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Abstract

The emergence of vision-language foundation models, such
as CLIP, has revolutionized image-text representation, en-
abling a broad range of applications via prompt learning.
Despite its promise, real-world datasets often contain noisy
labels that can degrade prompt learning performance. In
this paper, we demonstrate that using mean absolute error
(MAE) loss in prompt learning, named PromptMAE, signifi-
cantly enhances robustness against noisy labels while main-
taining high accuracy. Though MAE is straightforward and
recognized for its robustness, it is rarely used in noisy-label
learning due to its slow convergence and poor performance
outside prompt learning scenarios. To elucidate the robust-
ness of PromptMAE, we leverage feature learning theory to
show that MAE can suppress the influence of noisy samples,
thereby improving the signal-to-noise ratio and enhancing
overall robustness. Additionally, we introduce PromptOT, a
prompt-based optimal transport data purification method to
enhance the robustness further. PromptOT employs text fea-
tures in vision-language models as prototypes to construct
an optimal transportation matrix. This matrix effectively
partitions datasets into clean and noisy subsets, allowing
for the application of cross-entropy loss to the clean subset
and MAE loss to the noisy subset. Our Noise-Label Prompt
Learning method, named NLPrompt, offers a simple and ef-
ficient approach that leverages the expressive representa-
tions and precise alignment capabilities of vision-language
models for robust prompt learning. We validate NLPrompt
through extensive experiments across various noise settings,
demonstrating significant performance improvements.

*Corresponding author. † Equal contribution.

1. Introduction
The advent of vision-language foundation models, such as
CLIP [46], has revolutionized how images and their textual
descriptions are represented, providing a unified perspective
for both modalities. In these models, images are typically
aligned with sentences like “A photo of a ⟨CLS⟩”, thereby
facilitating the efficient handling of various tasks. Given
the sensitivity of handcrafted text in descriptions, prompt
learning has emerged as a crucial method for fine-tuning
these vision-language models. Prompt learning involves
updating a learnable text prompt through back-propagation
[8, 11, 35, 60, 61], offering a lightweight solution due to the
relatively small number of parameters involved, often just
several thousand. This adaptability ensures rapid tuning for
specific tasks.

Nevertheless, real-world applications often face the chal-
lenge of dealing with noisy labels in annotated datasets, ne-
cessitating robust learning solutions. Prior work [53] illus-
trates that prompt tuning is more resilient to noisy labels
compared to other fine-tuning paradigms such as adapter
tuning. Despite this, prompt tuning remains vulnerable to
overfitting when trained with cross-entropy loss under noisy
conditions. Therefore, enhancing the robustness of prompt
tuning in noisy environments remains a crucial issue.

In the realm of noisy label learning, mean absolute error
(MAE) has been identified as a robust loss function within
the traditional training paradigm [17]. However, MAE of-
ten suffers from slow convergence and poor performance
during training, making it seldom employed as a classifica-
tion loss in noise-label learning. Nevertheless, our investi-
gation reveals an interesting phenomenon: employing MAE
loss in Prompt learning (PromptMAE) notably enhances ro-
bustness while maintaining high accuracy compared to tra-
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ditional cross-entropy loss. As demonstrated in Figure 1,
MAE exhibits strong accuracy and fast convergence even in
the presence of substantial noise.

To elucidate the robustness of PromptMAE, we leverage
feature learning theory [1, 3, 41], which categorizes latent
representations into task-relevant and task-irrelevant com-
ponents. By analyzing the optimization dynamics of these
features with gradient-descent-based training, we can gain
valuable insights into convergence and generalization. To
this end, we find that robust prompt learning is achieved
when task-relevant features dominate. Our analysis indi-
cates that PromptMAE can suppress the influence of noisy
samples, thereby enhancing robustness in prompt learning
for vision-language models.

