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1. Results for additional model sizes and archi-
tectures

To further showcase the generalizability of our approach,
herein we report results on two additional models: LLaVA-
1.5-13B [8] and Qwen2-VL-2B [14]. The 1st is a scaled-
up version of the LLaVA-1.5-7B [8] used in the main
manuscript and tests the scalability of our approach with
size. The second follows a different architecture and train-
ing procedure and has “only” 2B parameters, testing both
generalizations to different architectures and finetuning in a
lower-parameters regime. As the results from Tables 1, 2 3
and 4 show, on all 6 datasets (i.e. Flickr, coco, nocaps, Sug-

arCrepe, SugarCrepe++ and Winoground) for both retrieval
and compositionality, in all cases we significantly improve
upon the original zero-shot model performance, showing
good scalability with size in both directions, i.e. for smaller
and bigger models.

2. Compositionality evaluation on Winoground

In addition to the results from the main paper, herein, we
report results on Winoground [13], a curated dataset con-
sisting of 400 images with difficult/unusual scenarios that
go beyond compositionality and largely act as a natural ad-
versarial set [3, 15]. As the results from Table 4 show, our

Table 1. Zero-shot text-image retrieval accuracy on Flickr30K, COCO and nocaps.

image retrieval text retrieval

Method Flickr30K COCO nocaps Flickr30K COCO nocaps

R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10

Qwen2-VL-2B [14] 54.1 86.0 32.4 68.2 41.2 80.1 59.6 89.2 35.3 71.8 54.0 90.3
VladVA (Ours) (Qwen2-VL-2B) 80.4 97.3 52.5 84.4 68.3 94.9 93.7 99.9 71.9 93.9 86.0 99.4

LLaVA-1.5-7B [8] 59.6 89.3 34.4 69.6 46.9 83.3 65.6 92.3 35.6 70.5 52.1 88.1
VladVA (Ours) (LLaVA-1.5-7B) 85.0 98.5 59.0 88.6 72.3 96.5 94.3 99.9 72.9 94.4 85.7 99.5

LLaVA-1.5-13B [8] 61.7 90.4 37.9 74.1 48.4 85.0 66.9 93.6 35.3 71.0 48.0 87.9
VladVA (Ours) (LLaVA-1.5-13B) 85.6 98.6 58.2 88.4 74.0 96.6 94.5 99.8 75.0 95.6 85.4 99.6

Table 2. Zero-shot results on SugarCrepe compositionality benchmark.

Method
Params Replace Swap Add

(B) Object Attribute Relation Object Attribute Object Attribute

Qwen2-VL-2B [14] 2.21 89.9 72.0 75.0 56.1 56.1 73.2 70.1
VladVA (Ours) (Qwen2-VL-2B) 2.21 97.9 89.7 81.5 76.5 82.6 93.6 95.4

LLaVA-1.5-7B [8] 7.06 88.0 81.6 76.1 60.9 58.8 67.0 62.4
VladVA (Ours) (LLaVA-1.5-7B) 7.06 98.1 92.1 86.8 79.0 82.9 95.2 95.8

LLaVA-1.5-13B [8] 13.35 90.0 80.6 76.3 71.8 61.9 69.3 59.1
VladVA (Ours) (LLaVA-1.5-13B) 13.35 98.1 93.9 89.8 81.1 86.0 95.2 97.0

Table 3. Zero-shot results on the SugarCrepe++ compositionality benchmark.

Method Params Swap Object Swap Attribute Replace Object Replace Attribute Replace Relation

(B) ITT TOT ITT TOT ITT TOT ITT TOT ITT TOT

Qwen2-VL-2B [14] 2.21 32.7 27.8 30.5 25.3 73.6 65.9 46.8 43.0 57.6 58.3
VladVA (Ours) (Qwen2-VL-2B) 2.21 50.8 33.5 60.4 48.2 93.7 93.8 74.8 77.5 63.6 57.4

LLaVA-1.5-7B [8] 7.06 23.8 30.7 28.0 29.5 58.1 63.0 46.8 58.1 52.3 63.4
VladVA (Ours) (LLaVA-1.5-7B) 7.06 56.1 36.7 63.0 62.5 95.0 93.0 78.2 82.3 71.1 66.3

LLaVA-1.5-13B [8] 13.35 35.5 32.3 30.2 32.4 68.7 66.8 44.8 43.1 52.3 55.6
VladVA (Ours) (LLaVA-1.5-13B) 13.35 55.2 38.3 65.6 60.6 94.5 92.5 80.7 81.1 73.2 66.4



approach matches and outperforms prior models, including
the large 18B EVA-CLIP model (17.5 vs. 15.0, 40.5 vs.
35.8 and 12.8 vs. 10.5, for image, text and respectively
group set).

