
Supplementary Material for Learning Bijective Surface Parameterization for
Inferring Signed Distance Functions from Sparse Point Clouds with Grid

Deformation
Takeshi Noda1 Chao Chen1∗ Junsheng Zhou1 Weiqi Zhang1

Yu-Shen Liu1† Zhizhong Han2

1School of Software, Tsinghua University, Beijing, China
2Department of Computer Science, Wayne State University, Detroit, USA

{yeth24,zhou-js24,zwq23}@mails.tsinghua.edu.cn
chenchao19@tsinghua.org.cn liuyushen@tsinghua.edu.cn h312h@wayne.edu

1. Implementation Details
We further describe the network architecture of our method.
The encoder Φ receives a sparse point cloud with dimen-
sions N × 3 as input and transforms it into feature maps
with dimensions N × 256 and a set of parameterized sur-
faces, each of which is with a dimension of N × 3. For
each parameterized surface point, we use KNN (K-Nearest
Neighbors) sampling on the spherical surface to select 10
neighboring points, resulting in local patches. Similarly, the
decoder Ψ consists of a four-head attention layer with MLP
layers. It takes a feature map and position encodings with
256 dimensions as input, and predicts the coordinates of the
local patches. All local patches share the same parameters,
which further enhances the efficiency and performance of
BSP. The neural network g consists of linear layers with
ReLU activation functions, where the first 5 layers have a
dimension of 256, and the final layer has a dimension of 1
to predict the signed distance functions.

We utilize the Adam optimizer during training, initializ-
ing the learning rate of 0.0001. We conduct the training
over 40,000 epochs as our default setting. With learned
signed distances from each shape, we employ the Marching
Tetrahedra algorithm to reconstruct the surface. All of our
experiments are conducted on a single GeForce RTX-3090
GPU.

2. Additional Experiments and Visualization
2.1. Robustness to Noise
We report the experimental results under different noise lev-
els in Tab. 1. We add Gaussian noise with standard devia-
tions including 1% , 2% and 3% to create noisy inputs. Al-
though our metrics slightly decrease under high level noise,
we can still predict the complete geometry. We further pro-
vide the visual comparisons in Fig. 1.

2.2. Comparison of Densification Strategies
To validate the effectiveness of different densification
strategies for processing sparse point clouds, we select
GradPU [3] and LDI [4] as the baselines for comparative

Noise Level 0% 1% 2% 3%
CDL1 × 10 0.077 0.083 0.090 0.098

CDL2 × 100 0.043 0.047 0.056 0.064
NC 0.914 0.883 0.832 0.780

Table 1. Robustness of noise.

Figure 1. Robustness of noise.

analysis. GradPU generates dense point clouds through
linear interpolation, while LDI employs local indicators to
achieve more precise results. We compare the densification
effects of their point clouds following the default settings of
TPS [2] on ShapeNet. As shown in Fig. 2, neither GradPU
nor LDI is able to produce a uniform distribution, as both
are hindered by the extremely sparse input. Conversely,
BSP achieves the smallest error (Bluer) with a continuous
distribution. Furthermore, we replace BSP with LDI and
GradPU for optimization. We also provide CD error maps
for comparison. Both LDI and GradPU struggle to provide
reliable supervision for inferring continuous surfaces. In
contrast, BSP significantly improves the accuracy of the re-
construction in challenging local regions.



Figure 2. Comparison of densification strastegies, the input contains 300 points. The color indicates the point distance error to ground truth
surface.

2.3. Effect of Sample Strategy
To validate the effect of the spherical projection Uproj on the
center point Q, we replace Uproj with normalization, result-
ing in an approximate spherical surface Unorm(Q). How-
ever, the center points Unorm(Q) do not guarantee that local
queries lie on the same plane. As shown in Tab. 2, the
normalization strategy Unorm(Q) leads to an increase in the
CD metric, indicating that spherical projection sampling is
effective for learning bidirectional mappings.

CDL1 × 10 CDL2 × 100 NC
Unorm 0.081 0.046 0.911

Ours (Uproj) 0.077 0.043 0.914
Table 2. Effect of sample strategy.

2.4. Comparison of Mapping Strategy
BSP aims to densify sparse point clouds in latent space,
it relies on an Encoder-Decoder (ED) architecture to map
sparse 3D points into codes in the latent space and then de-
code newly sampled codes into dense 3D points. Our nov-
elty lies in how we can sample codes that are consistent
to the codes of sparse points so that we can not only den-
sify points but also preserve the geometry and topology of
sparse points without learning data-driven priors. Specif-
ically, we introduce BSP within the ED, which projects
codes onto a sphere manifold and samples new codes on the
manifold to decode densified points. Tab. 3 and Fig. 3 show

that our method significantly constrains the sampling space,
preserve geometry of the shape and recover more consistent
geometry.

