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A. Implementation Details

A.1. Tokenizer

Encoder. In the encoder, we set T = 480 (i.e., the num-
ber of query tokens). The dimensions of the query tokens
and the noise-free image are R480×256 and R1024×256, re-
spectively. The encoder contains two independent trans-
formers, each comprising 20 layers with latent dimension
of 256. Following SD3 [14], despite the noise-free images
and query tokens being input into separate transformers, we
join the sequences of the two for the attention operation.
This allows both representations to operate independently
while considering the influence of the other. The encoder
output retains only the transformed query tokens, serving
as the image’s latent representations.

Quantizer. The quantizer is an EMA-variant of vector
quantization. Following [64], we leverage a linear projec-
tion from the encoder output to low-dimensional variable
space for code index lookup (i.e., reduced from a 256-d
vector to a 16-d vector per code). We also apply L2 nor-
malization on the encoded latent features and codebook la-
tent variables. Moreover, at each training step, we reset the
dead entries in the codebook C (i.e., rarely matched with
any tokens) to random tokens in the training batch.

Table 1. The detailed training hyper-parameters. “MLLM-pt” de-
notes the pretraining of DDT-LLaMA, “MLLM-ft” denotes the in-
struction tuning of DDT-LLaMA, while “Tokenizer” denotes the
training of DDT.

Hyper-parameters MLLM-pt MLLM-ft Tokenizer
LLM init LLama3-8B MLLM-pt -
Optimizer AdamW AdamW AdamW
Optimizer param. β1 = 0.9, β2 = 0.95, ϵ = 1e−6 β1 = 0.9, β2 = 0.99, ϵ = 1e−6
Peak LR 1e-4 1e-5 1e-4
LR scheduler Cosine Cosine Linear+Cosine
Batch size 1280 256/128 1024
Training Steps 360K 160K 140K
Warmup Steps 5K 2K 5K
Weight decay 0.05 0.05 0.0
Gradient clipping 1.0 1.0 -
Numerical precision bfloat16 bfloat16 bfloat16
Resource Usage 512 Ascend 910B 256 Ascend 910B 32 NVIDIA A800
Framework Megatron(TP=8) Megatron(TP=8) DDP

Decoder. we use the same MMDiT architecture proposed
in SD3 [14] for our decoder with minor modifications. Each
transformer in the MMDiT comprises 24 layers with latent
dimension of 1536. The sequence of quantized tokens re-
places the text tokens as input, with a linear layer to project
the 16-dimensional quantized vector to the latent dimension
(i.e., 1536) of the MMDiT. Additionally, we also removed
the pooled token embedding introduced in SD3.

Furthermore, the hyper-parameters of training the tok-
enizer are detailed in Table 1.

A.2. MLLM
We initialize our MLLM from a pretrained LLM, specifi-
cally using the Llama3-8b model [12], which has only un-
dergone pretraining without instruction tuning. Addition-
ally, we expand its vocabulary by adding |C| = 65, 536
visual codes and two extra special tokens ([BOV] and
[EOV]). Since both image and text are represented as dis-
crete token IDs, we can use the cross-entropy to supervise
the token prediction at each position for both modalities
with a shared prediction head. A shared head has proven
more effective than using separate heads for each modality
in training, enhancing the upper capabilities of the MLLM.
During inference, when generating content for a specific
modality, tokens that do not fall in that modality’s space
should be masked. For example, when generating text, we
mask the logits of the 65, 536 visual codes before sam-
pling the text tokens; Similarly, when the [BOV] token in-
dicates the beginning of image output, we mask the logits
for 128, 256 text words before sampling the visual tokens.
Moreover, we set topk = 50, topp = 1.0 for text token
sampling and topk = 4096, topp = 0.9 for visual token
sampling. Besides, for text-to-image generation, during in-
ference we use classifier-free guidance on the logits for au-
toregressive sampling in a manner similar to [42, 59]. We
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Figure 1. More qualitative results of DDT-LLaMA text-to-image generation. (the supplement to Figure 3 in the main paper)

set the guidance scale to 8.0.
During both pretraining and instruction-tuning, all pa-

rameters of the MLLM are fully fine-tuned. The hyper-
parameters of both training stages for DDT-LLaMA are
shown in Table 1. The overall training is stable; we ob-
served only one minor spike in the loss curve during pre-
training. Following [9], we resume training from a check-
point approximately 500 steps before the onset of the spike.

