
Supplementary Material

1. Winograd transformations for convolution
1.1. Standard Winograd transforms
Following [12], given a set of polynomial points (fi, gi), the
Vandermonde matrix Va×b is constructed as below,
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For standard Winograd convolution, we adopt the widely
used polynomial points and scaling factors, as mentioned in
[2, 4, 6, 12]. Specifically, for F (4, 3) the polynomial points,
scaling factors, Vandermonde and transformation matrices
are the following,

(fi, gi) =[(0, 1), (1, 1), (−1, 1),

(2, 1), (−2, 1), (1, 0)]

SA =[1, 1, 1, 1, 1, 1] (2)
SB =[4,−6,−6, 24, 24, 1]

SG =[1/4,−1/6,−1/6, 1/24, 1/24, 1]

V6×4 =


1 0 0 0
1 1 1 1
1 −1 1 −1
1 2 4 8
1 −2 4 −8
0 0 0 1

 (3)

V −T
6×6 =


1 0 −5/4 0 1/4 0
0 2/3 2/3 −1/6 −1/6 0
0 −2/3 2/3 1/6 −1/6 0
0 −1/12 −1/24 1/12 1/24 0
0 1/12 −1/24 −1/12 1/24 0
0 4 0 −5 0 1

 (4)

V6×3 =


1 0 0
1 1 1
1 −1 1
1 2 4
1 −2 4
0 0 1

 (5)

AT = V T
6×4diag(SA)

=


1 1 1 1 1 0
0 1 −1 2 −2 0
0 1 1 4 4 0
0 1 −1 8 −8 1

 (6)

BT = diag(SB)V
−T
6×6

=


4 0 −5 0 1 0
0 −4 −4 1 1 0
0 4 −4 −1 1 0
0 −2 −1 2 1 0
0 2 −1 −2 1 0
0 4 0 −5 0 1

 (7)

G = diag(SG)V6×3

=



1/4 0 0
−1/6 −1/6 −1/6
−1/6 1/6 −1/6
1/24 1/12 1/6
1/24 −1/12 1/6

0 0 1

 (8)

For F (6, 3), the polynomial points, scaling factors, Van-
dermonde and transformation matrices are the following,

(fi, gi) =[(0, 1), (1, 1), (−1, 1), (2, 1),

(−2, 1), (1/2, 1), (−1/2, 1), (1, 0)]

SA =[1, 1, 1, 1, 1, 1, 1, 1] (9)
SB =[1,−9/2,−9/2, 90, 90, 45/32, 45/32, 1]

SG =[1,−2/9,−2/9, 1/90, 1/90, 32/45, 32/45, 1]

V8×6 =



1 0 0 0 0 0
1 1 1 1 1 0
1 −1 1 −1 1 −1
1 2 4 8 16 32
1 −2 4 −8 16 −32
1 1/2 1/4 1/8 1/16 1/32
1 −1/2 1/4 −1/8 1/16 −1/32
0 0 0 0 0 1


(10)

V −T
8×8 =



1 0 −21/4 0 21/4 0 −1 0
0 −2/9 −2/9 17/18 17/18 −2/9 −2/9 0
0 2/9 −2/9 −17/18 −17/18 2/9 −2/9 0
0 1/180 1/360 −1/36 −1/72 1/45 1/90 0
0 −1/180 1/360 1/36 −1/72 −1/45 1/90 0
0 64/45 128/45 −16/9 −32/9 16/45 32/45 0
0 −64/45 128/45 16/9 −32/9 −16/45 32/45 0
0 −1/4 0 21/4 0 −21/4 0 1


(11)



V8×3 =



1 0 0
1 1 1
1 −1 1
1 2 4
1 −2 4
1 1/2 1/4
1 −1/2 1/4
0 0 1


(12)

AT = V T
8×6diag(SA)

=


1 1 1 1 1 1 1 0
0 1 −1 2 −2 1/2 −1/2 0
0 1 1 4 4 1/4 1/4 0
0 1 −1 8 −8 1/8 −1/8 0
0 1 1 16 16 1/16 1/16 0
0 1 −1 32 −32 1/32 −1/32 0

 (13)

BT = diag(SB)V
−T
8×8

=



4 0 −21 0 21 0 −4 0
0 4 4 −17 −17 4 4 0
0 −4 4 17 −17 −4 4 0
0 2 1 −10 −5 8 4 0
0 −2 1 10 −5 −8 4 0
0 8 16 −10 −20 2 4 0
0 −8 16 10 −20 −2 4 0
0 −4 0 21 0 −21 0 4


/4

(14)

G = diag(SG)V6×3

=



1 0 0
−2/9 −2/9 −2/9
−2/9 2/9 −2/9
1/90 1/45 2/45
1/90 −1/45 2/45

32/45 16/45 8/45
32/45 −16/45 8/45

0 0 1


(15)

1.2. Learned Winograd scales
Table 1 shows the difference in values between the stan-
dard Winograd scales and our learned Winograd scales for
F (6, 3). It is worth noting that the magnitudes of SA have
become smaller while those of SG are bigger, and SB stays
relatively unchanged.

