
—Supplemental Document —
The Impact Label Noise and Choice of Threshold has on

Cross-Entropy and Soft-Dice in Image Segmentation

Marcus Nordström1,2 Atsuto Maki1 Henrik Hult1

1KTH Royal Institute of Technology 2RaySearch Laboratories
{marcno,atsuto,hult}@kth.se

Contents

1. Proofs 2
1.1. Proof of Proposition 1 . 2
1.2. Proof of Proposition 2 . 2
1.3. Proof of Proposition 3 . 3

2. Experiments 5
2.1. Computing the marginals . 5
2.2. Sampling noisy segmentations . 5
2.3. Dice optimal segmentations . 5

3. Results 7

1

1. Proofs

1.1. Proof of Proposition 1

First, since the components of X are independent Gaussian fields with covariance kernel

ka,b(ω, ω
′) = a2 exp

(
−∥ω − ω′∥22

2b2

)
, ω, ω′ ∈ Rn, (1)

it follows that

Var((X1(ω), . . . , Xn(ω))
T) = (ka,b(ω, ω), . . . , ka,b(ω, ω))

T = (a2, . . . , a2)T , (2)

and consequently that the marginal probability densities X(ω), ω ∈ Ω are given by

X(ω) ∼ pa2(x), x ∈ Rn. (3)

Now, let

l̂(ω) =

{
l(ω) if ω ∈ Ω,

0 otherwise,
(4)

which means that

L(ω)
d
= l̂(ω +X(ω)), (5)

where d
= denotes equal in distribution. This together with the law of the unconscious statistician and the symmetry pa2(x) =

pa2(−x), x ∈ Rn then for any ω ∈ Ω yields

E[L(ω)] = E[l̂(ω +X(ω))] (6)

=

∫
Rn

l̂(ω + x)pa2(x)λ(dx) (7)

=

∫
Rn

l̂(ω′)pa2(ω′ − ω)λ(dω′) (8)

=

∫
Rn

l̂(ω′)pa2(ω − ω′)λ(dω′) (9)

=

∫
Ω

l(ω′)pa2(ω − ω′)λ(dω′). (10)

This completes the proof.

1.2. Proof of Proposition 2

By Proposition 1, changing the order of integration and recalling that
∫
Rn pa2(ω − ω′)λ(dω) = 1 for any ω′ ∈ Rn, it follows

that

E [∥L∥1] = E
[∫

Ω

|L(ω)|λ(dω)
]

(11)

= E

[∫
Ω

L(ω)λ(dω)

]
(12)

=

∫
Ω

E[L(ω)]λ(dω) (13)

=

∫
Ω

∫
Ω

l(ω′)pa2(ω − ω′)λ(dω′)λ(dω) (14)

=

∫
Ω

l(ω′)

[∫
Rn

pa2(ω − ω′)λ(dω)

]
λ(dω′)−

∫
Ω

l(ω′)

[∫
Rn\Ω

pa2(ω − ω′)λ(dω)

]
λ(dω′) (15)

=

∫
Ω

l(ω′)λ(dω′)− ξ (16)

=

∫
Ω

|l(ω′)|λ(dω′)− ξ (17)

= ∥l∥1 − ξ. (18)

This completes the proof.

1.3. Proof of Proposition 3

Independently scattered measures are introduced more generally for α-stable distributions in [3, Section 3.3]. The Gaussian
case used in this work is simply the special case when α = 2. Let W be an independently scattered Gaussian measure
on Rn, with control measure λ. That is, with B0 being the Lebesgue measurable sets with finite measure, for any finite
collection, A1, . . . , Ak of disjoint sets in B0, the random variables W (A1), . . . ,W (Ak) are independent, and W (Ai) has
centered Gaussian distribution with variance λ(Ai). For f ∈ L2(Rn) the stochastic integral I(f) =