B. Training Data & Evaluation Details
B.1. Training Data
Tokenizer Training. Our diffusion timestep tokenizer is
trained on the training split of ImageNet [11], which com-
prises about 1.28 million images. Besides, each training
image is center-cropped to a size of 256× 256. The train-
ing was conducted on 32 NVIDIA A800 GPUs and lasted
for nearly one weak.

MLLM Pretraining. Our pretraining dataset, sourced
from Laion [54], consists of 200 million text-to-image
pairs. Each pair includes an image accompanied by a brief,
coarse-grained native caption and a detailed, fine-grained

generated caption. For the generation of detailed captions,
we employ ShareGPT-4V [8] to annotate over 400 million
images sourced from Laion [54] and Coyo [? ]. Consider-
ing the propensity of ShareGPT-4V to generate captions that
may not align with the images due to hallucinations, we uti-
lize CLIP scores [50] to filter all generated image-text pairs,
retaining only those with the highest CLIP scores, total-
ing 200 million images. For pretraining, we structure each
pair in the format: “[BOS] <caption text> [BOV]
<DDT tokens> [EOV] [EOS]” for pretraining, where
[BOS] and [EOS] are the original special tokens from the
text tokenizer, [BOV] and [EOV] marking the start and
the end of the vision input. Each image has a 60% chance
of being paired with the long caption and a 40% probability
of being paired with the short caption during training. Be-
sides, each sample’s caption has a 10% probability of being
dropped out. Furthermore, to preserve the textual capabili-
ties of MLLM, we supplement our dataset with purely tex-
tual data from Wikipedia and Pile [17], at a ratio of 10%.
The pre-training was conducted on 512 Ascend 910B
NPUs and lasted for nearly two weaks.
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Figure 2. More qualitative comparison with EMU3 on T2I generation (PART-1). DDT-LLaMA can better respond to prompts related to
counting, color, and position. (the supplement to Figure 4 in the main paper)

MLLM Instruction Tuning. During instruction tuning,
we incorporate a variety of tasks, outlined as follows: (1)
Text-to-Image Generation: We employ datasets including
ShareGPT4V caption [8], ALLaVA [6] and GRIT [6],
utilizing a prompt template formatted as:“[BOS] USER:
<caption> Please Generate an image.
ASSISTANT: [BOV] <DDT tokens> [EOV]
[EOS]”.

(2) Image editing: We employ datasets such as
InstructPix2Pix [5] and Hive [70], utilizing a prompt tem-
plate formatted as:“[BOS] USER: [BOV] <input
DDT tokens> [EOV] <instruction> Please
Generate an image. ASSISTANT: [BOV]
<output DDT tokens> [EOV] [EOS]”. Besides,
considering the generally mediocre quality of existing
image editing datasets, we also construct a batch of higher
quality image editing data for integration into the training.

(3) Image caption & VQA: We mainly leverage
ShareGPT4V(-instruct) [8], ALLaVA(-instruct) [6] and se-
lect part of the held-in training datasets in InstructBlip [10]
for instruction-tuning. We follow the [10] to design the in-
struction templates.

B.2. Evaluation Details
Baseline Methods. For text-to-image generation tasks,
we compare DDT-LLaMA with both diffusion-based T2I
specialists and MLLM-based generalists. The diffusion-
based T2I specialists include DALL-E 2 [51], SDv1.5 [52],
SDv2.1 [52], SDXL [48], PixArt-alpha [7], DALL-E 3 [3],
and SD3 [14]. For the MLLM-based generalists, we in-
clude comparisons with SEED-LLaMA [18], LaVIT [27],
Emu2-Gen [56], SEED-X [19], VILA-U [62], Lumina-
mGPT [39], and Emu3 [59]. (For EMU3, we report its
results without prompt rewriting for fair comparison.)
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Figure 3. More qualitative comparison with EMU3 on T2I generation (PART-2). DDT-LLaMA can better respond to prompts related to
counting, color, and position. (the supplement to Figure 4 in the main paper)

For image editing tasks, we compare DDT-LLaMA
with both specialized image editing models and general-
ist MLLM-based models. The image editing specialists
we evaluate include InsPix2Pix [5], MGIE [16], and Ul-
traEdit [71]. Among the MLLM-based generalist models,
we compare against GILL [28], Emu2-Gen [56], SEED-
LLLaMA [18], LaVIT [27], and SEED-X-Edit [19]. (We
exclude MLLMs such as EMU3 because they lack image
editing capabilities.)

