.4) and (S.5) allows rendering of the nor-
mal N̂ j(r) and mask Ôj(r) for j-th object as:

N̂ j(r) =

n−1∑
i=0

T j
i α

j
in

j
i , Ôj(r) =

n−1∑
i=0

T j
i α

j
i , (S.7)

B.3. Loss function

RGB Reconstruction Loss Given input images, we em-
ploy RGB reconstruction loss LC to minimize the differ-
ence between ground-truth pixel color and the rendered
color. We follow the Yu et al. [36] here for the RGB re-
construction loss:

LC =
∑
r∈R

||Ĉ(r)−C(r)||1, (S.8)

where Ĉ(r) is the rendered color from volume rendering
and C(r) denotes the ground truth.
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Figure S.1. Generalizability to YouTube videos with 15 input views. The reconstruction results highlight our model’s robust ability to
generalize to in-the-wild indoor scenes.

Depth Consistency Loss Monocular depth and normal
cues [36] can greatly benefit indoor scene reconstruction.
For the depth consistency, we minimize the difference be-
tween rendered depth D̂(r) and the depth estimation D̄(r)
from the Depthfm model [9]:

LD =
∑
r∈R

||(wD̂(r) + q)− D̄(r)||2, (S.9)

where w and q are the scale and shift values to match the
different scales. We solve w and q with a least-squares cri-
terion, which has the closed-form solution. Please refer to
the supplementary material of [36] for a detailed computa-
tion process.

Normal Consistency Loss We utilize the normal cues
N̄(r) from Omnidata model [6] to supervise the rendered
normal through the normal consistency loss, which com-
prises L1 and angular losses:

LN =
∑
r∈R

||N̂(r)− N̄(r)||1 + ||1− N̂(r)T N̄(r)||1.

(S.10)
The rendered normal N̂(r) and normal cues N̄(r) will be
transformed into the same coordinate system by the camera
pose.

Instance Semantic Loss We minimize the semantic loss
between rendered instance semantic logits of each pixel and
the ground-truth pixel instance class. The instance semantic
objective is implemented as a cross-entropy loss:

LS =
∑
r∈R

k∑
j=1

−h̄j(r) log hj(r). (S.11)

The h̄j(r) is the ground-truth semantic probability for j-th
object, which is 1 or 0.

Eikonal Loss and Smoothness Loss Following common
practice [18, 33], we add an Eikonal regularization and
smoothness regularization term on the sampled points to
regularize the SDF learning by:

Leik =

n−1∑
i=0

(||∇s(pi)||2 − 1), (S.12)

Lsmo =

n−1∑
i=0

(||∇s(pi)−∇s(p̃i)||1), (S.13)

where p̃i is randomly sampled nearby the pi.

Background Smoothness Loss Following the previous
work RICO [13], we use background smoothness loss to
regularize the geometry of the occluded background to be
smooth. Specifically, we randomly sample a P × P size
patch every TP iterations within the given image and com-
pute semantic map Ĥ(r) and a patch mask M̂(r):

M̂(r) = 1[argmax(Ĥ(r)) ̸= 1], (S.14)

wherein the mask value is 1 if the rendered class is not
the background, thereby ensuring only the occluded back-
ground is regulated. Subsequently, we calculate the back-
ground depth map D̄(r) and background normal map N̄(r)
using the background SDF exclusively. The patch-based



background smoothness loss is then computed as:

L(D̂) =

3∑
d=0

P−1−2d∑
m,n=0

M̂(rm,n)⊙ (|D̂(rm,n)−

D̂(rm,n+2d)|+ |D̂(rm,n)− D̂(rm+2d,n)|),

(S.15)

L(N̂) =

3∑
d=0

P−1−2d∑
m,n=0

M̂(rm,n)⊙ (|N̂(rm,n)−

N̂(rm,n+2d)|+ |N̂(rm,n)− N̂(rm+2d,n)|),
(S.16)

Lbs = L(D̂) + L(N̂) (S.17)

Object Distinction Regularization Loss Following Ob-
jectSDF++ [29], we employ a regularization term on object
SDFs to penalize the overlap between any two objects:

Lsdf =

n−1∑
i=0

(

k∑
j=1

ReLU(−sj(pi)− s(pi))). (S.18)

C. More Training Details
C.1. Object-compositional Reconstruction

Overall Loss We employ all the aforementioned losses in
Appendix B.3 during the object-compositional reconstruc-
tion stage:

Lrecon = LC + λDLD + λNLN + λSLS + λbsLbs

+ λeikLeik + λsmoLsmo + λsdfLsdf ,

(S.19)

where the loss weights are set as λD = 0.1, λN = 0.05,
λS = 1.0, λbs = 0.1, λeik = 0.1, λsmo = 0.005, λsdf =
0.5 following previous work [13, 29, 36].