A standard approach in noisy label learning is the em-
ployment of sample selection techniques [9, 14, 20, 36, 44]
to clean the dataset and thus improve performance under
noisy conditions. For example, optimal transport (OT)-
based sample selection methods [14, 54] utilize randomly
initialized prototypes to compute the optimal transporta-
tion matrix from image features to these prototypes, con-
sidering the similarity between features and prototypes as a
cost matrix. As these methods were not originally designed
for prompt learning, their direct applicability may be lim-
ited. We aim to harness the inherent alignment in vision-
language foundation models to refine the data purification
process.

In this paper, we introduce PromptOT, a prompt-based
optimal transport data purification method, designed to en-
hance the robustness of prompt learning in vision-language
foundation models. PromptOT leverages the text features as
prototypes for the transportation matrix, facilitating robust
prompt learning by partitioning the dataset into clean and
noisy subsets. Recognizing that cross-entropy (CE) loss
generally outperforms MAE on clean datasets, we apply
MAE loss to train the noisy subset and cross-entropy loss
to train the clean subset. This dual strategy, supported
by PromptOT purification, harmonizes the strengths of
both MAE and CE loss under varying noisy conditions.
Our comprehensive method, named NLPrompt, leverages
the expressive representation and alignment capabilities
of vision-language models, offering a simple and effi-
cient solution for robust prompt learning in the presence
of noisy labels. In summary, our contributions are threefold:

• We discover that a simple MAE loss significantly
improves the robustness of prompt learning on noisy
datasets. Utilizing feature learning theory, we theoreti-
cally demonstrate how PromptMAE reduces the impact
of noisy samples, enhancing overall robustness.

• We introduce NLPrompt, a robust prompt learning
method that uses a simple MAE loss with PromptOT-

based data purification to handle noisy labels. NLPrompt
efficiently exploits the expressive representation and pre-
cise alignment capabilities of vision-language foundation
models for robust prompt learning.

• We validate the effectiveness of NLPrompt through exten-
sive experiments across datasets with varied noise condi-
tions, consistently showing significant performance im-
provements.

2. Related Work

2.1. Prompt Learning in Vision-Language Models
Prompt learning, which began in natural language process-
ing, has now extended into the realm of vision-language
models. A notable example is the CLIP model [46],
which initially relied on hand-crafted prompts. Recent ad-
vancements, however, have shifted focus towards learn-
ing prompts in a continuous embedding space. Innova-
tions such as CoOp [60] have enhanced the CLIP model
by integrating continuous prompt vectors, fostering a wave
of research dedicated to optimizing prompt learning and
paving the way for further exploration. In addition to CoOp,
CoCoOp [61] utilizes a neural network to generate input-
specific context tokens that adapt the prompts based on each
image, thereby improving generalization to unseen classes.
ProGrad [62] regularizes the soft prompt updates by align-
ing their gradients with the general knowledge provided by
the original prompt. MaPLe [29] introduces branch-aware
hierarchical prompts that address both language and vision
branches. TPT (Test-Time Prompt Tuning) [47] explores
prompt tuning without additional training samples by aug-
menting the input image into various views and training the
learnable prompts to generate consistent responses across
these different views.

2.2. Learning with Noisy Labels
Mislabeled data can lead to deep neural networks overfit-
ting to noisy labels. To address the issue of learning from
noisy labels, previous researchers have proposed various
methods, including robust network architectures [33, 57],
robust regularization techniques [22, 38, 56], robust loss
functions [15, 17, 37], correction of loss via estimation ma-
trices [5, 55, 58], and sample selection and meta-learning
approaches [36, 44, 49].

The study of prompt learning with noise labels is cur-
rently in its nascent stage. A pioneering work by Wu et
al. [53] demonstrated that prompt learning is more robust
than other parameter-efficient fine-tuning methods, such as
adapters. Subsequently, JoAPR [19] uses a Gaussian mix-
ture model with joint adaptive thresholds to differentiate be-
tween clean and noisy data. It corrects labels by combining
the results of data augmentations with mixup loss, and then
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Figure 1. The performance of training with MAE loss and CE loss in prompt learning on Caltech101 dataset.

retrains the model using this refined data. However, this ap-
proach does not fully leverage the benefits of prompt learn-
ing. In contrast, our study shows that using a simple MAE
loss in prompt learning can boost the capability for handling
noisy data. Additionally, we incorporate prompt-based op-
timal transport to further purify the noise samples.