For visual comprehension and generation tasks, we com-
pare DDT-LLaMA with specialized visual comprehension
MLLMs, and MLLMs capable of both visual comprehen-
sion and generation. The specialized visual comprehen-
sion models include InstructBlip[10], QWenVL-Chat [2],

LLaVA-1.5 [40], mPLUG-Owl2 [63], ShareGPT4V [8],
LLaVA-1.6(HD) [41], and VILA [34]. For models sup-
porting both visual comprehension and generation, we
compare DDT-LLaMA against Emu2-Chat [56], SEED-
LLLaMA [18], VILA-U [62], LaVIT [27], and Emu3 [59].

Evaluation Dataset. For text-to-image generation tasks,
we conduct zero-shot evaluation on 3 benchmarks:
GenEval [20], T2I-CompBench [24], and DrawBench [53].
GenEval contains 6 different subtasks of varying dif-
ficulty requiring various compositional skills, includ-
ing single object (SingObj), single object
(TwoObj), counting, colors, position, color
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Figure 4. Qualitative comparison of MOVQ-Gemma(2B), DDT-Gemma(2B), and DDT-LLaMA(8B) in the image editing task. In most
instances, DDT-Gemma outperforms MOVQ-Gemma. Furthermore, DDT-LLaMA not only effectively comprehends and executes editing
instructions accurately but also excels in preserving image fidelity.

binding (ColorAttri). And we adopt the metric pro-
posed by [20] for evaluation. Each subtask is scored in-
dependently, and the overall score is calculated as the aver-
age of all six subtask scores. The T2I-CompBench suite
encompasses six subtasks: color, shape, texture,
spatial, non-spatial, and complex (complex
compositions). Building on prior research, we employ the
Blip-VQA score [30] to assess the color, shape, and tex-
ture subtasks. For spatial evaluation, we use the UniDet
score [73]; for non-spatial evaluations, the CLIP score [23,

50]; and for complex compositions, the 3-in-1 Metric [24].
In terms of DrawBench, we leverage Clip text-visual feature
similarity [50] as the evaluation metric.

We also conduct zero-shot instruction-based image edit-
ing across three datasets: EVR [57], MA5k [55], and Mag-
icBrush [68]. Following [16], for EVR and MagicBrush, we
treat the standard pixel difference (L1) and visual feature
similarity from the CLIP visual encoder (CVS) between
generated images and ground-truth goals as the evaluation
metrics. For MA5K, we utilize L1 and LPIPS [69] as the
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Figure 5. (More examples of text-to-image generation with different MLLM size (2B, 8B) and training compute (50%, 75%, 100% of total
tokens). the supplement to Figure 7 in Section 5.4.5 of the main paper)

Instruction: What does this image want to convey to us?

DDT-LLaMA: The image shows an interactive poster 
featuring an image of a dog curled up, with vertical, tear-
away strips layered over the image. Each sequential picture 
demonstrates the strips being removed one by one by a 
human hand. Finally, the dog appears increasingly freed 
from behind the bars. This visual is likely a creative 
advertisement aimed at promoting pet adoption or raising 
awareness about the plight of animals in shelters. The 
imagery metaphorically represents freeing a dog from 
confinement by adopting it. The act of physically removing 
the bars to reveal the unobstructed image of the dog can 
be seen as a powerful call to action, inviting viewers to 
consider helping or adopting shelter animals. 

DDT-LLaMA: The image is designed as a playful 
advertisement for the laundry detergent. It features a 
dalmatian dog with its iconic black spots appearing to fall 
off and accumulate on the ground, suggesting the 
powerful cleaning capabilities of laundry detergent, 
which implies that the detergent is so effective that it 
could wash off even the spots from a dalmatian. This 
creative approach is intended to be eye-catching and 
memorable, effectively emphasizing the effectiveness of 
the product.

