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Supplementary Material

1. Further implementation details

1.1. Latent autoencoders

The autoencoders are trained separately on each dataset fol-
lowing the pipeline defined by the authors of PVDM [5].
We train them until convergence of FVD, SSIM and PSNR
and proceed with a second fine-tuning stage with the ad-
versarial loss for very few iterations. Given a sequence of
frames x of shape T×H×W×C as input, the encoder pro-
duces a latent vector of shape C ′×L, where L is computed
as follows: H·W

P 2 + T
P · (H+W ). We use the default config-

uration of PVDM and keep the patch size P = 4 for 64×64
and 128 × 128 resolution, while we use P = 8 for higher
resolutions. The number of channels for the latent vector is
also set to the default value C ′ = 4 for all experiments up
to 128 × 128 resolution, otherwise we use C ′ = 16. For
example, for Cityscapes (128 × 128) the latent vector has
the shape of 4 × 1536. The number of hidden channels for
the autoencoder is set to 192, differing from 384 used in the
original version for efficiency reasons.

1.2. BAIR depth ground-truth

We generate ground-truth depth images for the BAIR [1]
dataset using the off-the-shelf DepthAnything-v2 [4]
model, specifically the ‘vit-b’ version. Depth estimation
is performed frame by frame, which can result in flickering
in the depth videos due to the lack of temporal coherence.

1.3. SYNTHIA semantic segmentation maps

The SYNTHIA dataset [2] provides semantic segmentation
maps for each RGB frame, consisting of 16 distinct classes.
These maps are represented as 3-channel images, where the
first channel encodes the class IDs, and the remaining two
channels assign instance IDs to individual objects. For our
work, we focused solely on the class IDs, transforming the
first channel into a grayscale image by dividing the original
values by 15 and rescaling them to the range [0, 255]. To
resize the images to 128×128 pixels, we employed nearest-
neighbor down-sampling in order to preserve the integrity
of class labels and avoid blending between classes during
resizing.

1.4. ERA5-Land data processing

Surface pressure (sp) is expressed in Pascals (Pa), while
the two-meter temperature (t2m) is given in Kelvin (K). To
adapt these data modalities to our training setup, we nor-
malized them using the minimum and maximum values pro-
vided in the dataset’s metadata. For evaluation, we rescale

the predictions to their original range and compute the L1

error. The data contains NaN values where the measure-
ments are missing (e.g. seas and ocean). We set these values
to 0 for training and mask them out in the prediction before
computing evaluation metrics.

1.5. OpenDV-YouTube training

We additionally experimented on higher resolution videos
(256 × 256). Specifically, we re-trained our approach on
Cityscapes in a 8 → 8 setting with 256×256 resolution. We
then finetune this model on a small subset of the OpenDV-
Youtube [3] dataset. The subset essentially includes one
video (ID: JS0gJxhFFJ8) of 65 minutes at 30 fps. The
initial and last frames containing text overlay are dropped.
The depth maps for these videos are not available, thus, sim-
ilarly to BAIR (Sec. 1.2), we used DepthAnything-v2 [4]
version ‘vit-l’ on the raw images before center cropping
and resizing them to 256 × 256. We report the evalua-
tion metrics in Tab. 1 and show additional qualitative results
in Fig. 5.

Models RGB Depth
FVD↓ SSIM↑ LPIPS↓ SSIM↑ L2 ↓

SyncVP 247.14 0.611 224.17 0.972 1.1703

Table 1. Results on OpenDV-Youtube (256× 256, 8 → 24).

2. Training ablation
We provide additional ablation results (Tab. 2) to show the
benefits of using a two-stage training pipeline. In the first
stage we learn p(rx | rc) and p(dx | dc), while we exploit
in the second stage these pre-trained weights to learn the
joint conditional distribution p(rx,dx | rc,dc). To evaluate
this, we compare the results of our SyncVP with a version
of the model trained from scratch directly on multi-modal
data.

In Fig. 1, we show the loss plot to further validate the
effectiveness of our shared noise strategy during training.

Two-stage
training

RGB Depth
FVD↓ SSIM↑ LPIPS↓ SSIM↑ L2 ↓

✗ 158.53 0.674 176.45 0.827 8.044
✓ 84 0.649 159.73 0.830 7.329

Table 2. Ablation on Cityscapes about the impact of the proposed
two-stage training pipeline.
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Figure 1. Training loss comparison between using the same noise
for both modalities or independent noise for each modality.

3. Additional qualitative results
We provide some more qualitative results, particularly for
cases where one modality is missing. Specifically, Fig. 2
demonstrates how our model is able to predict future frames
using only the non-RGB modality as observation. Such task
is way more complex than standard joint conditional gener-
ation or the case in which the low detail modality (depth
or semantic) is missing. Nevertheless, the results still ex-
hibit strong cross-modal alignment between the predicted
frames. Fig. 3 shows further examples where the model is
conditioned solely on past RGB frames. In these cases, our
approach is still able to predict aligned depth or semantic
segmentation images.

3.1. Agriculture data

We additionally apply our model on agricultural data col-
lected from a sweet pepper greenhouse. The dataset con-
tains images of 415 plants captured on four different dates,
which can be considered as 415 short video sequences.
Given the dataset’s limited size and the challenge of fore-
casting the plant growth stages, we adopt a leave-one-out
strategy for training and testing. All images are resized
to a resolution of 512 × 288, and depth is estimated us-
ing DepthAnything-v2 [4]. An example of a prediction is
shown in Fig. 6.

4. Robustness to noise
Beside showing the ability of SyncVP to deal with missing
modality input, we further test its resilience to noisy input.
Namely, we inject random Gaussian noise with increasing
σ on the depth input. As shown in Tab. 3, the noisy input
does not affect much the predictions.

noise RGB
σ FVD↓ SSIM↑ LPIPS↓
5 87.78 0.641 161.61
2.5 85.98 0.644 160.75
0 84 0.649 159.73

Table 3. Impact of Gaussian noise in observed disparity
(Cityscapes).
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(a) Prediction on Cityscapes using only depth conditioning.

(b) Prediction on BAIR using only depth conditioning.

(c) Prediction on SYNTHIA using only semantic segmentation maps conditioning.

Figure 2. SyncVP video prediction without conditioning on past RGB frames .



(a) Prediction on Cityscapes.

(b) Prediction on BAIR.

(c) Prediction on SYNTHIA.

Figure 3. SyncVP video prediction with conditioning only on RGB frames.



Figure 4. Multiple predicted trajectories for the same observation on BAIR.



Figure 5. SyncVP predictions on OpenDV-Youtube [3] (256× 256).



Figure 6. SyncVP prediction (3 → 1) on agriculture timeseries data.
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