Optimization of Visibility Grid At the end of the object-
compositional reconstruction stage, when the transmittance
achieves sufficient accuracy, we optimize the visibility grid
G. During this process, all input views are rendered M
times using Eq. (S.6), and the accumulated transmittance
Ti is utilized to optimize the visibility value of point pi.
Note that M is a hyperparameter that impacts the final vis-
ibility grid values; in our implementation, we set M = 20.
After the optimization, the visibility grid is frozen for the
subsequent geometry and appearance optimization stages.

C.2. Geometry Optimization

Input for the Diffusion Model In the common case, the
encoder of Stable Diffusion [22] is used to encode an im-
age into the latent code z during Score Distillation Sam-
pling (SDS), followed by employing the UNet of Stable

Diffusion to predict the score ϵ̂ and compute the SDS loss.
However, the encoding process is relatively slow in com-
putational speed. To address this issue and facilitate effi-
cient training, following the previous work [2, 20], at each
training iteration, we directly downsample the concatenated
map ñj , which consists of the normal map N̂ j(r) and mask
map Ôj(r) rendered by Eq. (S.7) for sampled j-th object,
into the latent code z dimension. This approach reduces
the computation time by approximately half without caus-
ing any performance degradation compared to directly in-
putting the normal map N̂ j(r) into the encoder.

Overall Loss We employ reconstruction loss Lrecon in
Eq. (S.19) and visibility-guided geometry SDS loss Lg−v

SDS
in the geometry optimization stage:

Lgeo = Lrecon + λgeosdsL
g−v
SDS , (S.20)

where λgeosds = 1e−5 in our implementation.

C.3. Appearance Optimization

Rendering Loss in Appearance Optimization Stage We
employ two types of color rendering losses during the ap-
pearance optimization stage to ensure consistency between
the observed regions and the input views. The first type de-
rives directly from the input views, where we apply LC as
defined in Eq. (S.8). The second type leverages useful ap-
pearance information distilled from the reconstruction net-
work. For this, we randomly sample camera views within
the scene, render RGB and visibility maps, and use regions
with high visibility for appearance supervision. The sum of
these two color rendering losses is denoted as La

C .

Depth-guided Panorama Inpainting and Loss for BG
Applying appearance SDS La−v

SDS for background appear-
ance optimization often leads to degenerated results, e.g.
introducing non-existent objects as shown in Fig. S.3, due
to the lack of clear geometric cues in the background from
the local camera perspective. To address this issue, inspired
by previous work [25, 27], we adopt depth-guided inpaint-
ing [37] to refine the low-visibility regions of the back-
ground panorama color map. Specifically, we first generate
the original RGB, visibility, and depth panorama maps, as
shown in Fig. S.2 (a, b, e). Next, we obtain the inpainting
mask (Fig. S.2 (c)) for regions where the visibility map falls
below a threshold τ (set to τ = 0.2 in our implementation).
Finally, we apply depth-guided inpainting to produce the
inpainted RGB panorama map (Fig. S.2 (f)).

To supervise the background appearance during the ap-
pearance optimization stage, we transform the inpainted
RGB panorama map into a set of perspective images with
corresponding camera poses. At each training iteration,
we sample B perspective images CB along with their as-
sociated camera poses. For these poses, we render the



(a) Original BG RGB panorama map (b) BG visibility panorama map (c) BG inpainting mask

(f) Inpainted BG RGB panorama map(d) Masked BG RGB panorama map (e) BG depth panorama map

Figure S.2. Panorama inpainting of background. We present the original panorama map, the inpainted panorama map, the visibility
panorama map, as well as the mask and depth guidance used in the depth-guided panorama inpainting process.