2.3. Feature Learning Theory
To further understand how noisy label learning affects
prompt learning, we leverage feature learning theory to ana-
lyze the learning process. Feature learning theory [1, 3, 23–
25, 28, 51, 63] categorizes latent features into task-relevant
and task-irrelevant components, expressing the trainable
weights as a combination of these feature types. From
this perspective, feature learning analyzes the coefficients
of these features to gain insight into learning dynamics.
Beyond its application in traditional learning paradigms,
prompt learning can also be explained by feature learning
theory [41]. In this paper, we adopt feature learning theory
to demonstrate the robustness of MAE in prompt learning.

3. Preliminary

Notation. In our work, vectors are represented by lower-
case bold letters, matrices by uppercase bold letters, and
scalars by regular, non-bold letters. The ℓ2-norm of a vector
v is denoted as |v|2. For matrices, the spectral norm of
A is indicated by |A|2, and the Frobenius norm by |A|F .
The indicator function is represented by 1(·). Finally, se-
quences of integers are represented as [n] = {1, 2, . . . , n},
and sequences of elements, such as vectors, are similarly
denoted as v[n] = {v1,v2, . . . ,vn}.

Prompt Learning. In this section, we demonstrate how to
fine-tune a learnable text prompt within a vision-language
pre-trained model. We focus on a classification task, where
we have an image x that we aim to classify into the correct
ground truth class y ∈ [C], with C representing the total
number of classes. From the vision-language pre-trained

model, we expect the latent spaces of the text encoder
and image encoder to be aligned. This alignment ensures
that, when different prompts are input, the text feature
generated by the correct prompt will have the highest
similarity with the image feature. In this setup, we input a
learnable prompt p ∈ Rd along with a fixed class prompt
pc ∈ {p1, . . . ,pC}, where each pc ∈ Rd represents a
specific class, into the text encoder h. Here, d denotes
the dimensionality of the prompts. By incorporating the
learnable prompt p, we generate the text feature for class c
as hc = h(p,pc) ∈ Rm. Meanwhile, the image feature g is
produced by the image encoder g as g = g(x) ∈ Rm. We
define the similarity function between the image feature
g and the text feature hc as ρ = sim(g,hc) ∈ Rc. The
training process follows the structure of traditional classifi-
cation tasks, with an objective loss ℓ(ρ, ey) that measures
the distance between the similarity vector ρ and the true
label y. Here, ℓ represents the loss function quantifying the
distance between two vectors, and ey is the one-hot vector
associated with the ground truth label y.

Optimal Transport. Optimal transport (OT) is a con-
strained optimization problem that seeks to determine the
optimal coupling matrix that maps one probability distribu-
tion to another while minimizing the total cost. Given the
marginal distributions α ∈ Rn, β ∈ Rm, and the cost ma-
trix C ∈ Rn×m, the classical OT problem is formulated as
follows:

min
Q∈Rn×m

+

⟨C,Q⟩

s.t. Q1m = α, Q⊤1n = β.

(1)

This problem is a linear programming task, which becomes
computationally expensive as the problem scale increases.
To address this, Sinkhorn [12] proposed adding an entropic
regularization, which allows for a closed-form solution and
provides a ”lightspeed” algorithm that only requires itera-
tive scaling of the transportation matrix. The entropic regu-



larized formulation is given as follows:

min
Q∈Rn×m

+

⟨C,Q⟩ − ϵH(Q) (2)

s.t. Q1m = α, Q⊤1n = β,

where H(Q) =
∑

i,j Qij (logQij − 1) and ϵ ≥ 0 is the
coefficient that controls the regularization term. In previ-
ous work, OT has been formulated as a pseudo-labeling
technique for a range of machine learning tasks, including
class-imbalanced learning [18, 50], semi-supervised learn-
ing [32, 39], clustering [2, 4, 16], domain adaptation [6, 59],
label refinery [7, 14, 50, 54], and others. Unlike prediction-
based pseudo-labeling [48], OT-based pseudo-labeling opti-
mizes the mapping samples to class centroids, while consid-
ering the global structure of the sample distribution in terms
of marginal constraints instead of per-sample predictions.

