
BIGS: Bimanual Category-agnostic Interaction Reconstruction

from Monocular Videos via 3D Gaussian Splatting

Supplementary Material

In this supplemental, we included implementation details,

pre-processing, additional quantitative results, additional

qualitative results, and ablation study.

A. Implementation Details

Optimization details. For ‘single-subject optimization step’,

we optimize the hand Gaussians for 15,000 iterations, and

optimize the object Gaussians for 30, 000 iterations. For

‘interacting-subjects optimization step’, we optimize parameters

for additional 30,000 iterations. Based on the NVIDIA A6000

GPU, it takes 5 hours for ‘single-subject optimization’ and

3 hours for ‘interacting-subjects optimization’, respectively.

We use the Adam optimizer for all the optimization and the

learning rate is set as 1.6×10−4 for µi and set as 1.0×10−4

for all other P. For both MLPs and TriplaneNets, we use the

learning rate of 1.0×10−3.

Densification details. Shapes of Gaussians often become

irregular when fitting 3D Gaussians and this can lead to an

uneven image quality: certain regions are overrepresented; while

others lack sufficient detail. To address the issue, we further

employed the adaptive density control (ADC) [4] strategy. The

ADC monitors the local density in 3D space and adaptively

prunes or splits Gaussians to maintain a balanced representation.

This mechanism ensures that regions with complex geometry

receive higher details through denser Gaussian placement; while

simpler areas are represented more sparsely. We applied the

ADC after 3,000 iterations and used it until 27,000 iterations.

Also, we limit the number of total Gaussians as 2.0×105.

B. Pre-processing

In this section, we provide a detailed description of the

pre-processing stage in our pipeline. The overall process

consists of four main steps: hand pose estimation, object/camera

pose estimation, hand-object alignment, and signed distance

function-based mesh initialization. In the following section, we

provide a more detailed explanation of each step.

Hand pose estimation. As mentioned in Sec. 3.2 of the

main paper, we first obtain the poses of both hands (i.e.,

ΦL, ΦR, θL, θR, ΓL, ΓR) using HaMeR [7]. As bimanual

hand-object interactions often involve severe occlusions—either

caused by the object itself or by the other hand—the pose

estimator occasionally fails to produce valid predictions,

resulting in missing frames. To address this issue, we apply

linear interpolation (LERP) using the neighboring frames to

fill in the missing ones. Since ΦL,ΦR,θL, and θR represent

joint rotations, using LERP—which considers only linear
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Figure A. Qualitative examples for image matcher. The points describe

the initialized object point cloud locations.

relationships—can lead to interpolation errors. To mitigate this,

we specifically apply spherical linear interpolation (SLERP)

for the missing Φ and θ values, as it captures the geometry of

rotational space and yields more accurate results.

Object/camera pose estimation. To obtain the object pose

(i.e., ΦO and ΓO) and the camera pose C, which consists of

extrinsic matrix R and intrinsic matrix K (i.e., C= {R,K}),

we use HLoc [10]. Before applying the HLoc, we apply the

SuperPoint [2] and SuperGlue [11] as feature extractor and

image matcher, respectively, to obtain the 3D object point

cloud. However, since SuperGlue is designed for large-scale

scene matching, it often fails to perform reliably on object-only

images with no background. The issue becomes more severe in

cases where the object is small, textureless, or frequently rotated

(as in HO3Dv3’s BB12, BB13, GSF12 and GSF13 sequences).

In such cases, SuperGlue struggles with image matching, which

in turn results in a highly sparse object point cloud and a

large number of missing frames. To address the limitations of

conventional image matchers, we adopt GIM [13], a framework

specifically designed to enhance image matching robustness

across diverse domains. GIM improves the performance via

self-training on internet videos, enabling better generalization

beyond the training domain. By leveraging the pre-trained

GIMSuperGlue as our image matcher, we are able to obtain

reasonable object and camera poses even from object-only

images with no background. However, we empirically observed

that initializing Gaussians from the point cloud obtained via

GIM leads to an excessive number of Gaussians during training,



leading to the inefficiency in fitting and rendering phases. To

avoid this, we apply GIM only when the number of initial

SfM-based point clouds falls below a certain threshold (i.e.,

100). For qualitative examples regarding this, see Fig. A.

Since SfM fails to estimate valid object poses and produces

noise 3D reconstructions in some frames, we apply linear

interpolation (LERP) to ΓO and spherical linear interpolation

(SLERP) to ΦO. We follow the strategy proposed in HOLD [3]

for this: we first compute the center and overall diameter

of the object point cloud. Then, we calculate the distance

corresponding to the 20th percentile from the center, and

all points exceeding 1.5 times this distance are filtered out.

