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6. More Ablation Experiments

6.1. Additional Results of Mask Ratio
Table 5 illustrates the impact of the mask ratio r on mask
reconstruction across various branches and temporal atten-
tion strategies. Our findings reveal several key insights: (1)
The temporal branch equipped with masked temporal self-
attention is more sensitive to mask ratio and necessitates
a substantially lower mask ratio compared to the spatial
branch. (2) The influence of the mask ratio on the proposed
shifted temporal self-attention is more consistent with that
observed on the spatial branch. As depicted in Fig.4, the
main difference in the DiT Encoder with the spatial branch
is the positional shift, which can be effectively handled by
positional encoding. Consequently, this allows for the at-
tainment of an well-performed mask ratio (e.g. 0.25) in both
spatial MR and temporal MR.

r M = Mspatial M = Mtime M = M̂time

0 136.5 136.5 136.5
0.1 125.8 133.2 123.7
0.25 116.7 142.6 121.3
0.4 155.9 179.1 149.8

Table 5. FVD comparisons on mask ratio.

6.2. Additional Results of Mask Reconstruction on
NuScene Dataset

As described in GenAD [46], the training and validation
sets of OpenDV-2K are sourced from different YouTube
videos with significant scene changes. Therefore, the
model’s performance on this dataset can be used for the
evaluation of its generalization ability. We also conduct ab-
lation studies in the in-domain setting by evaluating metrics
on the nuScenes validation dataset. As shown in Table 6,
the proposed mask reconstruction method achieves signifi-
cant improvements on both metrics.

row&shift att. r FVD↓ FID↓
0 107.2 7.5

√
0.25 92.5 5.6

Table 6. Ablations on nuScene dataset.

6.3. Additional Results of Mask Reconstruction on
Long-Horizon Prediction

To further analyse the influence of MR on auto-regressive
generation, we extend the video duration to approximately
12 seconds and documented the metrics in Fig.7. The re-
sults indicate that MR is also effective in enhancing perfor-
mance in long-sequence prediction. Although our baseline
without MR still outperforms Vista, the quality of genera-
tion begins to deteriorate notably from about 8 seconds, and
the FID score increases to 37.7 at the 10 second, making it
also incapable to predict the distant future. Consequently,
we conclude that this baseline’s improvements cannot trans-
late to significant advancements in long-sequence. In con-
trast, when MR is integrated into our method, the funda-
mental enhancements in single-step generation lead to sig-
nificantly alleviate quality degradation over time. As a re-
sult, MaskGWM is capable of generating 10 Hz videos with
discernible scene elements for a long time, and even 60 sec-
ond examples, which far exceeds both Vista and our non-
MR baseline. Therefore, we regard MR as a pivotal design
that enables the model to make generalized predictions over
extended durations. Note that this evaluation is conducted
on 300 videos of OpenDV-2K validation set only, due to
their longer video sequence. Thus, the single-step (2.5 sec-
onds) FID and FVD are higher than results in Tab.6, which
is computed on 1800 videos.

7. Implementation Details

7.1. Concrete DiT Structure

We adopt the framework of SD3 and start our model with
2B parameters. We make several modifications to the orig-
inal spatial transformer block to facilitate temporal and
cross-view context modeling. First, Due to the limited avail-
ability of high-quality text data in our training datasets,
e.g. only scene-level descriptions on nuScene, we skip
the update of text feature by new-initialized temporal and
cross-view transformer blocks. Then, for temporal trans-
former block, we make another modification to accommo-
date condition frames. To streamline the explanation, we
represent the transformation within a transformer block as
z′out = z′in + fb(z

′
in), where z′in and z′out are the input and

out features, respectively, and fb is the transformer block.
Given the frame-level binary indicator mc with value 0 on
condition frames, the diffusion time-step τ , and time-step
aware embeddings for scale fscale and shift fshift, we in-
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Figure 7. Comparison of Long-horizon FVD metric on OpenDV-2K validation set. MR plays a crucial role in enhancing the capability
to predict long video sequences, especially on FID.

troduce condition frames by:

z′out = z′in + fb(fscale(mcτ)z
′
in + fshift(mcτ)) (5)

Here mcτ is employed to reset the time-step for conditional
frames to zero and time-step aware embeddings is applied
for linear transform.

We append one temporal transformer block and one view
transformer block after each spatial transformer block fol-
lowing the common practice of previous works [12, 40].

7.2. Detailed Training Parameters
We employ the Adam optimizer [28] for model training, us-
ing a learning rate of 5e-5. Throughout all training stages,
we initiate the process with 1K warm-up steps and then
maintain a constant learning rate. For condition frames,
we randomly sample from zero to three frames following
VISTA. We train Stage 1 for total 62K steps, Stage 2 for
total 20K steps and Stage 3 for 6K steps. We select the
training step based on numerical metrics from videos that
are randomly sampled from the training set. Our training
are conducted on 32 A800 GPUs with around 3 days on
Stage 1.

7.3. Detailed Sampling Parameters
Our sampling strategy does not incorporate any special de-
signs. We generate the video by sampling 30 steps and uti-
lize a classifier-free guidance scale [17] of 4.0. Following
Vista, we generate 25-frame videos containing one refer-
ence frame on full nuScene validation set with 5369 sam-
ples for our single-view model. All generated videos and
corresponding frames are used for computing FVD and FID
respectively. For our multi-view model, we generate 150 6-
view videos for each nuScene scene, resulting in 900 single-
view videos. Then, 10K frames are randomly sampled from
these 900 videos for computing FID. This is align with the
evaluation setting of DriveWM [40].