4. Theoretical Analysis for the Robustness of
PromptMAE

In prompt learning with noisy labels, the ground truth
class y is flipped to a different noisy label class with a
certain probability. As shown in Figure 1, we compared the
performance of the original CoOp using cross-entropy (CE)
loss and mean absolute error (MAE) loss. We observed that
as the noise level increased in the datasets, the performance
using CE loss significantly dropped, while the mean
absolute error loss showed negligible change.

Basic Settings. To explain this phenomenon, we apply
feature learning theory to characterize the mechanism
behind the robustness of MAE in the context of prompt
learning. In our analysis, the objective is to classify the
image x into its true class label y. In this theoretical
analysis, we focus on a binary classification scenario
where the class label yi ∈ {+1,−1}. We also assume
that the latent spaces of both the text encoder and the
image encoder in the vision-language pre-trained model
are well aligned. The latent feature space is assumed to
consist of both task-relevant features, denoted as µ ∈ Rm,
and task-irrelevant features ξ1, . . . , ξL ∈ Rm, where L
represents the number of task-irrelevant features and the
dimension of the latent space is m. For simplicity, we
assume these features are orthogonal to each other.

Text Encoder. Adopting a setup similar to [52], a learn-
able prompt p and a fixed class prompt pc are fed into the
text encoder h:

hc = h(p,pc)

= σ(Wp+Wpc)− σ(−Wp+Wpc),
(3)

where W ∈ Rm×d is the weight matrix, and pc ∈ Rd is the
prompt associated with class c. To examine the properties of

the text encoder in the pre-trained model, we follow [26, 41]
and set the weight matrix W to be:

W =
[
µ, ξ1, · · · , ξL

]⊤
. (4)

Image Encoder. Let us consider the image network, rep-
resented as gi = g(xi) ∈ Rm. Due to that we assume the
image encoder g aligns the feature space of the text encoder
h. As a result, the image feature generated by data xi in
client i can be expressed as:

gi = g(xi) = [yi, xi,1, · · · , xi,L]
⊤, (5)

where xi,l ∼ N (0, σ2
p),∀l ∈ [L] represents the coefficient

of task-irrelevant terms in the data, and σ2
p is the variance.

The similarity score between an image xi and class yi is
given by sim(gi,hi) = ⟨gi,hi⟩. To compute the probabil-
ity, we first pass the logits of the similarity vector through
the softmax function:

si(p) = SOFTMAX(sim(gi,h)). (6)

The CE loss and MAE loss are defined as:

ℓCE(si,yi) =

C∑
c=1

−yi,c log si,c, (7)

ℓMAE(si,yi) =

C∑
c=1

|yi,c − si,c|. (8)

Noisy Label Modeling. Here, we introduce a model for
label noise. We assume that the label noise follows a
Rademacher random variable. Specifically, the noisy label
ỹ is generated from the ground truth label y with probability
p ≤ 1/2. That is, P[ỹ = −y] = p and P[ỹ = y] = 1 − p.
For the purpose of analysis, we divide the entire dataset
into two subsets: the clean dataset S+ = {i | ỹi = yi} and
the noisy dataset S− = {i | ỹi = −yi}.

Feature Representation. Under feature learning theory,
the weight of the prompt can be decomposed into a com-
bination of task-relevant features and task-irrelevant fea-
tures. We present the following feature representation
lemma [41]:

Lemma 4.1. At the t-th iteration, the learnable prompt p(t)

can be rewritten as a linear combination of the features and
the prompt initialization:

p(t) = α(t)p(0) + β(t)||µ||−2
2 µ+

L∑
l=1

ϕ
(t)
l ||ξl||−2

2 ξl,

where α(t) are the coefficients of the initialization, β(t) and
ϕ
(t)
l are the coefficient of the task-relevant features and task-

irrelevant features, respectively.
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Figure 2. The framework of our NLPrompt. We utilize the text representation to initialize prompt-based OT, which separates the dataset
into clean and noisy subsets. NLPrompt harmonizes the advantage of MAE loss and CE loss. The former is more robust on the noisy
dataset while the latter performs better on the clean dataset.