2. Comparison with learning transformation
matrices instead of Winograd scales

[5] proposed to treat the Winograd transformation matrices
A, B, and G as learnable parameters and jointly optimize

Table 1. Comparison between standard Winograd scales and our
learned Winograd scales.

tile size Standard Winograd scales Learned Winograd scales

F (6, 3)

SA SB SG SA SB SG

1 1 1 0.525 -1.378 -1.382
1 -4.5 -0.222 0.354 -4.908 -0.576
1 -4.5 -0.222 0.351 -4.912 -0.579
1 90 0.0111 0.0601 90.366 0.184
1 90 0.0111 0.0609 90.362 0.182
1 1.406 0.711 0.491 1.820 1.119
1 1.406 0.711 0.490 1.823 1.120
1 1 1 0.519 1.386 1.391

Table 2. Results on the InstaFlow-0.9B model with group-wise
quantization, Winograd convolution, and AKL autoencoder. Com-
parison between learning scales and learning transformation ma-
trices.

IF-0.9B, COCO2017-5k, AKL
Model tile size Bits FID(↓) CLIP(↑)
FP16 N/A 16/16 23.00 30.19
W4A8 N/A 4/8 28.73 29.09
W8A8 N/A 8/8 23.04 30.16
W8A8 Winograd F(4,3) 8/8 217.16 15.14
Standard scales F(6,3) 8/8 326.96 5.95
W8A8 Winograd F(4,3) 8/8 24.51 29.87
Learned scales F(6,3) 8/8 26.58 29.65
W8A8 Winograd F(4,3) 8/8 204.00 17.13
Learned transforms F(6,3) 8/8 371.86 3.38

them with other model weights and biases in a QAT setup.
Although this is much less practical in the domain of Gener-
ative AI, as mentioned above, we still adopt this paradigm to
compare with our method. All training setups are the same
except that transformation matrices A, B, and G are learned
directly using random noise inputs instead of learning only
the scaling factors SA, SB , and SG. The results are shown
in Table 2 using the InstaFlow-0.9B model with AKL au-
toencoder. It can be seen that learning the transformation
matrices directly offers almost no improvement compared
to the standard Winograd transforms. This could be due to
the use of random noise as layer inputs and treating each
layer independently.

3. Advantage of data-free approach over cali-
bration data and other Winograd methods

Using our paradigm, we fine-tuned Winograd scales and
transformation matrices in both end-to-end and BRECQ [8]
modes. We compute loss using the difference between the
generated images or features of the fully group-wise quan-
tized model and its FP16 counterpart. We randomly select
10k prompts from the poloclub/diffusiondb [13] dataset for
calibration and use the same setup as when training with



random noise. It is more challenging to set up an end-to-
end training pipeline, and the diffusion model as a whole
needs to be kept on the GPU, hence requiring longer train-
ing time and more memory. It can be seen in Table 3 that
learning scales with calibration data is also effective for
F (4, 3), but less so for F (6, 3) than learning with noise.
The poor accuracy for calibration data when compared to
our method may be attributed to the small sample size of
10k prompts, but using more samples may result in overfit-
ting. Similar to data-free training, learning Winograd trans-
forms with calibration data failed to produce good-quality
generations. Furthermore, training with BRECQ takes sig-
nificantly longer (> 10×) due to a much more complex
training pipeline, with each layer having its own trained
Winograd scales, as opposed to a single set of Winograd
scales for all layers of one network in our method.

Channel balancing (BQW) [4] only quantizes the
Hadamard product, which we could achieve using only
group-wise quantization. PAW+FSQ [3] is perhaps not suit-
able for large-scale diffusion models: transformation ma-
trices are difficult to finetune with the use of calibration
data, as shown in Table 3. The use of calibration data for
PAW can make it difficult to ensure generalizability to un-
seen downstream tasks for foundation models. FSQ opti-
mizes hadamard product output (Y) quantization, whereas
our learned scales jointly optimize the entire Winograd al-
gorithm, including transformation matrices and Y.