∫
Rn f(ω)W (dω) is well

defined with centered Gaussian distribution with variance ∥f∥2L2 . In fact, {I(f), f ∈ L2(Rn)} is a Gaussian process indexed
by L2(Rn). In particular, for a given f ∈ L2(Rn), the process Y = {Y (ω), ω ∈ Rn} given by

Y (ω) =

∫
Rn

f(ω − ω′)W (dω′), (19)

is a centered Gaussian process with covariance kernel given by

k(ω, ω′) =

∫
Rn

f(ω − u)f(ω′ − u)λ(du). (20)

For the squared exponential kernel

k(ω, ω′) = a2 exp

(
−∥ω − ω′∥2

2b2

)
(21)

we can identify f as

f(ω) =
a

(πb2/2)n/4
exp

(
−∥ω∥2

b2

)
. (22)

Indeed, for any ω, ω′ ∈ Rn it follows, after a completion of the square, that

k(ω, ω′) =

∫
Rn

f(ω − u)f(ω′ − u)λ(du) (23)

=
a2

(πb2/2)n/2

∫
Rn

exp

(
−∥ω − u∥22

b2

)
exp

(
−∥ω′ − u∥22

b2

)
λ(du) (24)

=
a2

(πb2/2)n/2
exp

(
−∥ω − ω′∥22

2b2

)∫
Rd

exp

(
−
∥u− ω+ω′

2 ∥22
2(b/2)2

)
λ(du) (25)

=
a2(2π(b/2)2)d/2

(πb2/2)d/2
exp

(
−∥ω − ω′∥22

2b2

)
(26)

= a2 exp

(
−∥ω − ω′∥22

2b2

)
(27)

Now consider the isotropic normal density in dimension d with variance b2/2

pb2/2(ω) =
1

(πb2)d/2
exp

{
−∥ω∥22

b2

}
(28)

and note that it can be used to rewrite f as follows

f(ω) = a(2πb2)n/4pb2/2(ω). (29)

Consequently, it follows that

Y (ω) = a(2πb2)d/4
∫
Rn

pb2/2(ω − ω′)W (dw′). (30)

Now, let W1, . . . ,Wn be independent copies of W , then it follows that

X(ω)
d
=

a(2πb2)n/4
∫
Rn pb2/2(ω − ω′)W1(dw

′)
...

a(2πb2)n/4
∫
Rn pb2/2(ω − ω′)Wn(dw

′)

 , (31)

where d
= denotes equal in distribution. This completes the proof.

2. Experiments
The experimental code is composed of two parts. The first part is for extracting the data. The second part is for training the
model. Most of the code is straight forward and similar to what would be found in any standard implementation of a UNet
trained with either cross-entropy or soft-Dice. There are however three methods based on the theory described in this paper
that needs clarification.

2.1. Computing the marginals

import numpy as np
import scipy.ndimage

def get_noisy_marginals(l,a):
scaled_a = np.array(a)*np.array(l.shape)
noisy_marginals = scipy.ndimage.gaussian_filter(m,scaled_a,mode=’constant’)

return noisy_marginals

Listing 1. Python code for computing the marginals associated with a noisy segmentation that is formed by the noise free segmentation l and
the noise strength parameter a. The code is a direct implementation of the Proposition 1.

The first method is for computing the marginals associated with a particular noisy segmentation and is based on Proposition 1.
The code for this method is listed in Listing 1. The input is composed of: l a discretized version of the noise-free reference
segmentation represented as a multidimensional numpy array and a the parameter to the noise model encoding the strength
of the noise represented as a floating point number. The output is a discretized version of the marginals represented as a
multidimensional numpy array.