Since sparse point cloud can negatively impact on the final

performance, if the number of initial point cloud is below

104, we perform upsampling until the point count exceeds the

threshold. Here, upsampling means generating new points via

linear interpolation between randomly selected point pairs.

As the final step, we define the initial canonical object

Gaussian by shifting the centroid of the processed object point

cloud to the origin.

Hand-object alignment. Poses of two hands and an object

have been obtained in previous stage, while there exist a few

issues: First, the translations of the hands, ΓL and ΓR, are

located in the MANO [9] space, which is not aligned with

camera poses c obtained from HLoc [10]. Secondly, as SfM

relies only on image correspondences to reconstruct the 3D

geometry, it loses information about real-world scale (i.e.,

absolute scale s). To address these issues, we perform a simple

optimization step that aligns ΓL and ΓR with the HLoc camera

C, following the initialization step of HOLD [3] (written in Sec.

A of their supplemental). The only difference is that we have

both hands; while HOLD only tackles the one hand case (i.e.,

right hand). We extend the formula by additionally involving

the left hand. After the optimization, we can get hand-object

aligned parameters (i.e., ΓL,ΓR,ΓO,s).

Signed distance function-based mesh initialization. To

obtain the final meshes of both the hand and the object,

given point clouds, we apply three implicit functions (fL, fR
and fO) [1] which are trained for left hand, right hand and

objects. Specifically, we cast a ray from each pixel of the input

image via the obtained camera C and sample 3D points in the

camera space. These sampled points are then mapped to the

hand-object aligned space using pre-processed initial poses (i.e.,

θL,θR,ΦL,ΦR,ΦO,ΓL,ΓR,ΓO,s). These points are then used

as inputs to the implicit function, which predicts their signed

distance and color values. Then, we apply the Marching Cubes

algorithm [6] to their respective learned implicit fields, fL, fR,

and fO. For each, we evaluate the signed distance function over

a uniform 3D grid within a pre-defined bounding volume in

the canonical space, and extract the zero level set (d= 0) as

the surface mesh. The extracted mesh vertices are then used to

initialize the 3D means (i.e., µi) of our Gaussian representations.
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Figure B. Ablation study on SfM/hand initialization.
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Figure C. Results on challenging objects.

C. Additional Quantitative Results

Fitting and inference speed comparison. During model fitting,

‘HOLD’ takes 30 hours; while ‘Ours’ takes around 1.5 hours

on NVIDIA RTX3090 GPU. During inference, ‘HOLD’ runs

with 0.1 FPS; while ‘Ours’ runs with 42.4 FPS. This is more

efficient than ‘HOISDF’, whose inference speed is 30.7 FPS.

Quantitative results on HO3Dv2 dataset. Throughout the

main paper, we used the HO3Dv3 dataset. Tab. A presents

quantitative results on the HO3Dv2 dataset, comparing our

method with prior works HOLD [3] and HOISDF [8]. We

evaluate performance using CDo and MPJPE, where lower

values indicate better accuracy. Our method achieves the best

performance on both metrics, with a CDo of 0.37 cm2 and an

MPJPE of 23.68 mm, outperforming HOLD (0.39 / 24.47) and

HOISDF (0.39 / 23.73). We run their public code to get the

results. The evaluation was conducted across 13 HO3Dv2’s

evaluation sequences (i.e., SM2, SM4, MC1, MC4, ShSu10,

GPMF12, GPMF14, SMu40, SMu1, ABF12, ABF14, MDF12,

MDF14), demonstrating the robustness and accuracy of our

approach in diverse hand-object interaction scenarios.

D. Additional Qualitative Results

Novel pose rendering. As explained in Fig. 1 of the main

paper, we build the BIGS (Bimanual Interaction 3D Gaussian

Splatting) and this can be used to animate hand-object

interactions with novel poses of hands, objects and camera.

Fig. F and Fig. G show the example rendered images of 2

objects (capsule machine and mixer), each with 4 different hand

and object poses, rendered from 8 different camera viewpoints.

Each column denotes 8 different hand and object interaction

cases and each row denotes 8 different camera viewpoints.

Using the optimized 3D hand and object Gaussians, we can

reliably animate hand-object animations for novel poses of



CDo (cm2) ↓ MPJPE (mm) ↓
HOLD [3] 0.39 24.47

HOISDF [8] 0.39 23.73

Ours 0.37 23.68

Table A. Quantitative results on HO3Dv2 evaluation set.

