BIGS: Bimanual Category-agnostic Interaction Reconstruction
from Monocular Videos via 3D Gaussian Splatting

Supplementary Material

In this supplemental, we included implementation details,
pre-processing, additional quantitative results, additional
qualitative results, and ablation study.

A. Implementation Details

Optimization details. For ‘single-subject optimization step’,
we optimize the hand Gaussians for 15,000 iterations, and
optimize the object Gaussians for 30, 000 iterations. For
‘interacting-subjects optimization step’, we optimize parameters
for additional 30,000 iterations. Based on the NVIDIA A6000
GPU, it takes 5 hours for ‘single-subject optimization’ and

3 hours for ‘interacting-subjects optimization’, respectively.

We use the Adam optimizer for all the optimization and the
learning rate is set as 1.6 x 10~ for j; and set as 1.0 x 1074
for all other P. For both MLPs and TriplaneNets, we use the
learning rate of 1.0 x 1073,

Densification details. Shapes of Gaussians often become
irregular when fitting 3D Gaussians and this can lead to an
uneven image quality: certain regions are overrepresented; while
others lack sufficient detail. To address the issue, we further
employed the adaptive density control (ADC) [4] strategy. The
ADC monitors the local density in 3D space and adaptively

prunes or splits Gaussians to maintain a balanced representation.

This mechanism ensures that regions with complex geometry
receive higher details through denser Gaussian placement; while
simpler areas are represented more sparsely. We applied the
ADC after 3,000 iterations and used it until 27,000 iterations.
Also, we limit the number of total Gaussians as 2.0 x 10°.

B. Pre-processing

In this section, we provide a detailed description of the
pre-processing stage in our pipeline. The overall process
consists of four main steps: hand pose estimation, object/camera
pose estimation, hand-object alignment, and signed distance
function-based mesh initialization. In the following section, we
provide a more detailed explanation of each step.

Hand pose estimation. As mentioned in Sec. 3.2 of the
main paper, we first obtain the poses of both hands (i.e.,
®p, Pr, 0r,0r, I't, 'r) using HaMeR [7]. As bimanual
hand-object interactions often involve severe occlusions—either
caused by the object itself or by the other hand—the pose
estimator occasionally fails to produce valid predictions,
resulting in missing frames. To address this issue, we apply
linear interpolation (LERP) using the neighboring frames to
fill in the missing ones. Since ¢, P .01, and O represent
joint rotations, using LERP—which considers only linear
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Figure A. Qualitative examples for image matcher. The points describe
the initialized object point cloud locations.

relationships—can lead to interpolation errors. To mitigate this,
we specifically apply spherical linear interpolation (SLERP)
for the missing ® and 6 values, as it captures the geometry of
rotational space and yields more accurate results.

Object/camera pose estimation. To obtain the object pose
(i.e., ®o and I'p) and the camera pose C, which consists of
extrinsic matrix R and intrinsic matrix K (i.e., C={R,K}),
we use HLoc [10]. Before applying the HLoc, we apply the
SuperPoint [2] and SuperGlue [11] as feature extractor and
image matcher, respectively, to obtain the 3D object point
cloud. However, since SuperGlue is designed for large-scale
scene matching, it often fails to perform reliably on object-only
images with no background. The issue becomes more severe in
cases where the object is small, textureless, or frequently rotated
(as in HO3Dv3’s BB12, BB13, GSF12 and GSF13 sequences).
In such cases, SuperGlue struggles with image matching, which
in turn results in a highly sparse object point cloud and a
large number of missing frames. To address the limitations of
conventional image matchers, we adopt GIM [13], a framework
specifically designed to enhance image matching robustness
across diverse domains. GIM improves the performance via
self-training on internet videos, enabling better generalization
beyond the training domain. By leveraging the pre-trained
GIMsyperGiue as our image matcher, we are able to obtain
reasonable object and camera poses even from object-only
images with no background. However, we empirically observed
that initializing Gaussians from the point cloud obtained via
GIM leads to an excessive number of Gaussians during training,



leading to the inefficiency in fitting and rendering phases. To
avoid this, we apply GIM only when the number of initial
SfM-based point clouds falls below a certain threshold (i.e.,
100). For qualitative examples regarding this, see Fig. A.

Since SfM fails to estimate valid object poses and produces
noise 3D reconstructions in some frames, we apply linear
interpolation (LERP) to I'p and spherical linear interpolation
(SLERP) to ®. We follow the strategy proposed in HOLD [3]
for this: we first compute the center and overall diameter
of the object point cloud. Then, we calculate the distance
corresponding to the 20th percentile from the center, and
all points exceeding 1.5 times this distance are filtered out.
Since sparse point cloud can negatively impact on the final
performance, if the number of initial point cloud is below
10*, we perform upsampling until the point count exceeds the
threshold. Here, upsampling means generating new points via
linear interpolation between randomly selected point pairs.

