SATA: Spatial Autocorrelation Token Analysis for Enhancing the Robustness of
Vision Transformers

Supplementary Material

1. Supplementary material

1.1. ImageNet-1K SOTA

We compare the proposed SATA models against state-of-
the-art image classification models. In addition to the meth-
ods discussed in the main text, we include several current
state-of-the-art models such as VOLO [7], MOAT [6], CoAt-
Net [2], and MaxViT [5]. We compare their top-1 accuracy
and efficiency in terms of GFLOPs. Notably, as shown in
Figure 1, our proposed SATA and SATA* models signifi-
cantly enhance the performance of standard DeiT and ViT
models, establishing a new state-of-the-art.

1.2. Spatial Autocorrelation distribution across
ViT’s blocks

Figure 2 shows the distribution of spatial autocorrelation
scores (s) for patches (tokens) generated by different blocks
of DeiT-Base/16 on the ImageNet-1K validation set. The spa-
tial autocorrelation of tokens decreases through the blocks
of the vision transformer, confirming the trends of the upper
and lower bands through the vision transformer layers as
discussed and demonstrated in Section 4 and Figure 3 of the
main text.

1.3. Robustness on Individual Corruption Type

In this experiment, we compare the corruption error on each
individual corruption type of ImageNet-C between the base-
line DeiT-Base [4], FAN-B-ViT [8], and our SATA-T. As
shown in Figure 3, our SATA model achieves lower corrup-
tion errors than the other two models across all corruption
types, except for the snow weather corruption. Notably, de-
spite not utilizing any training or patch noise augmentation,
the proposed method demonstrates improved robustness and
generalizes well to different types of corruption.

1.4. More Visualisation

To create the visualizations in Figure ??(b) and Figure 4,
we followed the method described in [1]. We traced each
token of Sets A and B (described in Eq.??, subsection??)
back to its original input patches. For each token in Set A,
we coloured its input patches using the average colour of
the tokens it merged with. To distinguish different tokens,
we assigned a random border colour to each of the merged
tokens.

Moreover, we visualize the comparison of class to-
ken attention maps and spatial autocorrelation score
maps across three layers—representing early, middle, and
later blocks—of the proposed SATA-B (pre-trained Deit-
Base/16+SATA) for various images from ImageNet-1K,
ImageNet-C, ImageNet-R, ImageNet-A, and ImageNet-SK.
As shown in Figure 5, spatial autocorrelation scores exhibit
greater consistency across the Transformer layers compared
to the corresponding attention scores, suggesting that the
use of spatial autocorrelation can provide a more stable and
reliable feature representation throughout the network.

1.5. Implementation

The following Figure 7 is an implementation of our "Spatial
Autocorrelation Token Analysis" (SATA) in PyTorch [3]. De-
tailed settings for model evaluation across different datasets
are provided in Table 1.

1.6. Results Verification

We believe that further investigation of our reported results is
essential for a fair evaluation of our submission. Therefore,
we have included the source code for the proposed SATA on
the ImageNet2012-1K evaluation in the supplementary ma-
terial. To run the code, please execute the main-val.py
file using the commands and settings in 6:

References

[1] Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang,
Christoph Feichtenhofer, and Judy Hoffman. Token merging:
Your vit but faster. In /ICLR, 2023. 1

[2] Zihang Dai, Hanxiao Liu, Quoc V Le, and Mingxing Tan.
Coatnet: Marrying convolution and attention for all data sizes.
In NeurIPS, pages 3965-3977, 2021. 1

[3] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In
NeurIPS, 2019. 1, 8

100
® GFLOPs
SATA*

95 1 SATA
>
Q
g
=
Qo
2 904 MaxViT
— MOAT
g / ConvNeXt VOLO
=
4 ConvNeXt (ot
2 85
[5) RegNetY-16G
& DeiT
£

801

ResNet
75 T ; T -
ImageNet-1K Trained ImageNet-22K Pre-trained

Figure 1. ImageNet-1K classification results for Vision Transformers and ConvNets models. Each bubble’s area corresponds to the
computational cost (GFLOPs) of a variant within its model family. ImageNet-1K/22K models use 224 x 224 input image resolutions,
respectively. Notably, our proposed SATA and SATA* models significantly enhance the performance of standard DeiT and ViT models,
establishing a new state-of-the-art.