4. Comparison of group-wise quantization
against other quantization methods

Table 4 and Table 5 show the comparison between our
group-wise quantization method against a popular, recently
proposed quantization scheme, called Q-Diffusion[7], for
Stable Diffusion V1.4[11] with DPMSolver++[10] and
PLMS[9] sampler, respectively. All models were sampled
for 25 steps, and MSCOCO 2017 was used to generate
FID and CLIP scores. We conducted the experiments with
Q-Diffusion using the official codebase and pre-calibrated
quantized checkpoints released by the authors.

Figure 1, 2, 3, 4, 5, and 6 compare more qualitative ex-
amples generated by the 8-bit Winograd convolution with
those generated by the full-precision, 4-bit, and 8-bit mod-
els with standard convolution. We also show the images
generated by 8-bit Q-diffusion using standard convolution.
It can be observed that W8A8 group-wise quantized Stable
Diffusion can generate images of nearly identical quality
compared with either the FP16 or Q-Diffusion model while
being calibration-free. For W4A8, group-wise quantization
shows no significant drop in image generation quality and
text image alignment.

Table 3. Train Winograd scales and transforms using calibration
data.

IF-0.9B, COCO2017-5k, AKL
Model tile size Bits FID(↓) CLIP(↑)

Learned scales F(4,3) 8/8 24.51 29.87
noise F(6,3) 8/8 26.58 29.65

Learned scales F(4,3) 8/8 24.48 29.85
Calibration data E2E F(6,3) 8/8 36.18 29.28
Learned transforms F(4,3) 8/8 138.94 21.05

Calibration data E2E F(6,3) 8/8 262.10 14.20

SD-1.4, COCO2017-5k, AKL, DPMSolver++
FP16 N/A 16/16 21.63 31.72

Learned scales noise F(6,3) 8/8 20.75 31.57
Learned scales BRECQ F(6,3) 8/8 170.24 23.24

Table 4. Results on the Stable Diffusion V1.4 model with group-
wise quantization, AKL autoencoder and DPMSolver++ sampler
with 25 steps. Comparison with the results from Q-Diffusion [7].

SD-1.4, COCO2017-5k, AKL, DPMSolver++
Model tile size Bits FID(↓) CLIP(↑)
FP16 N/A 16/16 21.63 31.72
W4A8 N/A 4/8 21.21 30.84
W8A8 N/A 8/8 21.52 31.70
W8A8

N/A 8/8 21.03 31.16
Q-Diffusion [7]

Table 5. Results on the Stable Diffusion V1.4 model with group-
wise quantization, AKL autoencoder and PLMS sampler with 25
steps. Comparison with the results from Q-Diffusion [7].

SD-1.4, COCO2017-5k, AKL, PLMS
Model tile size Bits FID(↓) CLIP(↑)
FP16 N/A 16/16 22.94 31.74
W4A8 N/A 4/8 22.19 30.01
W8A8 N/A 8/8 22.48 31.68
W8A8

N/A 8/8 24.42 31.07
Q-Diffusion [7]

5. Transferability of learned Winograd scales
across datasets

Because Winograd scales are learned from random noise
inputs in our method, the same Winograd scale used for
one dataset should be transferable to other datasets. Ta-
ble 6 shows the accuracy results for the CIFAR10 dataset,
whereas the same Winograd scale values learned for the
ImageNet dataset models previously are applied to the CI-
FAR10 dataset models directly. Winograd, using learned
scales, can successfully restore the accuracy of the full-
precision ResNet networks for both tile sizes. This con-
firms the transferability of our learned Winograd scales
across datasets. Table 7 shows the results from Stable Dif-
fusion V1.5 with learned Winograd scales, using DPM-



Table 6. ResNets Top-1 accuracy results on the CIFAR-10 dataset.

Model tile size Bits
Standard Winograd with
Winograd Learned Scales

ResNet18 F(4,3) W8/A8 92.55% 93.00%
93.07% F(6,3) W8/A8 33.62% 92.70%

ResNet34 F(4,3) W8/A8 93.05% 93.26%
93.33% F(6,3) W8/A8 22.90% 92.90%

ResNet50 F(4,3) W8/A8 93.49% 93.70%
93.65% F(6,3) W8/A8 81.13% 93.56%

Table 7. Results on the Stable Diffusion V1.5 model with group-
wise quantization, AKL autoencoder and DPMSolver++ sampler
with 25 steps.

SD-1.5, MJHQ-2k, AKL, DPMSolver++
Model tile size Bits FID(↓) CLIP(↑)
FP16 N/A 16/16 41.40 25.78

Learned scales F(4,3) 8/8 44.03 25.53
noise F(6,3) 8/8 45.56 25.56

Solver++ sampler with 25 sampling steps and a classifier-
free guidance scale of 5.0 on the MJHQ dataset. The
same learned Winograd scales work for both the COCO and
MJHQ datasets.