Instruction: What does this image want to show us?

(a)

(b)

Figure 6. Qualitative results of DDT-LLaMA visual comprehen-
sion.

evaluation metrics.
For visual comprehension tasks, we conduct zero-shot

evaluation on a wide range of academic benchmarks, in-
cluding image caption (NoCaps [1], Flickr30K [47]), VQA
(VQAv2 [21], GQA [26], OKVQA [43], VizWiz [4]),
MLLM-oriented Comprehension Benchmarks (MME [15],
SEEDBench [29], POPE [33]). (Note: In Table3 of the
main paper, we use “VQA” to denote VQAv2). We em-
ploy CIDEr as the metric for image caption tasks, and VQA
accuracy for VQA tasks. We employ the CIDEr metric to
evaluate performance on image captioning tasks, while us-
ing VQA accuracy for the VQA datasets. Moreover, each
MLLM-oriented benchmark is evaluated according to its
specific prescribed methodologies, where we report the per-
ception score for MME, MCQ accuracy for SEEDBench,
and the F1 score for POPE.

C. Additional Examples of T2I Generation
In Figure 1, we present more qualitative examples of DDT-
LLaMA on text-to-image generation tasks. DDT-LLaMA
adeptly handles various types of instructions, including
complex ones such as generating surreal images (e.g., “A
panda drinking coffee”, “ sloth with pink hat”) and multi-
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Figure 7. More results of counterfactual interpolation with DDT
tokens and VQGAN tokens. (the supplement to Figure 6 in Section
5.4.2 of the main paper)

condition combined prompts (e.g., “An emoji of a baby
panda wearing a red hat, blue gloves, green shirt, and blue
pants”), to generate semantically-consistent images.

Furthermore, in Figure 2 and Figure 3, we present a di-
rect comparison between DDT-LLaMA and Emu3 across
54 prompts involving counting, color, and positioning. It
is evident that Emu3 falls short in these areas: (1) For
counting-related prompts, EMU3 often generates images
with an incorrect number of objects. (2) For prompts re-
lated to positioning, Emu3 frequently misplaces objects,
and sometimes only one of the objects is generated. (3) For
color-related prompts, EMU3 often incorrectly assigns col-
ors to the objects, and it may also generate images where the
arrangement or presence of objects is disordered (“A photo

𝑦0 𝑦1 𝑦2 𝑦… 𝑦𝑡−1 𝑦𝑡

Figure 8. More results of decoding images with an expanding sub-
set of autoregressive-sampled DDT tokens (from 1 to T = 480).
yk denotes the number of sampled DDT tokens that are fed into
the decoder for image generation, 1 = y0 < y1 < y2 < ... <
yt−1 < yt = 480. (the supplement to Figure 8 in Section 5.4.2 of
the main paper)

of a purple suitcase and an orange pizza” in Figure 3). In
contrast, DDT-LLaMA generates images that more accu-
rately reflect the desired object attributes (number and
color) and adhere to the spatial specifications outlined in
the prompts.

D. Additional Comparison on Image Editing

As discussed in Section 5.4.4, we also employ Gemma2-
2b [58] as the initial LLM and leverage both DDT tokens
and MoVQ tokens for pretraining and instruction tuning,
which we refer to as DDT-Gemma and MOVQ-Gemma,
respectively. In Figure 4, we showcase a series of quali-
tative examples that compare MOVQ-Gemma (2B), DDT-
Gemma (2B), and DDT-LLaMA (8B). First, when compar-
ing MOVQ-Gemma and DDT-Gemma, it is evident that in
many editing cases, MOVQ-Gemma often gives up editing,
typically returning the original image as the output. In con-
trast, DDT-Gemma exhibits a more robust comprehension
of the editing instructions and delivers superior results in



A/B tests, which indicates that our recursive DDT tokens
outperform spatial tokens in image editing tasks.

Furthermore, DDT-Gemma sometimes faces problems
with incomplete modifications or fails to maintain image
fidelity in areas not targeted by the edits. For example, in
the 7th case of Figure 4 (“remove the fog”), only the red ex-
haust behind the car is eliminated by DDT-Gemma. In the
12th case (“change the yellow roses to red roses”), the shape
of the roses is also inadvertently changed by DDT-Gemma.
In contrast,scaling up the backbone model from 2B to 8B
significantly improves the editing performance. We can
see that DDT-LLaMA not only effectively comprehends the
instructions to accurately execute the editing, but also ex-
cels at preserving image fidelity. This serves as evidence
of the scaling-law properties of DDT tokens.