2.2. Sampling noisy segmentations

import numpy as np
import scipy.ndimage

def get_noisy_sample(l,a):
b = 0.15*np.sqrt(2)
scaled_a = np.array(a)*np.array(l.shape)
scaled_b = np.array(b)*np.array(l.shape)
weight = scaled_a*(2*np.pi*scaled_b**2)**(len(np.shape(m))/4)

perb = np.array([weight*scipy.ndimage.gaussian_filter(
np.random.normal(size=l.shape),scaled_b[i]/np.sqrt(2),mode=’constant’)
for i in range(len(l.shape))])

grid_mesh = np.meshgrid(*[range(l.shape[i]) for i in range(len(l.shape))],indexing=’ij’)
noisy_sample = np.round(scipy.ndimage.map_coordinates(l,grid_mesh+perb, mode=’nearest’))

return noisy_sample

Listing 2. Python code for computing a random sample associated with a noisy segmentation that is formed by the noise free segmentation l
and the noise strength parameter a. The code is a direct implementation of Proposition 3.

The second method is for sampling noisy segmentations and is based on Proposition 3. The code for this method is listed
in Listing 2. The input is composed of: l a discretized version of the noise-free reference segmentation represented as a
multidimensional numpy array and a the parameter to the noise model encoding the strength of the noise represented as a
floating point number. The output is a discretized version of a random sample associated with the noisy segmentation and is
represented as a multidimensional numpy array. The method can be broken down into three steps. Firstly the constant used for
rescaling is computed. Secondly, the vector of Gaussian fields is generated, which in the numerical setting is approximated by
drawing i.i.d. Gaussian variables for each entry in l and then processing the resulting array with a Gaussian filter. Thirdly, the
noise-free segmentation l is deformed with the resulting random deformation array.

2.3. Dice optimal segmentations

import numpy as np

def get_opt_dice_seg(m):
psi = np.flip(np.sort(m.flatten()))
d = 2*np.cumsum(psi)/(np.sum(m)+np.arange(1,len(psi)+1))
t = np.max(d)/2
s = 1.0*(m>=t)
return s

Listing 3. Python code for generating a Dice optimal segmentation from a marginal function m.

The third method is for computing the optimal segmentation with respect to Dice. The code for this method is listed in
Listing 3 and is taken from [2]. It is an efficient variation of a method proposed in binary classification [1]. The input is
composed of: m a discretized version of the the marginal function represented as a multidimensional numpy array. The output
is a discretized version of the optimal segmentation with respect to Dice represented as a multidimensional numpy array. The
idea is to sort the voxels in m from largest to smallest, and then compute the Dice score associated with the segmentations that
are formed by taking the first set of voxels associated with this sorted list. This is done for every possible number of voxels.
The maximal score is used to form a threshold which is used to formulate the final segmentation.

3. Results

Organ a CE(0) SD(0) CE(∗)

Kidney 0.0000 0.9611 0.9634 0.9615
0.0100 0.8762 0.8794 0.8774
0.0200 0.7883 0.7914 0.7909
0.0300 0.6947 0.7080 0.7055

Aorta 0.0000 0.9525 0.9515 0.9524
0.0100 0.8639 0.8654 0.8653
0.0200 0.7557 0.7569 0.7600
0.0300 0.6215 0.6513 0.6560

Esophagus 0.0000 0.8552 0.8603 0.8602
0.0100 0.6671 0.6722 0.6814
0.0200 0.4168 0.4527 0.4829
0.0300 0.1441 0.3105 0.3489

Table 1. Table over the results from the experiments for each organ and noise level a. The entries are average Dice scores obtained from the
average over the five folds.

References
[1] Zachary C Lipton, Charles Elkan, and Balakrishnan Naryanaswamy. Optimal Thresholding of Classifiers to Maximize F1 Measure. In

Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 225–239. Springer, 2014. 6
[2] Marcus Nordstrom, Henrik Hult, Fredrik Löfman, and Jonas Söderberg. On image segmentation with noisy labels: Characterization and

volume properties of the optimal solutions to accuracy and dice. Advances in Neural Information Processing Systems, 35:34321–34333,
2022. 6

[3] Gennady Samoradnitsky and Murad S. Taqqu. Stable non-Gaussian random processes: stochastic models with infinite variance.
Chapman and Hall, 1994. 3

	Proofs
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3

	Experiments
	Computing the marginals
	Sampling noisy segmentations
	Dice optimal segmentations

	Results