As the final step, we define the initial canonical object
Gaussian by shifting the centroid of the processed object point
cloud to the origin.

Hand-object alignment. Poses of two hands and an object
have been obtained in previous stage, while there exist a few
issues: First, the translations of the hands, I';, and I'g, are
located in the MANO [9] space, which is not aligned with
camera poses c¢ obtained from HLoc [10]. Secondly, as SfM
relies only on image correspondences to reconstruct the 3D
geometry, it loses information about real-world scale (i.e.,
absolute scale s). To address these issues, we perform a simple
optimization step that aligns I';, and I' with the HLoc camera
C, following the initialization step of HOLD [3] (written in Sec.
A of their supplemental). The only difference is that we have
both hands; while HOLD only tackles the one hand case (i.e.,
right hand). We extend the formula by additionally involving
the left hand. After the optimization, we can get hand-object
aligned parameters (i.e., I't . I'g,l'0,s).

Signed distance function-based mesh initialization. To
obtain the final meshes of both the hand and the object,
given point clouds, we apply three implicit functions (fr, fr
and fo) [1] which are trained for left hand, right hand and
objects. Specifically, we cast a ray from each pixel of the input
image via the obtained camera C and sample 3D points in the
camera space. These sampled points are then mapped to the
hand-object aligned space using pre-processed initial poses (i.e.,
01,0, P, Pr,P0,I'L,I'r,I'0,s). These points are then used
as inputs to the implicit function, which predicts their signed
distance and color values. Then, we apply the Marching Cubes
algorithm [6] to their respective learned implicit fields, f7, fr,
and fo. For each, we evaluate the signed distance function over
a uniform 3D grid within a pre-defined bounding volume in
the canonical space, and extract the zero level set (d = 0) as
the surface mesh. The extracted mesh vertices are then used to

initialize the 3D means (i.e., p,;) of our Gaussian representations.
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Figure B. Ablation study on SfM/hand initialization.

TEES B W

Original image Novel view

Original view

Figure C. Results on challenging objects.

C. Additional Quantitative Results

Fitting and inference speed comparison. During model fitting,
‘HOLD’ takes 30 hours; while ‘Ours’ takes around 1.5 hours
on NVIDIA RTX3090 GPU. During inference, ‘HOLD’ runs
with 0.1 FPS; while ‘Ours’ runs with 42.4 FPS. This is more
efficient than ‘HOISDF’, whose inference speed is 30.7 FPS.
Quantitative results on HO3Dv2 dataset. Throughout the
main paper, we used the HO3Dv3 dataset. Tab. A presents
quantitative results on the HO3Dv2 dataset, comparing our
method with prior works HOLD [3] and HOISDF [8]. We
evaluate performance using CD, and MPJPE, where lower
values indicate better accuracy. Our method achieves the best
performance on both metrics, with a CD,, of 0.37 cm? and an
MPJPE of 23.68 mm, outperforming HOLD (0.39 / 24.47) and
HOISDF (0.39 / 23.73). We run their public code to get the
results. The evaluation was conducted across 13 HO3Dv2’s
evaluation sequences (i.e., SM2, SM4, MC1, MC4, ShSul0,
GPMF12, GPMF14, SMu40, SMul, ABF12, ABF14, MDF12,
MDF14), demonstrating the robustness and accuracy of our
approach in diverse hand-object interaction scenarios.

D. Additional Qualitative Results

Novel pose rendering. As explained in Fig. 1 of the main
paper, we build the BIGS (Bimanual Interaction 3D Gaussian
Splatting) and this can be used to animate hand-object
interactions with novel poses of hands, objects and camera.
Fig. F and Fig. G show the example rendered images of 2
objects (capsule machine and mixer), each with 4 different hand
and object poses, rendered from 8 different camera viewpoints.
Each column denotes 8 different hand and object interaction
cases and each row denotes 8 different camera viewpoints.
Using the optimized 3D hand and object Gaussians, we can
reliably animate hand-object animations for novel poses of



| CD, (cm?®) | MPIPE (mm) |,

HOLD [3] 0.39 24.47
HOISDF [8] 0.39 23.73
Ours 0.37 23.68

Table A. Quantitative results on HO3Dv2 evaluation set.