With BG SDS Normal map Visibility mapOriginal RGB map With BG panorama

Figure S.3. Failure case of directly optimizing background with
SDS loss. Incorporating appearance SDS for the background may
result in hallucinated non-existent objects in low-visibility regions,
even when the smooth normal map indicates no objects in the
background. On the contrary, the background map obtained after
optimizing depth-guided panorama inpainting produces a cleaner
and more reasonable background texture.

background color maps ĈB , and define the background
panorama loss as:

Lbg-pano =
1

B

B∑
i=1

||ĈB −CB ||1, (S.21)

Overall Loss We employ color rendering loss La
C , back-

ground panorama loss Lbg-pano in Eq. (S.21) and visibility-
guided appearance SDS loss La−v

SDS in the appearance opti-
mization stage:

Lapp = λaCLa
C + λbg-panoLbg-pano + La−v

SDS , (S.22)

where λaC = λbg-pano = 1e4 in our implementation.

Export UV Map Following previous works [2, 20], we
utilize the trained ψ to export the appearance of object mesh

as UV map by the xatlas [35]. Our object mesh with ex-
ported UV map supports direct use and editing in common
3D software, e.g. Blender [4], as shown in Fig. S.4. We
export 1024 × 1024 UV map for foreground objects and
2048× 2048 UV map for the background in our case.

Render in Blender UV map Render in Blender UV map

Figure S.4. Visualization of UV mapping and rendering results.
Our method produces completed meshes with detailed UV maps,
enabling photorealistic rendering in common 3D software such as
Blender.

D. More Experiment Details

D.1. Baselines Details

For MonoSDF [36], RICO [13], and ObjectSDF++ [29],
which are designed for reconstruction, we directly utilize
the official code to obtain the reconstructed meshes and ren-
dered images. For FreeNeRF [32], which focuses on novel
view synthesis and does not include reconstruction code, we
first predict depth maps and RGB images for densely sam-
pled camera views within the scene. We then apply TSDF
Fusion [5] to integrate the predicted depth maps into a
TSDF volume and export the resulting mesh. ZeroNVS [23]
trains a diffusion model to synthesize novel views of scenes
from a single image. To adapt it for multi-view inputs, we
follow the approach of ReconFusion [30], using the input



view closest to the novel view as the conditioning view for
the diffusion model. We denote the adapted version as Ze-
roNVS*. Subsequently, we use MonoSDF to reconstruct
the scene mesh from the images synthesized by ZeroNVS*.

D.2. Data Preparation

Monocular Cues We utilize the pre-trained DepthFM
model [9] and Omnidata model [6] to generate the depth
map D̄ and normal map N̄ for each RGB image, respec-
tively. While depth cues provide semi-local relative infor-
mation, normal cues are inherently local, capturing fine ge-
ometric details. As a result, we expect surface normals and
depth to complement each other effectively. It is worth not-
ing that estimating absolute scale in general scenes remains
challenging; therefore, D̄ should be interpreted as a relative
depth cue.

GT Instance Mask For the ScanNet++ [34] dataset, we
use the official rendering engine to generate instance masks
for each image based on the provided GT mesh and per-
vertex 3D instance annotations. For the Relica [26] datasets,
we utilize the original instance masks from vMAP [12],
which are overly fragmented, and manually merge adjacent
fragmented instance masks into coherent objects. Further-
more, since both ScanNet++ and Replica only provide a
complete mesh of the scene, we derive the background GT
mesh by removing the object meshes from the total mesh
and manually filling the holes.

Notably, with the rapid advancement of segmentation
and tracking models, such as SAM [11] and SAM2 [21], it’s
more feasible to extract object masks directly from images
using off-the-shelf models. These tools could inspire further
progress in decompositional neural scene reconstruction.

D.3. Reconstruction Metrics Details

Following previous research [13, 29, 36], we evaluate the
Chamfer Distance (CD) in cm, F-score with a thresh-
old of 5cm and Normal Consistency (NC) for 3D scene
and object reconstruction. Consistent with previous stud-
ies [13, 29, 36], reconstruction is evaluated only on visi-
ble areas for the entire scene, while complete meshes are
assessed for individual objects and background meshes.
These metrics are defined in Tab. S.1.

