Maintaining Consistent Inter-Class Topology in Continual Test-Time Adaptation

Supplementary Material

1. Random Domain shift CTTA

Considering the randomness of domain shifts, we con-
ducted experiments on CIFAR10-C, CIFAR100-C, and
ImageNet-C with multiple sequences of various corruption
types at severity level 5. Specifically, We randomly gen-
erate 10 domain shift sequences. In each sequence, we do
not modify any hyperparameters. We report the mean er-
ror rate and variance of various methods on the CTTA task
across 10 sequences. As is shown in the Tab 1, TCA re-
duces the average error rate to 9.2%, 8.9%, and 5.1% on
the random order CIFAR10-to-CIFAR10C, CIFAR100-to-
CIFAR100C, and ImageNet-to-ImageNetC benchmarks, re-
spectively. This implies that the order of domain changes
does not affect the TCA’s ability to maintain a stable inter-
class topological structure.

Avg. Error (%) Source TENT CoTTA RMT TCA

CIFAR10-C 43.5 20.1 16.3 156 14.8+0.15
CIFAR100-C 46.4 61.3 32.6 302 29.7£0.11
ImageNet-C 83.0 62.8 62.6 60.1 59.4+0.23

Table 1. Average Error (%) on CIFAR10-C, CIFAR100-C, and
ImageNet-C on random TTA setup.

2. Gradual Test Time Adaptation

Following CoTTA [7], we show gradual corruption re-
sults instead of constant severity in the major comparison.
Specifically, each corruption adapts the gradual changing
sequence:l -2 -3 -4 -5 5453 -2 -1,
where the severity level is the lowest 1 when the corrup-
tion type changes, therefore, the type is also gradual. As
shown in Tab 2, TCA achieves superior performance in this
setup, reducing the average error rate to 21.1%, 3.1%, and
2.9% on the gradual CIFAR10-to-CIFAR10C, CIFAR100-
to-CIFAR100C, and ImageNet-to-ImageNetC benchmarks,
respectively. This indicates that, despite variations in the
degree of domain degradation, the TCA does not become
trapped in local optima due to less degraded domains. In-
stead, TCA achieves more accurate centroids, providing a
more stable inter-class topological structure during testing,
resulting in superior performance.

3. Experiments on Segmentation CTTA

Cityscapes-to-ACDC. This dataset is designed for contin-
uous semantic segmentation tasks [7] in autonomous driv-
ing. The Cityscapes dataset serves as the source domain,

Avg. Error (%) Source TENT CoTTA RMT TCA
CIFAR10C 24.7 20.4 10.9 9.3 8.6

CIFAR100C 33.6 74.8 26.3 264 258
ImageNet-C 58.4 46.4 38.8 393 381

Table 2. Classification error rate (%) for the gradual CIFAR10-
to-CIFAR10C, CIFAR100-to-CIFAR100C, and ImageNet-to-
ImageNet-C benchmark averaged over all 15 corruptions. The
severity level changes gradually between the lowest and the high-
est.

providing pre-trained segmentation models, while the Ad-
verse Conditions dataset (ACDC) [5] includes images col-
lected under four different weather conditions: fog, night,
rain, and snow, representing the dynamic target domain. For
each condition, 400 unlabeled images are used for adap-
tation. Notably, the ACDC and Cityscapes datasets share
identical semantic classes for evaluation. To simulate the
continuous distribution changes encountered in real-world
scenarios, we repeat the same target domain sequence ten
times (e.g. a total of 40 transitions: Fog — Night — Rain
— Snow — Fog — ...). This setup offers a long-term per-
spective for evaluating the performance of various adapta-
tion methods.

We report results based on the mean intersection over
union (mloU) metric for the complex continual test-time se-
mantic segmentation Cityscapes-to-ACDC task. As shown
in Tab. 3, Tent exhibits a performance decline in long
sequence tasks, highlighting the common issue of model
degradation over time. CoTTA and BeCoTTA offer a
more stable CTTA process. However, they do not improve
model performance with each adaptation cycle. SVDP also
demonstrates instability across multiple adaptation rounds.
In contrast, TCA maintains the latent inter-class topological
structure during testing, achieving a stable testing process
and a 5.1% relative improvement in mloU compared to the
baseline CoTTA, averaged across ten rounds.