Block:1 Block:2 Block:3 Block:4
| | 8 8
' ‘ | I
| 6/ 6/
50 =l 5 oy
2 l |H 2 2 il 2 |
5 54 5 5
g g N 2,
H b 4 ‘"W l 4 4
ot [t I | | ‘ [t [t
L8t | \ 2 : L] | {1 -
02 0.0 02 04 0.6 08 0 -02 00 02 04 06 08 10 07025 000 025 050 075 100 125 0772025 000 025 050 075 100 123
Spatial Autocorr. socre (S) dist. Spatial Autocorr. socre (S) dist. Spatial Autocorr. socre (S) dist. Spatial Autocorr. socre (S) dist.
Block:5 Block:6 Block:7 Block:8
| 8 10 |
12
! i \ |
| I 6 | § | ‘ 10,
: : H"\I‘ o g
g | 24 g g M 1
%4 g g | g
& & &4 & \IHII
| -l | o :
2 2 [|
2
ol o o Omwlll\hl 1l |
%65 X 5 15 -025 000 025 050 075 100 135 X 5 X 15 0 5
Spatial Autocorr. socre (S) dist. Spatial Autocorr. socre (S) dist. Spatial Autocorr. socre (S) dist. Spatial Aumcorr socre () dist.
Block:9 Block:10 Block:11 Block:12
25 80)
1 “ ‘ ‘ 50
20 50
10 ” u 60
= 5 5 2.
gl gis z h N
i 2 S0l 2
g g IJ g g0
I [£o £ Sl |
\ | 2 1
i i + B I 0
%025 000 025 050 075 100 125 150 0 5 20 0 T 2 3 4 H 3 0 T 2 3
Spatial Autocorr. socre (S) dist. Sp.mal Autocorr. socre (S) dist. Spatial Autocorr. socre (S) dist. Spatial Autocorr. socre (S) dist.

Figure 2. Visualising the distribution of spatial autocorrelation scores (s) for patches (tokens) generated by various blocks of Deit-Base/16
on the ImageNet-1K validation set. In the last four blocks, tokens with s scores falling outside of the lower bound (s — |§|) and upper
bound (us + |§]) are highlighted in red for the SATA process.

7 — [Deit-Base
C FAN-B-ViT
[SATA-B

60]
o = - -
° =

50 —
Z I
< - —] - —
g 40]] (] [] (]
g T H] R
= i —
3 —
=1 .
)
=
S
=}
o
:]
E 20
) H H

10

0 T T T T T T T T

) N & o > & & & 3 S & o © G
& 3 3> & AP 3 & $ & <o & & 3 <
o N « N © « ¥ < < & & & s
2

Corruption Type

Figure 3. Comparisons of corruption error (the lower, the better) on individual corruption type of ImageNet-C between Deit-Base [4],
FAN-B-VIiT [8] and our SATA-B. Our SATA model significantly outperforms the other baseline models on all of the corruption types.

Table 1. Detailed Settings for Model Evaluation.} denotes the default settings of the baseline ViT.

Dataset Image size Batch size Mean Std
ImageNet2012-1K 224 x224 256 T T
IN-C 224224 256 (0.485, 0.456, 0.406) (0.229, 0.224, 0.225)
IN-A 224224 256 (0.5,0.5,0.5) (0.5,0.5,0.5)
IN-R 224224 256 (0.5,0.5,0.5) (0.5,0.5,0.5)
IN-SK 224x224 256 (0.5,0.5,0.5) (0.5,0.5,0.5)

[4] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco

Massa, Alexandre Sablayrolles, and Hervé Jégou. Training

data-efficient image transformers & distillation through atten-

tion. In ICML, pages 10347-10357. PMLR, 2021. 1, 3

Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Pey-

man Milanfar, Alan Bovik, and Yinxiao Li. Maxvit: Multi-axis

vision transformer. In ECCV, pages 459-479. Springer, 2022.

1

[6] Chenglin Yang, Siyuan Qiao, Qihang Yu, Xiaoding Yuan,
Yukun Zhu, Alan Yuille, Hartwig Adam, and Liang-Chieh
Chen. Moat: Alternating mobile convolution and attention
brings strong vision models. In /CLR, 2022. 1

[7] Li Yuan, Qibin Hou, Zihang Jiang, Jiashi Feng, and Shuicheng
Yan. Volo: Vision outlooker for visual recognition. [EEE
TPAMI, 45(5):6575-6586, 2022. 1

[8] Daquan Zhou, Zhiding Yu, Enze Xie, Chaowei Xiao, Ani-
mashree Anandkumar, Jiashi Feng, and Jose M Alvarez. Un-
derstanding the robustness in vision transformers. In /CML,
pages 27378-27394. PMLR, 2022. 1, 3

(5

—

Block 11 Block 12

Set A Set Set B

Figure 4. Visualisation of token splitting in Blocks 10 to 12 of SATA-B for images from ImageNet-1K, ImageNet-C, ImageNet-R, ImageNet-
A, and ImageNet-SK.