Since the baselines ZeroNVS* [23], FreeNeRF [32] and
MonoSDF [36] can only reconstruct the total scene and can-
not decompose it into individual objects, we evaluate the
metrics only for the total scene, i.e., the total scene recon-
struction metrics and rendering metrics.

D.4. Implementation Details

We implement our model in PyTorch [19] and utilize the
Adam optimizer [10] with an initial learning rate of 5e− 4.
In the object-compositional reconstruction stage, we sample
1024 rays per iteration, and in the geometry and appearance

optimization stages, we render 128 × 128 images for nor-
mal, mask, and color maps. We use 2048 × 1024 for the
background panorama map.

For visibility guided SDS:

wv(z) =

{
w0 +m0V (z) if V (z) ≤ τ

w1 +m1V (z) if V (z) > τ
, (S.23)

we set τ = 0.5, w0 = 20,m0 = −38, w1 = 2,m1 = −2
for the geometry optimization stage. Under this configura-
tion, wv(z) achieves a maximum value of 20 when V (z) =
0, a minimum value of 0 when V (z) = 1, and a value of 1
when V (z) = τ = 0.5. For appearance optimization stage,
we set τ = 0.3, w0 = 1,m0 = 0, w1 = 0,m1 = 0, which
results in wv(z) = 1 when V (z) ≤ 0.3 and wv(z) = 0
when V (z) > 0.3.

Our model is trained for 80000 iterations on both
Replica [26] and ScanNet++ [34] datasets. The geometry
optimization stage and appearance optimization stage begin
at the 35000th and 75000th iterations, respectively. All ex-
periments are conducted on a single NVIDIA-A100 GPU,
requiring approximately 10 hours to complete the training
of a single scene.

D.5. Training Time Comparison

For a fair comparison with prior work [13, 29, 36], we train
our model and all baselines for 80,000 iterations in all main
paper experiments. Detailed training time and performance
results are provided in Tab. S.2, showing that our method
outperforms baselines in approximately 4.5 hours per scene
with 50,000 iterations.

E. Scene Editing Details
E.1. Text-based Editing

With our decompositional representation, which breaks
down each object’s representation in the scene, we can
seamlessly edit the representation of any object in the scene
based on the text prompt, with the generative capabilities
of our SDS diffusion prior. With the two forms of SDS
prior we introduced, i.e., the geometry SDS prior and the
appearance SDS prior, we can freely edit both the geome-
try and appearance of objects. During the editing process,
we exclude the reconstruction loss for the edited object and
disable the visibility guidance.

Geometry Editing We realize geometry editing for ob-
jects in the geometry optimization stage using geometry
SDS loss Lg

SDS. During optimization, we replace the origi-
nal object prompt with the desired object prompt while con-
tinuing to sample novel camera views around the original
object’s bounding box. This ensures that the desired object
retains the same location as the original one.



Table S.1. Evaluation metrics. We show the evaluation metrics with their definitions that we use to measure reconstruction quality. P and
P ∗ are the point clouds sampled from the predicted and the ground truth mesh. np is the normal vector at point p.

Metric Definition

Chamfer Distance (CD) Accuracy+Completeness
2

Accuracy mean
p∈P

(
min

p∗∈P∗
||p− p∗||1

)
Completeness mean

p∗∈P∗

(
min
p∈P

||p− p∗||1
)

F-score 2×Precision×Recall
Precision+Recall

Precision mean
p∈P

(
min

p∗∈P∗
||p− p∗||1 < 0.05

)
Recall mean

p∗∈P∗

(
min
p∈P

||p− p∗||1 < 0.05

)

Normal Consistency Normal Accuracy+Normal Completeness
2

Normal Accuracy mean
p∈P

(
nT

pnp∗
)

s.t. p∗ = argmin
p∗∈P∗

||p− p∗||1

Normal Completeness mean
p∗∈P∗

(
nT

pnp∗
)

s.t. p = argmin
p∈P

||p− p∗||1

Table S.2. Training time and performance comparison. Our method outperforms baselines in 4.5 hours per scene with 50,000 iterations.