4. Inter-class Fearture Uniformity Analysis

To further confirm the uniformity of inter-class feature
distribution, we select features from different classes dis-
tributed on the hypersphere. Following the setup in section
4.4, we randomly choose 10 batches from the beginning,
middle, and end domains of CTTA. We visualize features of
classes 3, 6, and 9 from CIFAR10-C. As shown in Fig. 1, in
both CoTTA and TCA methods, the intra-class feature dis-
tribution is overly dispersed, with features scattered across
various regions of the sphere, which easily leads to outlier



Time t

Round 1 4 7 10 All
Condition Fog Night rain snow | Fog Night rain snow | Fog Night rain snow | Fog Night rain snow |Mean
Source 69.1 403 59.7 57.8169.1 403 59.7 57.8 |69.1 403 59.7 57.8 |69.1 403 59.7 57.8 | 56.7
BN Stats Adapt 623 38.0 54.6 53.0|623 38.0 54.6 53.0 623 38.0 54.6 53.0(62.3 38.0 546 53.0 | 52.0
TENT-continual [6]|69.0 40.2 60.1 57.3 |66.5 36.3 587 54.0|64.2 328 553 509 [61.8 29.8 519 47.8 | 523
CoTTA [7] 70.9 412 624 59.7 709 41.0 62.7 59.7 {709 41.0 62.8 59.7 |70.8 41.0 62.8 59.7 | 58.6
BEcoTTA [3] 72.0 454 637 60.0 |71.7 454 63.6 60.1 |71.8 454 63.7 60.1 |71.7 453 63.6 60.0 | 60.2
VDP [2] 70.5 41.1 62.1 59.5|704 41.1 622 594 (704 41.0 62.6 594|704 41.1 625 594 | 58.2
TCA 72.2 445 654 63.0 |72.6 447 66.1 63.2 |72.4 444 659 633|725 444 65.7 63.8 | 61.6

Table 3. Semantic segmentation results (mloU in %) on the Cityscapes-to-ACDC online continual test-time adaptation task. We continually
evaluate the four test conditions ten times to evaluate the long-term adaptation performance. For brevity, we only show the continual
adaptation results in the first, fourth, seventh, and last round. All results are evaluated based on the Segformer-B5 architecture. Bold text

indicates the best performance.
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Figure 1. Feature distribution of classes 0, 3, and 9 in R? using
Gaussian kernel density estimation (KDE) in the domain Gaus-
sian, Snow and Jpeg (which means the beginning, middle, and end
of the CTTA process).

noise. Additionally, excessive overlap of inter-class features
interferes with the decision boundary, disrupting the inter-
class topological structure. In contrast, TCA achieves a sta-
ble and uniform feature distribution, resulting in compact
intra-class features while maintaining a uniform inter-class
distribution, thus preserving a stable inter-class topological
structure.

5. Inter-class Topology Preservation

To intuitively observe how TCA effectively maintains inter-
class topological structures, we visualize three methods on
the CIFAR10-CIFAR10C CTTA task. Following the setup
in Section 4.5, we randomly select features from one batch
of data in the Gaussian, Snow, and Jpeg domains for t-SNE
visualization. We display only the distribution of centroids,
omitting fully connected edges for clarity. Connections
are drawn between centroids closest in the source domain
to observe changes in topological structure. As shown in
Fig. 2, CoTTA and RMT struggle to maintain stable inter-
class topological structures during adaptation. Edges be-
tween centroids intersect in the two-dimensional space, in-
dicating a significant overlap of surrounding features, which
interferes with the model’s decision-making. In contrast,
TCA consistently maintains a relatively stable topological
structure. Although the lengths of edges vary, their relative
magnitudes remain as consistent as possible.