E. Examples of Visual Comprehension

In Figure 6, we show some qualitative examples of visual
comprehension. Although lack of pretrained encoders like
CLIP [50], DDT-LLaMA can still effectively understand the
visual semantics in the images and accurately infer the an-
swer based on the given textual instruction.

F. Additional Examples of In-depth Analysis

F.1. Counterfactual Interpolation
Figure 7 shows more results of counterfactual interpolation
of VQGAN tokens [13] and DDT tokens. DDT tokens em-
ploy a disentangled representation to ensure that only the
attributes represented by the substituted tokens vary in the
generated counterfactuals, which allows for a seamless se-
mantic integration of the two images.

F.2. Decoding with a subset of DDT tokens
In Figure 8, we show more results demonstrating how
autoregressive-sampled DDT tokens can be decoded into
images in order. As the number of sampled tokens increases
(from 1 to T = 480), the image attributes are progres-
sively reconstructed – from fine details to the completion of
coarse-grained contours and color information. This con-
firms that our DDT token sequence successfully decou-
ples image attributes and possesses recursive properties.

F.3. Scaling Laws of DDT-based MLLM
In Figure 5, we show more examples of text-to-image
generation examples using two model sizes (Gemma 2B,
LLama 8B [12]) at three different training stages (50%,
75%, and 100% of total training tokens). The enhance-
ments in visual quality observed correspond with scaling
laws, which indicate that larger transformers trained on
more comprehensive datasets tend to yield superior text-
to-image performance.

G. Limitation and Future Work
Our current tokenizer is trained solely on the ImageNet
dataset [11] at a resolution of 256x256 pixels, and it faces
limitations in reconstructing open-domain images com-
pared to baseline methods. For example, the EMU3 tok-
enizer MOVQ [72], which is trained on a significantly larger
dataset (from Laion and InternVID [60]), achieves superior
reconstruction performance than ours. As our 200M pre-
training dataset filtered from an open-domain image dataset
(i.e., Laion), the inadequate reconstructive capability of
DDT restricts DDT-LLaMA’s ability in text-to-image gen-
eration. This particularly impacts the aesthetic quality of
the images generated by DDT-LLaMA, as illustrated in Fig-
ure 1, Figure 2, and Figure 3.

We are currently working on improving and scaling up
the training of our DDT-tokenizer and the MLLM on a
significantly larger dataset (about 500M images). In the
near future, we will release a more powerful version of
DDT-LLaMA, along with a detailed technical report. Stay
tuned! Building on this foundation, we aim to further
demonstrate that DDT-LLaMA is a significant approach for
addressing visual-language tasks [31, 45, 65–67] and col-
laborative NLP tasks [22, 44, 46, 61, 74, 75]. We also seek
to extend the capabilities of DDT-LLaMA to support more
vision-language tasks [25, 32, 35–38, 49] such as video
comprehension and video generation.
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ple multi-dataset detection, 2022. 5

[74] Yun Zhu, Jianhao Guo, Fei Wu, and Siliang Tang. Rosa:
A robust self-aligned framework for node-node graph con-
trastive learning. arXiv preprint arXiv:2204.13846, 2022. 8

[75] Yun Zhu, Haizhou Shi, Xiaotang Wang, Yongchao Liu,
Yaoke Wang, Boci Peng, Chuntao Hong, and Siliang
Tang. Graphclip: Enhancing transferability in graph foun-
dation models for text-attributed graphs. arXiv preprint
arXiv:2410.10329, 2024. 8


	Implementation Details
	Tokenizer
	MLLM

	Training Data & Evaluation Details
	Training Data
	Evaluation Details

	Additional Examples of T2I Generation
	Additional Comparison on Image Editing
	Examples of Visual Comprehension
	Additional Examples of In-depth Analysis
	Counterfactual Interpolation
	Decoding with a subset of DDT tokens
	Scaling Laws of DDT-based MLLM

	Limitation and Future Work