Total Iter RICO ObjectSDF++ Ours

Time CD↓ F-Score↑ Time CD↓ F-Score↑ Time CD↓ F-Score↑
40000 2.63h 21.30 49.47 2.34h 18.48 52.51 2.59h 12.96 61.87
50000 3.16h 17.37 52.33 2.93h 13.36 60.37 4.52h 4.51 72.66
60000 3.82h 14.63 57.74 3.42h 5.42 70.19 6.54h 4.35 73.23
80000 5.01h 12.09 63.39 4.48h 5.10 70.87 10.45h 4.33 73.32

Appearance Editing We perform object appearance edit-
ing during the appearance optimization stage using the ap-
pearance SDS loss La

SDS. For this task, we not only modify
the object prompt but also update the negative prompt in
Stable Diffusion [22], as suggested in the prompt engineer-
ing tutorial [1]. Empirically, we observe that appearance
optimization is more sensitive to the choice of the negative
prompt compared to geometry optimization. For scene styl-
ization, we use a consistent style prompt for editing the ap-
pearance of not only all objects but also generating the back-
ground panorama, which is achieved through depth-guided
ControlNet [37].

E.2. VFX Editing

The object meshes reconstructed by our method feature de-
tailed UV maps, making them compatible with common 3D
software and enabling diverse and photorealistic VFX edit-

ing. We implement our VFX editing in Blender, as demon-
strated in our main paper. More specifically,
• “Freeze it” utilizes the Geometry Nodes Modifier and ap-

plies a glass material over the original object.
• “Ignite it” employs the Quick Smoke Effect, setting the

Flow Type to Fire and Smoke, with fire color adjustments
via Shading Nodes.

• “Break it by a ball” uses the Cell Fracture Effect to di-
vide the object into multiple fragments, assigning both the
object and ball as Rigid Bodies for physics-based simula-
tion in Blender.

F. Comparison with Image-to-3D Method
Unlike decompositional scene reconstruction methods,
which recover object geometry along with location, rota-
tion, and scale simultaneously from multi-view images, an
alternative approach is to use image-to-3D models for ex-



Input View Trellis Ours

Figure S.5. Comparison with image-to-3D method Trellis [31].
For better visualization, we adjust the location and rotation of Trel-
lis results manually.

tracting individual objects within a scene. However, as
shown in Fig. S.5, these models (e.g., Trellis [31]) face sig-
nificant challenges in recovering the location, rotation, and
scale of objects, with severe performance deterioration un-
der occlusion, making them less applicable for scene recon-
struction regardless of views compared to our method.

Input image Input view rendering Novel view rendering Without prior

(a)

(b)

Figure S.6. Qualitative Examples for Failure Cases. We present
failure cases for both geometry optimization and appearance op-
timization. The first column displays the input view, while the
second and third columns show our results rendered from the input
view and a novel view, respectively. The final column provides the
corresponding results without applying the geometry prior (top) or
appearance prior (bottom), highlighting the improvements intro-
duced by our generative prior.

G. Failure Cases and Limitation
In this section, we present and analyze examples of repre-
sentative failure. Fig. S.6 (a) demonstrates that our method
may produce non-harmonious structures with inaccurate
text prompts. For instance, in this example, we use the
prompt “A tea table”, but the table in this case does not
conform to the conventional concept of a tea table. A simi-
lar issue arises during appearance optimization, as shown in
Fig. S.6 (b), where we use the prompt “A black ergonomic
chair”, but the chair in this case is not entirely black—it
appears somewhat gray—resulting in a non-harmonious ap-

pearance in the completed regions. We believe that lever-
aging implicit prompts [7] could help alleviate such issues
related to text prompts.

Moreover, our method optimizes each object indepen-
dently in each iteration, using the 3D location informa-
tion from the reconstruction module alone. This could be
further improved by forming functional object groups by
composing neighboring objects. Within these groups, SDS
can be employed to optimize inter-object relationships and
plausible layouts [3, 38]. Additionally, SDS-based meth-
ods [2, 20] struggle to reconstruct loose geometries such
as grass, hair, sky, and fur, which are challenging to de-
scribe with text prompts. In contrast, concurrent meth-
ods [8, 14, 15, 30] that directly generate novel view images
from sparse input views without relying on text prompts
may mitigate this limitation. However, these methods often
fail to maintain the 3D consistency of objects across views,
achieve object-level editing, or reconstruct regions obscured
by occlusions.
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