Method Class Decremental Class Incremental
CoTTA [7] 91.62 68.16
RMT [1] 93.31 78.31
TCA 95.28 86.89

Table 4. The classification (accuracy in %) validation experiments
of TCA in class incremental and decremental scenarios.

6. Setting with Varying Class Numbers

In this section, we consider validation experiments for TCA
in the scenario of varying the number of classes. In class-
decremental settings, TCA only needs to maintain topolog-
ical relationships among the remaining classes. In class-
incremental settings, TCA easily adds new graph nodes to
the topology, with new nodes corresponding to the proto-
types of the new classes. To illustrate this, we conduct ex-
periments on MNIST as shown in Tab. 4, implementing 9 +
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Figure 2. The visualization of centroid distribution in the CTTA process using three methods. To enhance observation of the topological
structure, only partial edges are displayed, omitting fully connected edges.

1 for incremental and 10 - 1 for decremental scenarios. Note
that we use a nearest-neighbor classifier to avoid confusion
with the classifier.

7. Compare with TTA Methods

In this section, we apply TCA in the TTA setting and con-
duct analogous experiments following the TTAB [4] pro-
tocol. Tab. 5 represents TTA for common distribution
shifts, which consists of two parts: synthetic covariate shift
(CIFAR10-C) and domain generalization (OfficeHome and
PACS). Tab. 6 represents spurious correlation shifts, where
certain features are spuriously correlated with the target
variable in the training data but not in the test data. The
experimental results demonstrate that TCA remains effec-
tive even in the resetting TTA scenario.

Method CIFAR10-C  OfficeHome PACS
TTT [4] 20.9 40.2 253
CoTTA [7] 253 53.7 28.6
TCA 11.7 34.7 194

Table 5. The classification (error rate in %) validation experiments
of TCA with TTA methods in common distribution shifts and do-
main generalization scenarios.

Method ColoredMNIST  Waterbirds
TTT [4] 78.1 28.2
CoTTA [7] 72.6 31.7
TCA 58.2 26.2

Table 6. The classification (error rate in %) validation experiments
of TCA with TTA methods in spurious correlation shifts, scenar-
ios.

8. Hyperparameter Sensitivity

We consider four hyperparameters: «, 3, A1, and \o. First,
considering that « in Equation 3 is designed to maintain the
graph topology as non-empty, leading to two scenarios for
its value. If a class in the current batch is non-empty, we set
« in the update equation for that class to 0.001. As shown in
Tab 7, we provide the ablation of o on CIFAR10-C. If the
class in the current batch is empty, we supplement graph
nodes with prior nodes, setting « to 1.

Then, we conduct an ablation study on 3 in Equation 9,
selecting its value from [0, 1.0] at intervals of 0.1. We pro-
vide the ablation of 8 on CIFAR10-C. As shown in Tab 8,
the best performance is achieved when 5 = 0.2. Notably,
the model performs poorly when 8 = 0 and 5 = 1.0, in-



Value of « 0.01

0.015 0.001 0.0005 0.00001

Error (%)

149 148 147 14.8 14.8

Table 7. Choice of « in Equation 3.

dicating that integrating both prior and current distributions
better helps the model maintain a stable inter-class topol-

ogy.

Valueof 5 0.0 0.1 02 03 04 05

Error (%) 155 150 147 149 150 149

Valueof 5 0.6 07 08 09 10 -

Error (%) 152 153 154 154 158 -

Table 8. Choice of 5 in Equation 9.

Finally, we conduct a detailed hyperparameter search for

A1 and \o. Referring to the suggestions in UA, which utilize
Latign and Lypiform for fine-tuning, we employ smaller hyper-
parameter coefficients. As shown in Tab 9, we provide 25
linear searches over A\ and As.

A2\ A1 0.10 0.125 0.15 0.175 0.20
0.01 15.2 15.1 15.2 15.3 15.3
0.015 15.1 15.0 15.0 15.2 15.3
0.02 15.0 15.0 14.8 15.1 15.0
0.025 15.0 14.9 14.7 14.9 15.0
0.03 14.9 14.9 14.8 14.9 14.9

Table 9. Linear combinations of A; and As.
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