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1. Background on Distributionally Robust Op-
timization

Distributionally Robust Optimization (DRO) was initially
introduced by [21] and has since become a significant frame-
work for addressing uncertainty in decision-making [4, 9] .
The DRO framework operates by defining an uncertainty set
U , typically modeled as a ball of radius ϵ around an empirical
distribution Q̂n , such that U = {Q : d(Q, Q̂n) ≤ ϵ}. The
specific choice of the divergence measure greatly influences
both the required size of ϵ and the tractability of the resulting
optimization problem. The loss function is miminized under
the worst-case distribution Q ∈ U in terms of the expected
loss.

In machine learning, two primary divergence measures
are widely adopted: f -divergences and the Wasserstein dis-
tance. With f -divergences [3, 14, 16] convex optimization
techniques are usually leveraged to define tractable uncer-
tainty sets. Alternatively, the Wasserstein distance [5, 15]
is based on a metric over the data space, enabling the in-
clusion of distributions with supports different from the em-
pirical distribution, thereby offering robustness to unseen
data. However, the computational complexity of Wasserstein-
based DRO makes it more challenging to handle. To address
these challenges, various studies have proposed tractable
methods for specific uncertainty sets and loss functions. For
instance, [5, 15, 22] provide practical approaches for solving
DRO problems with uncertainty regions defined by Wasser-
stein balls. For smooth loss functions, [23] proposes an effi-
cient formulation for certifying robustness under Wasserstein
uncertainty sets. Furthermore, the Unified DRO framework
(UDR) introduced by [7] establishes a connection between
Wasserstein DRO and adversarial training (AT) methods, of-
fering a novel approach where the dual variable of the DRO
problem is adaptively learned during training. This contrasts
with [23] , where this parameter is fixed. [1, 24] study the
DRO problem using the Sinkhorn Distance instead of the
Wasserstein Distance providing efficient dual formulations.

Sparse Dense
SPSR [10] 2.27 1.25
DIGS [2] 0.68 0.19
OG-INR [11] 0.85 0.20
NTPS [8] 0.73 -
NP [12] 0.58 0.23
SparseOcc [18] 0.49 0.20
NAP [17] 0.49 0.19
Ours (WDRO) 0.51 0.20
Ours (SDRO) 0.48 0.21

Table 1. Ablation of point cloud density

2. Additional Ablative Analysis
2.1. Varying the point cloud density
In order to assess the performance of our method under vari-
ous point cloud densities we perform an ablative analysis on
the SRB benchmark [25]. We present quantitative results for
both 1024-sized and dense input point clouds. In the dense
setting, we report results from OG-INR. Our distribution-
ally robust training strategy outperforms competitors in the
sparse case and performs on par with the state-of-the-art in
the dense case. Importantly, we observe considerable im-
provement over our baseline (NP) in both scenarios. Fig. 1
visually supports these results, illustrating reconstructions
for sparse and dense inputs. In the dense setting, our method
captures finer details, emphasized by the red boxes. These
results highlight the practical advantages of our approach,
even for dense inputs. Interestingly, our ablative analysis
reveals that for dense inputs, WDRO may exhibit slightly
better performance compared to SDRO. This result is not
surprising, given that WDRO is certified to effectively hedge
against small perturbations [23]. Consequently, as the input
becomes denser, the noise on the labels due to input sparsity
diminishes, thereby favoring WDRO.

2.2. Hyperparameter Analysis
In order to determine the hyperparameters of our proposed
approach (SDRO), We performed a hyperparameter search
on the SRB [25] benchmark utilizing the chamfer distance
between the reconstruction and the input point cloud as a
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Figure 1. SRB [25] unsupervised reconstructions from sparse (1024
pts) unoriented point clouds without data priors.

validation metric. For the remaining datasets, we employed
the same hyperparameters.

We carry out here an ablation study where we vary
each one of the hyperparameters λ and ρ while fixing the
remaining ones in order to better understand the behavior
of our approach (SDRO) and its sensitivity to the choice of
these hyperparameters.

Regularization parameter λ. This parameter controls
how close the worst-case distribution Q′ is to the nominal
distribution. Fig. 3 illustrates how a very high value for this
parameter minimizes the regularization impacts of SDRO
by maintaining the worst-case samples around the nominal
samples. Conversely, excessively low values lead to overly
pessimistic estimations over-smoothing the results, despite
greatly improving over the NP baseline.