Rendering

PSNRT SSIMT LPIPS]

Ours w/o share* 19.22 0.61 0.21

Ours w/o Lsps 23.81 0.76 0.13
Ours W/o Lnask 16.84 0.48 0.28
Ours* 24.87 0.96 0.05

Table B. Ablation study on loss functions and architecture. ‘share™®
denotes the Gaussian sharing scheme for two hands. Without share*,
we build two Gaussians for each hand; while with share*, we build
one Gaussian for a right hand and share it across two hands.

hand, object and camera. We further made the supplementary
video for the novel pose rendering sequences.

Results on challenging objects. We visualized results on
challenging samples (i.e., banana, scissor) of HO3Dv3 in Fig. B
and also results on the in-the-wild transparent object in Fig. C.
In Fig. C, textures are unrealistic due to transparency in the
‘Novel view’.

E. Ablation Study

Ablation study on SfM/hand initialization. We conducted
ablations on different SfMs and hand reconstructors: When ini-
tializing objects with ‘COLMAP’ [12] and ‘HLoc [10]’, their
initial CD,, ({) is 80.4 and 57.1, respectively; while respec-
tive final result is 1.82 and 1.25, which are already better than
‘HOLD [3]’ (2.04). When initializing hands with ‘METRO’ [5]
and ‘HaMeR [77]’, their initial MPJPE ({) is 21.58 and 21.57,
respectively, which result in similar final results. We also inter-
polate the object vertices until it has over 10* vertices from init
vertices, if the number of vertices is too small. We provide the
qualitative examples for small and textureless objects like scis-
sors and bananas using different initializations in Fig. B: With
incomplete initializations, ‘Ours’ reliably produce final results.
Ablation results for the image quality. In Table B, we
additionally showed the ablation study results for the image
quality (measured in PSNR, SSIM, and LPIPS) depending on
the different configurations of the loss functions and architecture.
We involved four baselines of ours: ‘Ours’, ‘Ours w/o Lyask’»
‘Ours w/o Lsps’ and ‘Ours w/o share® . ‘Ours’ is our full model
using the full loss functions, ‘Ours w/o L, is our model
trained without the use of the mask 10ss L5k, ‘Ours w/o Lgps’

RGB Mesh
/W W
Q¥ v Ve
Ours wlo share* Ours wlo share®
—
® A 5 &
t ‘ & » @
ars [
; B
Ours w/o Leontact Ours w/o Leontact
- \ =
\ e
] 7 )
LR s
Ours w/o Lsps Ours w/o Lsps
-~ /,,—s\\ f‘
Q, i ¢ s .
Ours Wlo Linask Ours wlo Liask

Figure D. Qualitative examples for ablation study.

e

Ours (Original view)  Ours (Novel view)

T gagee®

w/o Lgcale w/o Leglor w/o Limask

Figure E. More detailed ablation results.

is our model trained without the use of the SDS loss Lsps.
‘Ours w/o share*® is our model using two Gaussians for each
hand (without using the hand Gaussian sharing scheme). We
can observe that without L., the rendering quality becomes
significantly inferior to the original baseline, since Gaussians are
generated in non-object regions. Also, we could observe that the
sharing scheme contributes a lot for the rendered image quality.
Especially, when this scheme is not involved, the occluded
hands are not properly learnt. The SDS loss Lsps also affect
the rendering quality; while we did not include the experiments
regarding Leoner and Lgy losses, since their effect is not
significant in the rendering quality (cf. Lqy is the part of hand
1085 Cnana: Ll = 00 B4 S 11y T Tl 3
Fig. D further visualizes the qualitative results for the ablation
studies. Especially, we further showed cases for our results with
and without the share* scheme, our results with and without the
contact 108s Leonact, OUr results with and without the SDS loss
Lsps and our results with and without the mask loss £ ., re-
spectively. We observe that the rendering results significantly re-
duced when the share* scheme is not used. We also observe that



‘Ours w/o Lgps’ exhibits noised results in object parts since ours
cannot reliably reconstruct object Gaussians for unseen view-
points, however with the SDS loss, ours can reconstruct the miss-
ing pixels. We also observe that ‘Ours w/o L, shows jittered
pixels around the objects; while when using the mask 108s £k,
ours can reduce such pixel jitterings. Also, we can observe that
without the contact 10ss Lontact, 3D locations between hands and
objects become implausible especially for unseen views. How-
ever, when using the contact loss, we observe that hands and
objects become tightly contacted even in the unseen viewpoints.
More detailed ablation results. In Fig. E, we present more ab-
lations on losses: Without L., images could become blurred
since the scale of a certain Gaussian could dominate. Without
Leolor» NOvel surface’s color could become irregular. L,
ensures the stable training of 3DGS using foreground masks.
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Figure G. Examples for animatable hand-object sequence rendering for novel poses of hand, object and camera.
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