GLane3D : Detecting Lanes with Graph of 3D Keypoints

Supplementary Material

def PointNMS (points_x,
thresh_x,

points_y, scores,
thresh_y, r=10):

x1 = points_x » r — (r / 2) * thresh_x
x2 = points_x x r + (r / 2) x thresh_x
yl = points_y » r - (r / 2) * thresh_y
yl = points_y * r + (r / 2) * thresh_y
boxes = stack (round(xl), round(yl),
round (x2), round(y2))

keep = BoxNMS (boxes, scores, iou_thresh=0.1)
return keep

Figure 6. Python code of PointNMS function

6. Hyperparameter Relationship: N and S in
Proposal Selection

The number of proposals, N, serves as a hyperparameter
in GLane3D, determining the total proposals selected from
the set of anchor keypoints K 4. Our model leverages multi-
ple proposals per keypoint to effectively represent the target
lane. These proposals are refined using PointNMS, a func-
tion that retains the strongest S' non-overlapping keypoints.
Since each keypoint is chosen from n proposals, where n
represents the number of proposals per target keypoint, the
relationship NV = S x n is adhered to during the hyperpa-
rameter selection process.

7. Cross Dataset Evaluation

Tab. 9 provides an extended version of Tab. 7, presenting a
more comprehensive comparison. The results demonstrate
that GLane3D achieves superior performance in cross-
dataset evaluations.

The gap in the 0.5m thresholded F1-score highlights the
superior generalization capability of our model. Specifi-
cally, while GLane3D achieves a +5.7 improvement in F1-
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Figure 7. PointNMS Process: (a) Initial proposals, (b) Bounding
boxes centered at the proposal points, (c) Selected strongest key-
points after applying PointNMS.

score under the 1.5m threshold, the notable +25.2 improve-
ment in the 0.5m threshold further underscores its enhanced
generalization compared to previous methods.

The qualitative results in Fig. 9 help to explain the sig-
nificant F1-score gap under the 0.5m matching threshold.
These results reveal that the localization performance of
previous methods is inferior to that of GLane3D, particu-
larly in precise lane representation.

8. PointNMS Implementation

The PointNMS function selects only the highest-confidence
keypoint from a group of proposals located within a dis-
tance of d, from each other, with d, being approximately
zero.

Rather than implementing a custom module for the
PointNMS operation, we leverage the commonly available
BoxNMS function to achieve the same result.

The input to the function consists of the proposal loca-
tions (Kp), as depicted in Fig. 9a. Bounding boxes are

Dist. | Methods Backbone | F1-Scoret | AP(%) 1 ni(af(l;rrlc;r f f): r(e;lr)o 1 nezaf(rrrxf)r ! fi r?rl;lr;) 1
PersFormer [2] EffNet-B7 53.2 - 0.407 0.813 0.122 0.453
g | LATR [22] ResNet-50 343 51.2 0.327 0.737 0.142 0.501
:3 GLane3D-Base (Ours) | ResNet-50 549 64.0 0.255 0.694 0.078 0.464
GLane3D-Large (Ours) | Swin-B 58.9 64.9 0.289 0.701 0.086 0.479
PersFormer [2] EffNet-B7 17.4 - 0.246 0.381 0.098 0.214
g | LATR [22] ResNet-50 19.0 27.8 0.201 0.313 0.116 0.220
2 GLane3D-Base (Ours) | ResNet-50 40.7 44.2 0.135 0.297 0.055 0.194
GLane3D-Large (Ours) | Swin-B 42.6 44.4 0.162 0.296 0.063 0.198

Table 9. Extended Cross-Dataset Evaluation on the Balanced Scenes of the Apollo Dataset [5].



then generated around these proposals, as shown in Fig. 9b,
where the centers of the bounding boxes correspond to the
positions of the proposals. The width of each box is set to
d;, and the height is d,. To enhance resolution, the pro-
posal positions are scaled using a reshaping parameter r, as
illustrated in Fig. 6.

9. Spatial Constraints in the Matcher

We use the Hungarian algorithm to match predicted propos-
als with ground truth keypoints, as discussed in Sec. 3.5.
GLane3D utilizes anchor points K 4 during the prediction
of proposals K p, where the anchor points maintain a fixed
initial position that is not updated. Because of this, we apply
spatial constraints to avoid matching proposals with distant
ground truth keypoints.

The first constraint concerns the lateral distance between
the predicted position of a proposal, (x; + Az,y;), and
the ground truth keypoint, (x¢,y:). If the lateral distance,
|x; + Az — x|, exceeds 1 meter, the match is rejected. The
second constraint addresses the initial position of the an-
chor point, (x;,¥;), and the ground truth position, (x;,y:).
If the lateral distance, |x; —X¢|, exceeds 2 meters, the match
is also rejected. The third constraint relates to the longitu-
dinal distance between the proposal and the ground truth.
Since our model does not predict an offset in the longitu-
dinal y-axis, we reject matches if the longitudinal distance
ly: — y+| exceeds 0 meters.