7.4. Details of Comparisons with Vista
For comparisons with Vista, we use the official sample
script and checkpoint. For zero-infer on Waymo dataset, we
infer both models without action and the number of condi-
tion frame is set to 1. For long-horizon rollout on OpenDV-
2K dataset, we infer both models without action and the
number of condition frame is set to 3 for better temporal
continuity across auto-regressive steps. We find numeric
improvement is similar for one condition frame but the qual-
itative continuity is reduced by one-frame auto-regression.
For auto-regressive steps larger than 1, we randomly select
25 frames from the generated video sequences to calculate
the FVD and FID metrics.

8. Qualitative Results
8.1. Long-horizon rollouts
(what is rollout) Longer prediction We provide more qual-
itative and longer visualizations with 42-seconds videos in
Fig.8. We find MaskGWM can predict stable and consis-
tent driving future, combined with unseen scene with initial
scope.
Qualitative comparisons In Fig.11, we make qualitative
comparisons with Vista, which is previous state-of-the-art
method on generalizable driving world model. Our method
can both make stable prediction and generate dynamic ob-
jects according to the future, e.g. unseen cars in initial vi-
sual scope.
Diverse scenes In Fig.9, we present the extended genera-
tion results across various scenes, demonstrating the robust
generalization capability of our approach.
Action control In Figure 12, we illustrate the controllability
of our method on the OpenDV-2K dataset, adhering to the
action module in Vista.
Multi-view generation In Figure 10, we show the multi-



view generation ability coming from lifting our single-view
model by extra view transformer blocks.

9. Discussions
9.1. Differences to Vista
Although both our method and Vista [12] aim to construct
a generalizable world model using the large-scale OpenDV-
2K dataset, we highlight several key distinctions here. First,
our findings suggest that relying solely on the Diffusion loss
may not be optimal for building a world model. We intro-
duce a complementary MR task, which has demonstrated
robust generalization capabilities in representation learning
tasks. Second, our model enables multi-view video gener-
ation through an additional training stage. This also illus-
trates that multi-view generation can benefit from a well-
trained single-view model trained on a dataset encompass-
ing significantly longer durations—over 1,700 hours in the
OpenDV-2K dataset. Third, our model achieves longer pre-
diction durations than Vista. As indicated by the slope of
the metric changes in Fig. 7, our method maintains stable
video prediction results, up to 15 seconds by autoregres-
sive generation, whereas the generation quality of Vista de-
grades notably at this point. Moreover, we have found that
our model can sustain stable generation over longer time
periods across diverse scenes. Regarding quantitative eval-
uation, our model exhibits superior generalization capabil-
ities, as evidenced by results on both the OpenDV-2K and
Waymo datasets. On the standard nuScene benchmark, our
approach also yields better results, with a 19% improvement
in FID and a 3% decrease in FVD.

9.2. Usage of Stable Diffusion 3
Our baseline, built upon the SD3 [7] model, yields supe-
rior results compared to GenAD (trained on SDXL [31])
and performance slightly lower than Vista (initialized with
SVD [1]). Since both GenAD and our baseline are de-
rived from image generation models, the improved perfor-
mance of our baseline demonstrates the effectiveness of
SD3. The superiority of SVD is attributed to its well-
initialized temporal blocks, which have undergone multi-
stage pre-training on extensive video datasets. Therefore,
enhancing the data efficiency of SD3—as in our MR pol-
icy—and incorporating more video data present promising
avenues to bridge this performance gap.

9.3. Future impact of MR.
In our method, MR acts as a complementary task to the
diffusion loss, incorporating better video prediction abili-
ties. Within the scope of representation learning, MR con-
ducts context reasoning in a self-supervised way and can be
generalized to various tasks. This aligns with our design:
recovering the original MR at low noise levels using de-

tailed local context. Our results show that diffusion models
may excel in generating high-fidelity results but learn con-
text reasoning slowly, which can be improved through the
MR task. More generally, the effectiveness of MR shows
that relying solely on diffusion may not be the optimal ap-
proach for driving world models. A similar inspiration can
also be found in GAIA-1, where the prediction ability is
decomposed into an auto-regressive model and a diffusion
model. Exploring training targets for world models can be
a promising direction.

9.4. Limitations.
Although better generalization ability and quality are
achieved, there still exist some limitations that call for fu-
ture works. (1) Controllability. Since we focused our main
improvements on generalization ability and long-duration
prediction, the action module follows the design of Vista.
We have found several challenging cases in control, such
as unreasonable commands. Similar to Vista, our method
relies on resampling the nuScenes dataset to learn con-
trol ability. As a result, finding better feedback strategies
and larger datasets for action learning is a promising direc-
tion. (2) Prediction of Uncertain Future. This phenomenon
mainly arises when encountering complex traffic scenarios,
especially when predicting the movement of each vehicle is
difficult. (3) Generation of Non-Front View Images. Since
multi-view capability is introduced only at the last training
stage with a single nuScenes dataset, the images of non-
front views lack exposure before this stage. Incorporating
non-front view data at an earlier stage or adding more multi-
view datasets (e.g., Waymo) may help address this problem.
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Figure 8. Generalization ability of MaskGWM with longer time.



Figure 9. Generalization ability of MaskGWM in more scenarios.
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Figure 10. Generalization ability of multi-view videos.
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Figure 11. Qualitative comparison with Vista.
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Figure 12. Action control ability of MaskGWM.