6. Comparison to prior QAT works for fully
quantizing Winograd

In comparison to previous QAT studies [5] that achieve full
quantization by learning Winograd transformation matrices,
we can achieve comparable results by fine-tuning only the
Winograd scales. As shown in Table 6, 8-bit ResNet18 with
Winograd achieves an accuracy of 93% for F (4, 3) (an ac-
curacy drop of 0.07% in comparison to the full-precision
model) using our learned scales, whereas Winograd-aware
QAT [5] observes an accuracy drop of 0.7% for the similar
setting.

7. Highly optimized kernels design for text-to-
image generation inference on CPUs

While C/C++ runtimes like stablediffusion.cpp [1] demon-
strate performance and potential on CPUs, the baseline
group quantized kernels have significant compute over-
heads (the leftmost bar in Figure 6(a)). As a result, a higher
proportion of compute instructions do not perform multi-
plies, i.e., real work, rendering them unsuitable for meeting
the required latency requirements for text-to-image genera-
tion model variants deployed on commodity CPUs.

To reduce compute overhead and increase the reuse of
the input matrices, as well as the use of MAC and vector
operations, our highly optimized matrix multiply kernels
consider a series of consecutive rows and columns from
the two input matrices at once. The use of multiple rows

and columns allows for greater reuse of quantized matri-
ces and associated scale factors, as well as fewer load op-
erations. Furthermore, to reduce the high overhead from
reduction operations and quantized operand unpacking op-
erations in group-quantized matrix multiply kernels, as well
as improve MAC unit utilization and thus the percentage of
useful work, our highly optimized kernels perform the fol-
lowing optimizations:
• Amortize the cost of loading operands and the cost of

weight unpacking across multiple output channels, result-
ing in fewer load operations, increased operand reuse, and
greater use of vector operations.

• Eliminate the overhead of frequently occurring explicit
reduction operations in the matrix multiply kernel (re-
quired to accumulate partial dot products from differ-
ent vector lanes of SIMD fused multiply-accumulate (dot
product) operations to obtain the final dot product result
for a quantized weight group) of group-wise quantized
kernels by ensuring that different vector lanes of dot prod-
uct instructions operate on weight elements and groups
from different output channels so that dot product instruc-
tions can take advantage of their implicit accumulate (re-
duction) operations.

• Solve the resulting non-contiguous access patterns of
quantized groups across channels in memory by refor-
matting weights offline to match the compute order and
packing, then storing them in memory in reordered for-
mat.

• Maximize the use of the available high MAC through-
put matrix-matrix multiply-accumulate instruction, which
can perform twice as many MAC operations when com-
pared to an equivalent SIMD dot product instruction.
The benefits of our matrix multiply kernel optimizations

for group-wise quantized Winograd convolution and atten-
tion layers for Arm CPUs will easily extend to GPUs, neural
engines, and x86 processors for the following reasons: (1)
Our kernels reduce the number of instructions in the critical
path of the group-wise quantized kernels through efficient
aligning and reordering of operands of group-quantized
formats to take advantage of implicit reduction operations
of vector dot product instructions, increase operand reuse,
maximize MAC unit utilization, minimize overhead and
memory accesses, (2) The vector and matrix-matrix multi-
ply operations used in optimized group-wise quantized ker-
nels are available in other existing CPU and GPU archi-
tectures, so there is no need to add new instructions to the
CPU/GPU ISA.

Our code is available at https : / / gitlab .
arm . com / artificial - intelligence /
efficientwinograd.
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Figure 1. InstaFlow-0.9B with AKL. Prompt ”A puppy wearing a hat; realistic”

Figure 2. InstaFlow-0.9B with AKL. Prompt ”A shiny motorcycle on the field; realistic, high-resolution”



Figure 3. Stable Diffusion V1.5 with AKL and DPMSolver++ sampler. Prompt ”A painting of a table with fruit on top of it”

Figure 4. Stable Diffusion V1.5 with AKL and DPMSolver++ sampler. Prompt ”A realistic photo of a lovely cat”



Figure 5. Stable Diffusion V1.4 with AKL and DPMSolver++ sampler. Prompt ”A photograph of an astronaut riding a horse”

Figure 6. Stable Diffusion V1.4 with AKL and DPMSolver++ sampler. Comparison with Q-Diffusion. Prompt ”A building wall and pair
of doors, along with vases of flowers on the outside of the building”
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