Class Token Attention Map Spatial Autocorrelation Score Map

Block 3 Block 6 Block 9 Block 3 Block 6 Block 9

Figure 5. Visual comparison of class token attention maps and spatial autocorrelation score maps across three layers—representing early,
middle, and later blocks—of the proposed SATA-B (pre-trained Deit-Base/16+SATA) for different images from ImageNet-1K, ImageNet-C,
ImageNet-R, ImageNet-A, and ImageNet-SK.

python main-eval.py —-—-model_name "deit_base_patchl6_224" --gamma 0.7 —--data_path
./ImageNet2012/val/ —-sata

Figure 6. Command for verifying results on the ImageNet2012-1K validation set.

import torch
import torch.nn.functional as F

def SATA (x: torch.Tensor, M_att: torch.Tensor, alpha:float=1.0):
mmmn
x: token embedding tensor , [batch_size, tokens (N), channels]
M_att : attention map , [batch_size, N, N]
alpha: bound controling factor
mmon
batch_size, num_token, channels = x.shape
if num_token<2 or alpha<=0:
return x, None
Spatial Autocorrelation
remove class token

cls_token=x[...,0,:].view(batch_size,1,-1)
X = X[...,1:,:]

M att = M att[...,1:,:]

M att = M_att[...,:,1:]

(batch_size, N , dim) tuple (x.size())

##44#44 Local Moran's index

a = F.adaptive_avg_poolld(x, 1) # compute global context attribute (Eg.6)
a = torch.reshape(a, (batch_size, N, -1))

z = (a—a.mean(l,keepdim=True))/a.std(l, keepdim=True) # Eq. 4

z_t = z.transpose (-1, -2)
zxz_t = zQ@z_t# B x N x N

I_1 = torch.reshape(torch.diagonal (zxz_t@M_att, diml=1l, dim2=2), (batch_size, N
, 1)) # B x N x 1

s = (I_1-I_1.mean(l,keepdim=True))/I_1.std(1l,keepdim=True) # spatial
autocorrelation score, Eq. 5 # B x N x 1

Tokens Splitting and Grouping
output_tokens, residual_tokens = split_group_by_scores (x,s_score=s,alpha=alpha)

add class token
output_tokens = torch.cat ([cls_token, output_tokens],dim=1)

return output_tokens, residual_tokens

def split_group_by_scores(x, s_score, alpha=l.):

####### Tokens Splitting
computing lower and upper bounds
batch_size, num_token, channels = x.shape

med_score,_ = torch.median (s_score, dim=1,keepdim=True)
mean_score = torch.mean (s_score,dim=1, keepdim=True)

lower_bound = (mean_score - torch.abs (med_score)) xalpha
upper_bound (mean_score + torch.abs(med_score)) xalpha

set_B_mask = (s_score <= upper_bound) & (s_score >= lower_bound) # Eg.8

Unification with regards to the batch_size
Step 1: Calculate the unified size for set B with regards to the batch size

num_B_elements = torch.sum(set_B_mask) .item()

unified_size = int (num_B_elements / batch_size)

unified _num B = unified_size * batch_size

num_B_to_swap = num_B_elements - unified_num_ B # Determine how many elements

need to be swapped out

if num B_to_swap > 0:
Step 2: Sort the scores of elements in set_B_mask along with indices
sorted_scores, sorted_indices = torch.sort (s_score[set_B_mask].view(-1))
Sort the scores and get sorted indices

Step 3: Extract num_elements_to_swap highest-scored elements from
set_B_mask and set to False
selected_indices = sorted_indices|[:num_B_to_swap]
true_indices = torch.where (set_B_mask) # Get the indices of true elements
in set_B_mask
set_B_mask[true_indices[0] [selected_indices], true_indices[1]]
selected_indices],
true_indices([2] [selected_indices]] = False # Set the selected
elements to False
ifdsa st sa s a A AL EEEEEEEEER
set_A _mask = ~set_B_mask # Eqg.7

set_B = x.masked_select (set_B_mask.expand_as (x)) .view (batch_size, -1, channels)
set_A x.masked_select (set_A_mask.expand_as (x)) .view (batch_size,-1,channels)

A_num= set_A.size(l)

####### Tokens Grouping
if A _num>2:
merged_tokens, residual_tokens = token_merging(set_A,channels)
output_tokens = torch.cat ([set_B, merged_tokens], dim=1)
else:
residual_tokens = None
output_tokens = set_B

return output_tokens, residual_tokens

#

def token_merging(x,token_size):

batch_size = x.size (0)
8e, OISt = K[oooy 882, 8ly; Xloooy 1832, 8]

scores = src @ dst.transpose (-1, -2)

node_max, node_idx = scores.max (dim=-1)

src_idx = node_max.argsort (dim=-1, descending=True) [..., None]

dst_idx = node_idx[..., None].gather (dim=-2, index=src_idx)

res_tokens = src.gather (dim=-2, index=src_idx.expand(batch_size, -1,
token_size))

mrg_tokens = dst.scatter_ reduce (-2, dst_idx.expand(batch_size, -1, token_size)

, src, reduce="mean")
return mrg_tokens, res_tokens

Figure 7. Implementation of the proposed “Spatial Autocorrelation Token Analysis” (SATA) in PyTorch [3].

	Supplementary material
	ImageNet-1K SOTA
	Spatial Autocorrelation distribution across ViT's blocks
	Robustness on Individual Corruption Type
	More Visualisation
	Implementation
	Results Verification