Rendering

PSNR↑ SSIM↑ LPIPS↓
Ours w/o share* 19.22 0.61 0.21

Ours w/o LSDS 23.81 0.76 0.13

Ours w/o Lmask 16.84 0.48 0.28

Ours* 24.87 0.96 0.05

Table B. Ablation study on loss functions and architecture. ‘share*’

denotes the Gaussian sharing scheme for two hands. Without share*,

we build two Gaussians for each hand; while with share*, we build

one Gaussian for a right hand and share it across two hands.

hand, object and camera. We further made the supplementary

video for the novel pose rendering sequences.

Results on challenging objects. We visualized results on

challenging samples (i.e., banana, scissor) of HO3Dv3 in Fig. B

and also results on the in-the-wild transparent object in Fig. C.

In Fig. C, textures are unrealistic due to transparency in the

‘Novel view’.

E. Ablation Study

Ablation study on SfM/hand initialization. We conducted

ablations on different SfMs and hand reconstructors: When ini-

tializing objects with ‘COLMAP’ [12] and ‘HLoc [10]’, their

initial CDo (↓) is 80.4 and 57.1, respectively; while respec-

tive final result is 1.82 and 1.25, which are already better than

‘HOLD [3]’ (2.04). When initializing hands with ‘METRO’ [5]

and ‘HaMeR [7]’, their initial MPJPE (↓) is 21.58 and 21.57,

respectively, which result in similar final results. We also inter-

polate the object vertices until it has over 104 vertices from init

vertices, if the number of vertices is too small. We provide the

qualitative examples for small and textureless objects like scis-

sors and bananas using different initializations in Fig. B: With

incomplete initializations, ‘Ours’ reliably produce final results.

Ablation results for the image quality. In Table B, we

additionally showed the ablation study results for the image

quality (measured in PSNR, SSIM, and LPIPS) depending on

the different configurations of the loss functions and architecture.

We involved four baselines of ours: ‘Ours’, ‘Ours w/o Lmask’,

‘Ours w/o LSDS’ and ‘Ours w/o share*’. ‘Ours’ is our full model

using the full loss functions, ‘Ours w/o Lmask’ is our model

trained without the use of the mask loss Lmask, ‘Ours w/o LSDS’
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Figure D. Qualitative examples for ablation study.
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Figure E. More detailed ablation results.

is our model trained without the use of the SDS loss LSDS.

‘Ours w/o share*’ is our model using two Gaussians for each

hand (without using the hand Gaussian sharing scheme). We

can observe that without Lmask, the rendering quality becomes

significantly inferior to the original baseline, since Gaussians are

generated in non-object regions. Also, we could observe that the

sharing scheme contributes a lot for the rendered image quality.

Especially, when this scheme is not involved, the occluded

hands are not properly learnt. The SDS loss LSDS also affect

the rendering quality; while we did not include the experiments

regarding Lcontact and Lsmt losses, since their effect is not

significant in the rendering quality (cf. Lsmt is the part of hand

loss Lhand: Lt
smt=∥θt−θt−1∥2

2
+
∑

H∈{L,R}∥Γ
t
H−Γ

t−1

H ∥2
2
).

Fig. D further visualizes the qualitative results for the ablation

studies. Especially, we further showed cases for our results with

and without the share* scheme, our results with and without the

contact loss Lcontact, our results with and without the SDS loss

LSDS and our results with and without the mask loss Lmask, re-

spectively. We observe that the rendering results significantly re-

duced when the share* scheme is not used. We also observe that



‘Ours w/o LSDS’ exhibits noised results in object parts since ours

cannot reliably reconstruct object Gaussians for unseen view-

points, however with the SDS loss, ours can reconstruct the miss-

ing pixels. We also observe that ‘Ours w/o Lmask’ shows jittered

pixels around the objects; while when using the mask loss Lmask,

ours can reduce such pixel jitterings. Also, we can observe that

without the contact lossLcontact, 3D locations between hands and

objects become implausible especially for unseen views. How-

ever, when using the contact loss, we observe that hands and

objects become tightly contacted even in the unseen viewpoints.

More detailed ablation results. In Fig. E, we present more ab-

lations on losses: Without Lscale, images could become blurred

since the scale of a certain Gaussian could dominate. Without

Lcolor, novel surface’s color could become irregular. Lmask

ensures the stable training of 3DGS using foreground masks.
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Figure F. Examples for animatable hand-object sequence rendering for novel poses of hand, object and camera.



Figure G. Examples for animatable hand-object sequence rendering for novel poses of hand, object and camera.
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