Methods CDL1 × 10 CDL2 × 100 NC
ED+DMTet 0.091 0.055 0.873
ED+GDO 0.083 0.048 0.881

BSP+GDO (Ours) 0.077 0.043 0.914

Table 3. Comparison of ED and BSP on ShapeNet Lamp class.

Figure 3. Comparison of mapping strategy.

2.5. Effect of the Gradient of GDO
GDO leverages the gradient of SDF to constrain the off-
set direction of nodes, which pushes all nodes move along
the directions of the greatest signed distance increase to
the zero-level set. This significantly improves the perfor-
mance of DMTet in surface inference from sparse point



Figure 4. Effect of the gradient of GDO.

clouds. Meanwhile, GDO also improves both convergence
efficiency and performance as shown in Fig. 4.

2.6. Optimal Setting of KNN.
BSP samples k code candidates in the spherical latent space
rather than in the 3D space, where the sampled codes will be
decoded into 3D points by the decoder. The k does not sig-
nificantly affect the locations of the densified points, since
the code candidates are densely and uniformly distributed
on the spherical latent space. With the input as supervision,
the densified points are uniformly distributed on the surface
if k is large enough to set to 10. We further provide visual
comparisons in Fig. 5.

Figure 5. Optimal setting of KNN.

2.7. Robustness of BSP.
BSP encodes points into features which are then projected
to the spherical latent space. The impact of sparsity and
noises on topology can be minimized in the latent space dur-
ing the sampling since we do not directly sample points in
3D. This can be well illustrated in Fig. 6 where we can re-
veal surfaces well with the same topology even from sparse
and noisy points which are almost mixed with each other.

3. More Visualizations

To further validate the effectiveness of our method, we pro-
vide additional visualization and comparisons in Fig. 7 and
Fig. 8, respectively. We select lamps, planes, and vessels
from the ShapeNet dataset for visual comparison. We also
compare our approach with more recent methods, including

Figure 6. Robustness of BSP.

NS [6], IMLS [5], and GP [1]. The results in Fig. 8 demon-
strate that our method offers competitive performance in re-
construction tasks.

4. Limitation and Future Works
We observe that recent parameterization based methods can
produce dense representations, but the uniform distribution
of the parameterized surface is unconstrained, making the
reconstruction results highly sensitive. We aim to address
this issue to further improve the accuracy of the representa-
tion in future work.

5. Related Metrics
L1-Chamfer Distance (CDL1). CDL1 measures the aver-
age of the nearest distance errors between two point sets
with L1-norm (Manhattan distance). Given two point sets
P1 and P2 , the CDL1 can be calculated as:

CDL1(P1, P2) =
1

|P1|
∑

pi∈P1

min
pj∈P2

∥pi − pj∥1

+
1

|P2|
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min
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∥pj − pi∥1.
(1)

L2-Chamfer Distance (CDL2). CDL2 measures the av-
erage nearest distance errors between two point sets using
the L2-norm (Euclidean distance). Given two point sets P1

and P2, which do not necessarily have the same number of
points, CDL2 is defined as:

CDL2(P1, P2) =
1
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(2)

Normal Consistency (NC). NC is used to evaluate the ac-
curacy of the normal vectors between two point clouds P1

and P2. Here, ⟨pi, P2⟩ denotes finding the point in point
cloud P2 that is closest to pi, and the similarity of the nor-
mal vectors at the positions of the two points is measured



by calculating the dot product of the normal vector of that
point with the normal vector of pi. The higher this metric,
the better. The formula is as follows:

NC(P1, P2) =
1

|P1|
∑

pi∈P1

⟨pi, P2⟩

+
1

|P2|
∑

pj∈P2

⟨pj , P1⟩.
(3)

Hausdorff Distance (HD). HD measures the maximum
distance from a point pi in point set P1, to the nearest point
pj in another point set P2, whcich can be described as:

HD(P1, P2) =max

(
max
pi∈P1

min
pj∈P2

∥pi − pj∥2,

max
pj∈P2

min
pi∈P1

∥pj − pi∥2
)
.

(4)



Figure 7. Visual presentations for ShapeNet dataset.

Figure 8. Visual comparison of state-of-art methods.
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