INlumination Spectrum Estimation for Multispectral Images via Surface
Reflectance Modeling and Spatial-Spectral Feature Generation

Supplementary Material

S1. Comprehensive evaluation on the Beyon-
dRGB dataset

We provide detailed experimental results presented in
Sec. 4.2. Following standard practices in color constancy
research, we evaluate the 25th, 50th (median), and 75th per-
centile for each result, along with the mean and standard de-
viation. These statistics are reported in Tab. S1 for PWIR,
BeyondRGB, and the proposed technique. The error rates in
different percentile values indicate that our model achieves
stable and reliable illumination estimation overall.

AAys |
Dataset Method mean 25% median 75% std
PWIR [54] 27.10 1855 2391 35.68 10.86
Lab BeyondRGB [14]  5.92 4.04 5.39 8.01 2.92
Ours 3.65 1.73 2.70 497 272

PWIR [54] 16.31 11.61 15.17 21.82 6.07
Field BeyondRGB [14] 7.22 331 6.14 9.80 554
Ours 597 322 5.04 739  3.90

Table S1. Performance evaluation on BeyondRGB dataset.

S2. Further ablation study on network archi-
tecture

We developed and tested several modules thoroughly to
achieve a better trade-off between accuracy and complex-
ity for the implementation of our approach.
Implementation of learnable SU. We present compara-
tive experiments with a fully learnable model using a Trans-
former and deeper CNN layers as in Zeng et al. [S1]. The
results showed that, while the deeper structure slightly re-
duced AE, it demanded substantially higher computational
complexity. In fact, Zeng’s method was developed for HSI
denoising to preserve spatial details. These validated our
design choices for the ISE.

Learnable SU model ‘ mean-AAE (°) ‘ GPU Memory (GB) ‘ # of Param. ‘ inf. time (s)

Transformer SU | 4.22 | 18.77
Ours | 4.40 | 14.96

| 7329238 |  0.027
| 6795365 | 0.022

Table S2. Comparison of learnable SU.

Cross-attention (CA) in feature fusion.  On top of the
standard CA, we achieved more effective feature integration
for the interaction between data-driven and physics-driven
features through the GRU. This is accomplished by adding
abundance (U) to the attention as in Eq. (9). This showed

improvements in mean-AAyg compared to when U was
removed in Eq. (9) (Ours: 4.40°, wo/ U: 4.92°), supporting
our contribution of the spatial-spectral features.

Such consideration in task-specific designs enhanced the
trade-off.

S3. Ablation study on endmembers

We evaluated the performance with varying numbers of
endmembers on the BeyondRGB dataset. The SU block
learns K unique spectral patterns inherent in the image,
while increasing K would result in longer inference time.
The inference time was computed based on the first batch
with a batch size of 50. The results are presented in Sec. S3.
In the BeyondRGB dataset, K = 5 provides the optimal
balance. Although K = 7 shows marginally better perfor-
mance with a 0.03 improvement, K = 5 reduces computa-
tional time by 22% (from 3.27s to 2.54s) while maintaining
nearly equivalent performance. When K exceeds to 7, the
performance drops to 4.71. In KAUST dataset, we observed
lower K values exhibited better performance. The optimal
K can be selected based on the spectral characteristics of
the target dataset.

Dataset # of Endmembers (K)
BeyondRGB 3 4 5 6 7 8

mean-AAyg | 472 476 440 4.83 437 471
Inf. Time (s) 237 250 254 284 327 342

Table S3. Performance comparisons and inference time for differ-
ent numbers of endmembers (K) in our SU block.
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Figure S1. Visualization of estimated illumination spectrum for KAUST and CAVE datasets under random illumination conditions. (a) and
(b) show results from the KAUST and CAVE datasets, respectively. The top row shows rendered input RGB images, and the bottom row
presents the corresponding illumination spectra. Gray and red lines represent the ground truth and our estimated spectra, respectively. The
two illuminants used and their mixing ratios are indicated below each illumination plot.

S4. Evaluation on random mixed illuminants

We demonstrate the superior performance of the proposed
technique compared to other methods under various illu-
minations. For this, we use synthetic illuminations on the
KAUST and CAVE reflectance dataset. Specifically, we
equally mix two standard illuminants during training, and,
for testing, we generate more diverse lighting conditions us-
ing varying mixing ratios (0.3-0.7). This setup allows us to
assess how effectively our model can adapt to different il-
lumination combinations. CAVE dataset is used only for
the tests. As shown in Tab. S4, we observe slight increase
in AAyg values compared to standard illumination results
(from 5.55 to 6.25 for KAUST and from 5.93 to 6.52 for
CAVE, increases of 0.70 and 0.59, respectively), the pro-
posed model provides stable performance even under more
diverse illumination conditions. The qualitative results are
illustrated in Fig. S1 for KAUST dataset.

- AAys |
Dataset Illumination mean  25% median  75%  std
Standard (Sec. 4.1)  5.55 2.89 5.01 7.51 3.29
KAUST Random 6.25 4.35 5.85 7.88 277
CAVE Standard (Sec. 4.1) 593  2.88 5.13 821 3.90
Random 6.52 4.29 5.99 830 3.02

Table S4. Performance of estimated illumination spectrum for
KAUST and CAVE dataset under random illumination conditions.

SS. Results of white balancing

As a downstream task, we performed white balancing (WB)
on BeyondRGB dataset using the estimated illumination
spectra from two different methods, PWIR and Ours. Since
our task is bound to illumination estimation for MS im-
ages, both the input images and illumination are in spec-
tral form. To properly handle the spectral nature of both the
images and illumination, the white balancing process was
conducted in the XYZ color space, which provides a device-



independent representation and maintains a direct relation-
ship with the spectral power distributions through the CIE
standard observer color matching functions (CMFs). This
color space enables accurate chromatic adaptation while
preserving the physical meaning of the spectral data, fol-
lowed by visualization in SRGB format. For color space
conversion, the MS images were transformed to XYZ and
RGB domains following the conversion methodology pro-
posed in the BeyondRGB dataset paper. The illumination
spectra were converted to XYZ values using CMF their
corresponding RGB values were obtained using the Python
colour package.

The white balance results with the estimated illumina-
tion are shown in Fig. S2 for Lab images and Fig. S3 for
Field images. The closer the color appearance is to the GT
image, the better the illuminant estimation. Across diverse
scenes, the proposed technique consistently achieves color
correction results that most closely align with the GT im-
ages. Despite the absence of RGB-specific constraints in the
training process, our method demonstrates high accuracy in
the RGB domain. These findings suggest that precise illu-
mination estimation in the spectral domain can effectively
extend to improved white balancing performance in RGB
images.
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Figure S2. White balancing results on Lab images. The columns from left to right present: input images (1st), white balanced results using
illuminants estimated by PWIR (2nd) and our proposed method (3rd), white balanced results using ground truth illumination (4th, GT).
The rightmost columns (5th, 6th) display the spectral power distributions of ground truth and estimated illuminants from PWIR(Green)
and Ours(Red) methods along with their corresponding RGB representations.
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Figure S3. White balancing results on Field images. The column layout follows the same structure as Fig. S2.
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