We prevent matching when any of these conditions are
met by replacing the corresponding value in the cost matrix
with an infinite value.

10. Graph of Keypoints to Lane Instances

The output of GLane3D is a graph representing key-
points, where directed edges connect sequential keypoints,
as shown in Fig. 8a. Initially, we identify the start and end
keypoints, which satisfy the conditions specified in Eq. (7)
and Eq. (8), respectively. These keypoints are represented
as green and red points in Fig. 8a. In the next step, we
compute the shortest paths between the start and end key-
points using Dijkstra’s algorithm. To incorporate adjacency
probabilities A into the shortest path estimation, we use the
corresponding values from the matrix 1 — A, as this is a
minimization problem.

11. Custom BEV Geometry Adjustment

As discussed in Sec. 3.2, the anchor points Ka used in
Inverse Projection Mapping (IPM) are evenly distributed
across the Bird’s Eye View (BEV) space. However, when
projected onto the frontal view (FV), the anchor points be-
come sparser in regions closer to the ego vehicle and denser
in areas farther away, as shown in Fig. 3a.

To address this sparsity near the ego vehicle, our method
adjusts the distribution of anchor points K4 by reducing
both the longitudinal and lateral distances between key-
points as they approach the ego vehicle. Specifically, the
longitudinal distances between keypoints increase linearly
from 0.5 to 1.5 meters, from the ego vehicle to the farthest
point, as described in Eq. (10) and Eq. (9). Meanwhile, the
lateral distances between keypoints at the same longitudinal
distance decrease as they approach the ego vehicle. This ad-
justment narrows the width of the BEV space near the ego
vehicle, ensuring that the number of columns remains con-
stant while preserving the rectangular shape of the BEV fea-
ture Fppy. As shown in Eq. (11) and Eq. (12), the points in
the first row begin at W x  and end at W x 2, while points
in the farthest row start at 0 and end at 1. The lateral range
increases linearly from the nearest row to the farthest row.

1
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12. PV to BEV: IPM vs LSS

We compare two commonly used projection meth-
ods—Inverse Projection Mapping (IPM) and Lift Splat
Shoot (LSS)—with GLane3D. IPM projects Bird’s Eye
View (BEV) locations to the frontal view using camera pa-
rameters. After projection, features extracted from corre-
sponding locations in the frontal view are sampled, result-
ing in Fggy € RO HoxWs,

. X-error X-error Z-error Z-error
Projection F1-Score(%) T near(m) | far(m)| | near(m)| far(m) |
IPM w/o Custom BEV 71.6 0.222 0.275 0.094 0.125
IPM w/ Custom BEV 72.0 0.239 0.267 0.093 0.121
LSS 72.1 0.219 0.261 0.091 0.118

Table 10. Comparison of PV to BEV Projection Methods.



Dist. | Methods Backbone | Sensors | All Up & Curve Extreme Night | Inter. Merge

Down Weather Split

PersFormer [2] EffNet-B7 C 50.5 | 424 55.6 48.6 46.6 | 40.0 50.7
BEV-LaneDet [42] ResNet-34 C 58.4 | 48.7 63.1 534 534 | 503 53.7
PersFormer [2] ResNet-50 C 53.7 | 464 57.9 52.9 472 | 41.6 514
MZ2-3DLaneNet [21] | EffNet-B7 C+L 55.5 | 534 60.7 56.2 51.6 | 43.8 51.4

E LATR [22] ResNet-50 C 619 | 552 68.2 57.1 554 | 523 61.5
~ | LaneCPP [28] EffNet-B7 C 60.3 | 53.6 64.4 56.7 549 | 52.0 58.7
PVALane [51] ResNet-50 C 62.7 | 54.1 67.3 62.0 572 | 534 60.0
DV-3DLane [23] ResNet-34 C+L 654 | 60.9 72.1 64.5 61.3 | 555 61.6
DV-3DLane [23] ResNet-50 C+L 66.8 | 61.1 71.5 64.9 63.2 | 58.6 62.8
Glane3D-Lite ResNet-18 C 61.5 | 55.6 69.1 56.6 56.6 | 52.9 61.3
GLane3D-Base ResNet-50 C 639 | 58.2 71.1 60.1 60.2 | 55.0 64.8
GLane3D-Large Swin-B C 66.0 | 61.1 72.5 64.2 60.1 | 58.0 | 66.9
GLane3D-Fusion ResNet-50 C+L 66.6 | 61.7 72.7 63.8 62.0 | 57.9 67.7
PersFormer [2] EffNet-B7 C 36.5 | 26.8 36.9 339 34.0 | 285 374
Anchor3DLane [8] EffNet-B3 C 349 | 283 31.8 30.7 322 | 299 339
MZ2-3DLaneNet [21] | EffNet-B7 C+L 48.2 | 40.7 48.2 49.8 46.2 | 38.7 442
PersFormer [2] ResNet-50 C 432 | 36.3 42.4 454 39.3 32.9 41.7

l’% LATR [22 ResNet-50 C 54.0 | 449 56.2 47.6 46.2 | 455 55.6
< | DV-3DLane [23] ResNet-34 C+L 63.5 | 58.6 69.3 62.4 599 | 539 | 593
DV-3DLane [23] ResNet-50 C+L 652 | 59.1 69.2 63.0 62.0 | 56.9 60.5
Glane3D-Lite ResNet-18 C 53.8 | 46.7 57.7 47.9 47.1 | 458 55.7
GLane3D-Base ResNet-50 C 579 | 51.0 61.7 53.5 53.8 | 494 60.5
GLane3D-Large Swin-B C 61.1 | 542 64.5 56.8 552 | 53.6 | 63.3
GLane3D-Fusion ResNet-50 C+L 65.6 | 62.4 71.6 62.9 61.1 | 56.9 66.6

