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Figure 1. Examples of degraded video frames, the corresponding masked video frames, and GT video frames under the original trajectories.

In the supplementary material, we provide detailed in-
formation on the training for DriveRestorer , the selected
scenes, the metrics, and the user study. Additionally, we
present more qualitative results to compare the restoration
effects achieved by DriveRestorer with different backbones
and to evaluate the impact of varying stride settings in the
PDUS.

1. Implementation Details

Training for DriveRestorer. As shown in Fig. 1, the frames
rendered by the reconstruction model often exhibit signifi-

cant degradation at the boundary between the sky and the
background and the areas far from the camera in the im-
age center. To address these issues, we introduce a masking
strategy, applying random masks to these degraded regions
to guide the model in repairing them.

Metrics. As mentioned in the main text, we utilize Novel
Trajectory Agent Intersection over Union (NTA-IoU) and
Novel Trajectory Lane Intersection over Union (NTL-IoU)
to assess the quality of the rendered video, both metrics pro-
posed in DriveDreamer4D [10]. These metrics are specifi-
cally designed to evaluate the spatiotemporal coherence of



Scene Start Frame End Frame
segment-10359308928573410754_720_000_740_000_with_camera_labels.tfrecord 120 159
segment-11450298750351730790-1431_750-1451_750_with_camera_labels.tfrecord 0 39
segment-12496433400137459534_120_000-140_000_with_camera_labels.tfrecord 110 149
segment-15021599536622641101_556_150_576_150_with_camera_labels.tfrecord 0 39
segment-16767575238225610271_5185_000_5205_000_with_camera_labels.tfrecord 0 39
segment-17860546506509760757_6040_000_6060_000_with_camera_labels.tfrecord 90 129
segment-3015436519694987712_1300-000-1320_000_with_camera_labels.tfrecord 40 79
segment-6637600600814023975_2235_000-2255_000_with_camera_labels.tfrecord 70 109

Table 1. Eight scenes from the Waymo dataset [7] featuring high interactive activity, numerous vehicles, and complex driving trajectories.

foreground agents and background lanes, respectively.

The NTA-IoU processes images rendered under new
trajectories using the YOLOI11 [5] detector to extract 2D
bounding boxes of vehicles. Meanwhile, by applying geo-
metric transformations to the 3D bounding boxes from the
original trajectories, they can be accurately projected onto
the new trajectory perspective, thus obtaining the ground
truth 2D bounding boxes in the new trajectory view. Each
projected 2D bounding box will find the nearest 2D bound-
ing box generated by the detector and compute their Inter-
section over Union (IoU).

Similarly, the NTL-IoU employs the TwinLiteNet [2]
model to detect lanes in images rendered under new trajec-
tories, while projecting the original trajectory lanes onto the
new trajectory via geometric transformations. Finally, the
mean Intersection over Union (IoU) between the projected
and detected lanes is calculated.

Scene Selection. We select eight scenes from the valida-
tion set of the Waymo dataset [7]. These scenes feature
high levels of interactive activity, with numerous vehicles in
varied positions and exhibiting complex driving trajectories.
Additionally, these scenes include multiple lanes, which in-
creases the complexity of foreground and background re-
construction. As shown in Table. 1, we provide a detailed
list of the segment IDs.

User Study. In the user study, we compare our results with
two baseline models: DriveDreamer4D with PVG [10] and
Street Gaussians [8]. This comparison is conducted across
the eight scenarios we selected, with an emphasis on the
overall quality of the videos, including the consistency and
clarity of the background, as well as the positional accuracy
of foreground objects. In each comparison, our method and
the baseline methods are randomly assigned to the top or
bottom of the video, and participants are asked to choose
the option they find most satisfactory.

2. Baseline

PVG [3] introduces a novel unified representation model
designed to capture dynamic scenes through the use of time-

varying Gaussian distributions. These Gaussians are char-
acterized by adjustable properties such as vibration direc-
tion, duration, and peak intensity. The approach distin-
guishes between static and dynamic elements by sorting the
Gaussians according to their durations.

Deformable-GS [9] establishes a canonical space where
scenes are represented using Gaussian distributions. For
capturing dynamics, it employs a deformation network to
forecast the offsets of Gaussian attributes, which subse-
quently adjust the Gaussians to align with the scene’s dy-
namic changes

S®Gaussian [4] is a method designed for efficient 3D scene
reconstruction that operates without the need for expensive
annotations. It achieves this by using 4D consistency to
divide scenes into dynamic and static components, repre-
senting each with 3D Gaussians for detailed precision and
employing a spatial-temporal field network to model the 4D
dynamics compactly.

Street Gaussians [8] is a dynamic scene modeling method
based on Gaussian Splatting for driving scenes. It sepa-
rately models the static background and foreground vehi-
cles. By utilizing boxes predicted by a pre-trained model,
Street Gaussians warps the Gaussians of foreground vehi-
cles and refines them during training.

DriveDreamer4D [10] is a method that enhances dynamic
driving scene reconstruction by integrating with state-of-
the-art techniques such as PVG [3], Deformable-GS [9],
and S>Gaussian [4]. It leverages world model priors to syn-
thesize novel trajectory videos, where structured conditions
are explicitly utilized to control the spatial-temporal consis-
tency of traffic elements.

3. Experiment Results

Qualitative Results of DriveRestorer Backbone. As
shown in Fig. 2, we compare restoration effects achieved
by DriveRestorer with different backbones. The images
rendered under the new trajectories exhibit several defects,
including distorted and blurred distant trees, flying points
in the sky, and partially obscured foreground vehicles. The
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Figure 2. Qualitative comparison of the restoration effects achieved by DriveRestorer with different backbones. The yellow box contains
the ground truth video frames of the original trajectories, while the pink boxes display the rendered video frames after the lane shift and
the corresponding restored video frames by DriveRestorer with different backbones.

DriveRestorer based on Stable Diffusion [6] demonstrates
promising performance, repairing the background and ef-
fectively correcting the distortion of foreground vehicles.
However, image restoration methods lack spatial continu-
ity, causing the repaired foreground vehicles to appear in
incorrect positions or even exhibit color changes. For in-
stance, in the second column, some distant vehicles that are
originally red turned into grey. The video-based method,
Stable Video Diffusion [1], offers improved spatial conti-

nuity but encounters challenges due to the great difficulty
of fine-tuning. Although it restores many distorted vehi-
cles, the video frames show significant color differences
from the original and sky defects remain unrepaired. Then,
DriveDreamer-2 [ 1 1] introduces control conditions, such as
3D boxes and HDMaps, which resolve the issue of color
discrepancies and improve the restoration of background el-
ements like lane lines. Finally, incorporating masks during
the fine-tuning process of DriveDreamer-2 [11] further en-
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Figure 3. Qualitative comparison of the different stride settings in the PDUS.

hances the repair of sky defects, making the restored video
frame more realistic.
Qualitative Results of Progressive Data Update Strat-
egy. In Figure 3, we compare different stride settings in
the PDUS, including Ay = 1.5 and 3. Although Recon-
Dreamer is effective in enhancing image quality and re-
ducing artifacts for both stride values, an excessively large
stride can lead to poorer reconstruction of lane markings
and distant scenes.

We provide a video that includes more comparisons with
the baseline. For further details, please refer to the file
videos/comparison.mp4.
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