Regularization parameter ρ. This parameter is responsi-
ble for the strength of the entropic regularization: it controls
how the SDRO worst case distribution is concentrated around
the support points of WDRO worst case distribution [24].
Consequently, it has to be defined such that it facilitates
finding challenging distributions around the surface while
maintaining a useful supervision signal. According to Fig. 2,
it is important to utilize a sufficiently high ρ value in order to
hedge against the right family of distributions. Contrastively,
very high values can result in increased variance. Notice that
ρavg here corresponds to average σp over the input points P.

Figure 2. Ablation of the regularization parameter ρ.

Figure 3. Ablation of the regularization parameter λ.

Algorithm 1 The training procedure of our method with WDRO.
Input: Point cloud P, learning rate α, number of iterations Nit,

batch size Nb.
WDRO hyperparameters: ϵ, σ0, αwdro, Nwdro

it , ηλ.
Output: Optimal parameters θ∗.

Compute local st. devs. {σp} (σp = maxt∈Knn(p,P) ||t− p||2).
Q← sample(P,{σp}). (Equ. ??)
Compute nearest points in P for all samples in Q.
Initialize λ1 = λ2 = 1.
Initialize λ.
for Nit times do

Sample Nb query points {q, q ∼ Q}.
Initialize Nb points {q′}, (q′ ∼ N (q, σ0I3)).
for Nwdro

it times do
q′ ← q′ + αwdro∇q′ [L(θ, q′)− λc(q, q′)]

end for
λ← λ− ηλ

(
ϵ− 1

Nb

∑Nb
i=1 c (q

′
i, qi)

)
Compute WDRO losses {LWDRO(θ, q)} (Equ. ??)
Compute combined losses {L(θ, q)} (Equ. ??)
(θ, λ1, λ2)← (θ, λ1, λ2)− α∇θ,λ1,λ2ΣqL(θ, q)

end for

3. Training algorithm for WDRO

We provide in Algorithm 1 the detailed training procedure
for WDRO.



Figure 4. SemanticPOSS [19] reconstructions from road scene LiDAR data.

4. Additional Qualitative Results
We provide additional qualitative comparisons using Seman-
ticPOSS road scene LiDAR data. Fig. 4 highlights the supe-



riority of our method in this challenging scenario compared
to NAP and SparseOcc. This is particularly evident in highly
noisy regions, such as trees, where these methods struggle,
whereas our SDRO approach demonstrates robust perfor-
mance.

5. Evaluation Metrics

Building on the definitions provided in [6] and [25], we
present the formal definitions of the metrics used for evalua-
tion in the main submission. Let S and Ŝ denote the ground
truth and predicted meshes, respectively. Following [8], all
metrics are approximated using 100k samples drawn from S
and Ŝ for ShapeNet and Faust, and 1M samples for 3DScene.
For SRB, we also utilize 1M samples, as suggested by [2]
and [11].
Chamfer Distance (CD1) The L1 Chamfer Distance is com-
puted using the two-way nearest-neighbor distance::

CD1 =
1

2|S|
∑
v∈S

min
v̂∈Ŝ

∥v − v̂∥2 +
1

2|Ŝ|

∑
v̂∈Ŝ

min
v∈S

∥v̂ − v∥2.

Chamfer Distance (CD2) The L2 Chamfer Distance is com-
puted using the two-way nearest-neighborr squared distance:

CD2 =
1

2|S|
∑
v∈S

min
v̂∈Ŝ

∥v − v̂∥22 +
1

2|Ŝ|

∑
v̂∈Ŝ

min
v∈S

∥v̂ − v∥22.

F-Score (FS) For a given threshold τ , the F-Score between
the ground truth mesh S and the predicted mesh Ŝ is defined
as:

FS
(
τ,S, Ŝ

)
=

2 Recall · Precision
Recall + Precision

,

where

Recall
(
τ,S, Ŝ

)
=|

{
v ∈ S, s.t. minv̂∈Ŝ ∥v − v̂∥2⟨ τ

}
|,

Precision
(
τ,S, Ŝ

)
=|

{
v̂ ∈ Ŝ, s.t. minv∈S ∥v − v̂∥2⟨ τ

}
| .

Following [13] and [20], we set τ to 0.01.
Normal consistency (NC) measures the alignment of sur-
face normals between two meshes S (ground truth) and Ŝ
(prediction). Denoting the normal at a point v in S by nv , it
is defined as

NC =
1

2|S|
∑
v∈S

nv·nclosest(v,Ŝ)+
1

2|Ŝ|

∑
v̂∈Ŝ

nv̂·nclosest(v̂,S),

where

closest(v, Ŝ) = argminv̂∈Ŝ ∥v − v̂∥2.
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