Table 11. Extended Quantitative Results by Category on the OpenLane Dataset [2].

Lift Splat Shoot, on the other hand, estimates depth from
frontal view features Fpy € RY /XW/XC, which is ex-
tracted from frontal view image I € R3*#*W _ Each fea-
ture vector is projected onto the corresponding BEV grid,
which is calculated based on the camera position and depth
estimation. Since multiple pixels may fall within the same
BEV grid, LSS applies a cumulative sum trick to pool the
features that fall within each grid.

A key challenge with IPM is its reliance on projections
sampled from the ground surface, which can lead to inaccu-
rate height estimations, particularly on non-flat surfaces. To
compare the two projection methods, we trained our model
using both LSS and IPM, with only the projection block
differing between the networks, while the rest of the archi-
tecture remained the same. The results, as shown in Tab. 10,
indicate that there is negligible difference between the two
projection methods in terms of Fl-score. Since IPM re-
quires less effort for deployment across different platforms,
we opted to use IPM for our training.

13. Extended OpenLane Results

Category-based F1 scores with thresholds of 1.5m and 0.5m
are presented in Tab. 11. The results indicate that camera-

only GLane3D-Large achieves performance similar to that
of camera + LiDAR fusion models in terms of F1 score at
the 1.5m threshold. However, the differences in F1 scores
between camera-only models and camera + LiDAR fusion
models at the 0.5m threshold highlight the contribution of
LiDAR to localization accuracy.

GLane3D-Fusion outperforms other models in most cat-
egories, as shown in Tab. 11. It is important to note that
GLane3D-Fusion utilizes a simpler fusion approach for
combining LiDAR and camera features, in contrast to the
more complex fusion strategy used by DV-3DLane [23].

14. Extended Apollo Results

Tab. 12 shows the extended results in Apollo [5] dataset
with previous methods.
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Figure 8. Lane Instance Extraction: (a) Graph of keypoints, (b) Extracted lane instances.



Figure 9. Qualitative results on cross dataset evaluation on Apollo validation set of Balanced Scenes. The rows (a), (b), (c) illustrate
prediction from PersFormer[2], LATR[22] and GLane3D with 2D projection, respectively.

Subset | Methods Backbone | Fl-Score(%)t | AP(%)t nfar‘ir;gr L f):r (eg)‘)i neZ;(r;f)r L fir (e;lr;’i
¥ PersFormer[2] EffNet-B7 929 - 0.054 0.356 0.010 0.234
> BEVLaneDet [42] | ResNet-34 96.9 - 0.016 0.242 0.020 0.216

;’ LaneCPP [28] EffNet-B7 974 99.5 0.030 0.277 0.011 0.206
§ LATR [22] ResNet-50 96.8 97.9 0.022 0.253 0.007 0.202
Ng DV-3DLane [23] ResNet-50 96.4 97.6 0.046 0.299 0.016 0.213
Q GLane3D (Ours) ResNet-50 98.1 98.8 0.021 0.250 0.007 0.213

PersFormer[2] EffNet-B7 87.5 - 0.107 0.782 0.024 0.602
Ky BEVLaneDet [42] | ResNet-34 97.6 - 0.031 0.594 0.040 0.556
§ LaneCPP [28] EffNet-B7 96.2 98.6 0.073 0.651 0.023 0.543
) LATR [22] ResNet-50 96.1 97.3 0.050 0.600 0.015 0.532
S DV-3DLane [23] ResNet-50 95.5 97.2 0.071 0.664 0.025 0.568

GLane3D (Ours) ResNet-50 98.4 99.1 0.044 0.621 0.023 0.566
a PersFormer[2] EffNet-B7 89.6 - 0.074 0.430 0.015 0.266
'§ BEVLaneDet [42] | ResNet-34 95.0 - 0.027 0.320 0.031 0.256
N LaneCPP [28] EffNet-B7 90.4 93.7 0.054 0.327 0.020 0.222
f LATR [22] ResNet-50 95.1 96.6 0.045 0.315 0.016 0.228
§ DV-3DLane [23] ResNet-50 91.3 93.4 0.095 0.417 0.040 0.320
= GLane3D (Ours) ResNet-50 92.7 94.8 0.046 0.364 0.020 0.317

Table 12. Extended Quantitative Results on the Apollo 3D Synthetic Dataset [5].