Table 4. Comparison with state-of-the-art on the Winoground
compositionality benchmark.

Model Image Text Group

CLIP (ViT-B) [9] 10.5 25.0 7.3
CLIP (ViT-L) [9] 12.3 27.5 8.3
BLIP (ViT-L) [6] 10.0 30.5 7.8
BLIP2 (ViT-L) [7] 10.5 29.5 8.5
OpenCLIP (ViT-G/14) [10] 12.8 32.0 9.3
OpenCLIP (ViT-BigG/14) [10] 15.5 35.5 12.0
EVA-02-CLIP (ViT-E/14+) [11] 14.0 33.8 10.8
EVA-CLIP (8B) [12] 14.8 36.5 10.3
EVA-CLIP (18B) [12] 15.0 35.8 10.5

NegCLIP [15] 10.5 29.5 8.0

LLaVA-1.5-7B [8] 11.3 18.5 6.5
E5-V (LLaVA-Next-8B) [4] 14.8 32.3 11.3
E5-V (LLaVA-1.5-7B) [4] 17.4 31.3 10.5
VladVA (Ours) (LLaVA-1.5-7B) 17.5 40.5 12.8

3. Zero-shot image recognition on ImageNet

Table 5. Zero-shot image recognition results on ImageNet dataset
in terms of Top-1 and Top-5 (%) accuracy.

Model Data. size Top-1 Top-5

CLIP (ViT-B) [9] 400M 68.4 91.9
CLIP (ViT-L) [9] 400M 74.0 94.0
EVA-CLIP (18B) [12] 2.7B 83.5 97.2

CLIP (ViT-B) [9] 15M 32.8 -
HiDeCLIP (ViT-B) [9] 15M 45.9 -
FFF (ViT-B) [1] 15M 51.1 -

BLIP (ViT-L) [6] 129M 54.2 81.5
BLIP2 (ViT-L) [7] 129M 46.7 74.2

LLaVA-Next-8B [5] 0M 45.8 74.6
E5-V [4] (LLaVA-Next-8B) 0M 48.2 76.6

LLaVA-1.5-7B [8] 0M 42.0 74.6
VladVA (Ours) (LLaVA-1.5-7B) 8.1M 63.7 88.3
Qwen2-VL-2B [14] 0M 54.7 79.4
VladVA (Ours) (Qwen2-VL-2B) 8.1M 70.6 91.1

From an evaluation point of view, the main focus of this
work is on improved zero-shot retrieval and, more generally,
improved vision-language compositional ability. We focus
on these tasks, as they require stronger (vision-)language
understanding abilities, which we show an LVLM can offer
under appropriate training regimes. As a study case, herein,
for completeness, we also measure the zero-shot ability of

the model for image recognition on ImageNet [2]. As the
results from Table 5 show, our approach significantly im-
proves upon the zero-shot LVLM we start from (54.7 vs
70.6%). In comparison, E5-V approach only offers modest
performance gains (45.8 vs 48.2%) and has notably lower
performance than our approach (48.2 vs 70.6%) despite us-
ing a bigger model. While significantly improving upon the
model we start from, the low data regime we train our model
in (only 8.1M samples) limits its overall performance, with
contrastive models trained on billion samples performing
better. This is expected as the image recognition ability of
a model, especially on the highly specific categories of Im-
ageNet, will depend on how often (if at all) they are seen
in the training set. This is especially significant given that
many of the datasets used for contrastive learning are fil-
tered based on the ImageNet classes [9]. In lower data
regimes, comparable with ours, we can observe that our
approach produces notably better results (e.g. 51.1% for
FFF [1], trained on 15M samples vs 70.6% for ours). Fi-
nally, when comparing it with other models focusing on
retrieval (i.e. BLIP and BLIP2) our approach outperforms
either of them by more than 15% in absolute terms despite
the fact that these models were trained on 129M samples.
All in all, we outperform all models trained in comparable
settings, showing promising initial results in this direction
too.

4. Which layer to choose the token from?
In the main paper, we’ve used the last token of the last layer
as the summary, discriminative token. Intuitively, by se-
lecting the last layer, we maximize the amount of param-
eters we can adapt, and hence adaptation plasticity. How-
ever, herein, for completeness, we report results for differ-
ent layer IDs in Table 6. The results show that the last 3-4
layers have comparable performance, performance that de-
grades as we select earlier layers.

Table 6. Performance change when using different layer IDs, re-
ported on SugarCrepe (averaged) and Flickr30k (I2T).

Dataset/Layer 32 (last) 31 28 24 20 16

Flickr30K 0 +0.3 -0.2 -1.1 -13.5 -59.0
SugarCrepe: 0 +0.9 +0.4 -0.1 -8.1 -20.0

5. Qualitative text generation examples post
discriminative adaptation

Our main objective is to convert generative LVLMs into dis-
criminative ones, hence the proposed approach is designed
from the perspective of maximizing the discriminative abil-
ities of the model. Still, it may be interesting to qualitatively
see how our model, and the closest relevant approach E5-V



behave. We note, that in principle both our approach and
E5-V use LoRAs adapters, hence it is easy to switch be-
tween the discriminative and the generative mode without
compromising either, by enabling or disabling the adapters.
That being said, herein we present some qualitative exam-
ples post-training, so we can see the direct effect the training
has on the model. As the results from Fig.1 show, generally,
our approach better retains the generative capabilities of the
model post-training, producing fine-grained captions, sim-
ilar with the original ones. In contrast, E5-V appears to
predominantly produce only very-shot, not-descriptive out-
puts.



A small dog is wearing a pink and white costume, which includes a hood and a carrot. The dog is standing on a pink 
carpet, and it appears to be smiling. The dog is positioned in the center of the image, and the carpet extends to the 
edges of the frame.


Poodle wearing a costume.

LLaVA-1.5-7B:

E5-V (LLaVA-1.5-7B):

A small dog, wearing a pink pig costume, is sitting on a pink floor. The costume is complete with a hood and a carrot 
in its mouth. The dog's tongue is sticking out, adding a playful touch to the scene. The costume is detailed with a 
pink nose and ears, and a pink bow on the chest. The dog is sitting in front of a pink wall, which features a pink 
castle design. The overall image is a charming and adorable representation of a pet in a costume.

Ours (LLaVA-1.5-7B):

Prompt: Describe the image briefly.

The image depicts a busy city street filled with people walking and standing around. There are numerous individuals 
scattered throughout the scene, some walking in groups and others walking alone. A few people are carrying 
handbags, and a couple of umbrellas can be seen in the crowd.  

The street is lined with various shops, including a bicycle shop, which is located on the right side of the street. A clock 
is also visible in the scene, hanging above the street, likely indicating the time for passersby. The overall atmosphere 
of the image is bustling and lively, with people going about their daily activities.



People are crossing the street at a crosswalk.

LLaVA-1.5-7B:

E5-V (LLaVA-1.5-7B):

This is a bustling street scene in Japan, teeming with life and activity. The street is lined with a variety of shops and 
stalls, each with its own unique offerings. The shops are housed in buildings painted in vibrant hues of red, yellow, 
and blue, adding a splash of color to the scene. The shops are adorned with signs written in Japanese, indicating a 
local market or shopping area. The street itself is a hive of activity, with people walking around, some carrying bags, 
possibly returning from a shopping spree. The street is also marked with traffic lights and street signs, ensuring 
order amidst the hustle and bustle. The image captures the essence of a typical day in a busy Japanese shopping 
district, filled with color, activity, and local charm.


Ours (LLaVA-1.5-7B):

Prompt: Give a detailed description of the image.

E5-V (LLaVA-1.5-7B):

A man is walking down a street in front of a store with a large potted plant hanging from a pole. The store is called 
De Neude.

Potted plant in a pot on a pole.

LLaVA-1.5-7B:

A man is walking past a storefront with a large flower pot hanging from the ceiling. The storefront is green and 
white, and there's a sign that reads "De Neude". The man is wearing a red shirt and is walking past a bicycle. The 
street is lined with buildings and there are several signs and advertisements. The overall atmosphere suggests a 
busy city street.


Ours (LLaVA-1.5-7B):

Prompt: Describe the image very briefly.

A black car is driving down a street in front of a stop sign. The car is passing by a red and white building with a 
Chinese design. There are several people walking on the sidewalk, and a few of them are carrying handbags. The 
scene also includes a fire hydrant and a potted plant.


stop sign on a pole.

LLaVA-1.5-7B:

E5-V (LLaVA-1.5-7B):

A red stop sign is in front of a red and gold archway. The archway is adorned with Chinese characters and has a lion 
statue guarding it. A black car is driving by the archway.


Ours (LLaVA-1.5-7B):

Prompt: Provide a conscise description of this image.

Figure 1. Qualitative comparison on image captioning of the base LLaVA-1.5-7B model and its fine-tuned versions using both E5-V [4]
and our proposed method. We show that with our method, the LLaVA-1.5-7B better retains its captioning capabilities, while E5-V fine-
tuning appears to result in less informative captions.
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