Since the learnable prompt can be expressed as a linear
combination of the features, we can analyze the dy-
namics of these coefficients to understand the learning
progress of the prompts. The normalization factor, such
as ||µ||−2

2 , ensures that the coefficients are comparable
to the inner product of the prompt and the features, i.e.,
β(t) ≈ ⟨p(t),µ⟩.

Robustness of PromptMAE. Building on the previous
setup, we now examine how label flipping noise affects the
learning dynamics of the coefficients. We will show that,
the PromptMAE loss can enhance task-relevant coefficients
for clean samples and help mitigate the degradation of task-
relevant coefficients for noisy samples.

By analyzing the dynamics of these coefficients, we gain
deeper insights into the learning process. As shown in [41],
the performance of prompt fine-tuning can be evaluated
based on the ratio between task-relevant and task-irrelevant
coefficients. To illustrate that MAE produces more robust
results, we present the following theorem:

Theorem 4.2. With high probability at test 1−d−1, the test
loss ℓD for the prompt trained by MAE is lower than the
prompt trained by CE, i.e., ℓD(pMAE) ≤ ℓD(pCE). Here,
pMAE and pCE refer to the text prompt trained using MAE
loss and CE loss, respectively.

The proof is provided in the Appendix. From this result, we
observe that under a noisy dataset, the MAE loss demon-
strates greater robustness.

5. Methodology
In this section, we introduce our NLPrompt algorithm and
explain how we utilize the OT problem for data purification.
NLPrompt harmonizes the advantage of MAE loss and CE
loss. Theorem 4.2 has shown that MAE loss is more robust
on the noisy dataset.

PromptOT Purification. Here, we utilize OT to gener-
ate pseudo-labels for data purification. Traditionally, the
OT-based pseudo-labeling method starts with the random
initialization of prototypes, and pseudo-labels are then de-
rived from the similarity between images and these pro-
totypes. However, in the context of prompt learning with
vision-language foundation models, where the latent space
is aligned, the randomly initialized prototypes can be re-
placed with text features generated by prompts via text en-
coders. The semantic information embedded in these text
features provides a strong foundation for initialization.

Specifically, as outlined in Equation (2), the OT prob-
lem involves solving for a transportation matrix based on a
given cost matrix, while preserving the marginal distribu-
tions. The similarity between the prototypes and the image
features is calculated, and the negative logarithm of the re-
sulting similarity matrix is used as the cost matrix. Due
to the marginal distribution constraints, the columns of the
OT matrix are normalized, and this matrix is then used as
pseudo-labels for the images.

The calculation process in NLPrompt is outlined below.
For images in dataset {xi}Ni=1, we first use the pre-trained
image encoder of CLIP to generate an image feature ma-
trix I ∈ RN×d, where d represents the dimension of the
latent space. Additionally, given the set of classes, we gen-
erate prompts corresponding to these classes and pass them
to the pre-trained text encoder of CLIP to create a text fea-
ture matrix T ∈ RC×d, where C is the number of classes.
Next, we calculate the similarity matrix T · I⊤. The neg-
ative logarithm of this similarity matrix is then used as the
cost matrix in the OT problem, with uniform marginal dis-
tributions across both the samples and the classes. The OT
problem to be solved is given as follows:

min
Q∈RC×N

+

⟨− log(T · I⊤),Q⟩ (9)

s.t. Q1N =
1

C
1C , Q

⊤1C =
1

N
1N .



From this formulation, we obtain the OT matrix Q⋆. We
then apply the Argmax operation to each column of Q⋆ to
find the maximum value, i.e.,

ỹi = argmax
j

Qij .

Harmonizing MAE and CE within NLPrompt. The
pseudo-labels generated by PromptOT are used to purify
the dataset into two subsets: the clean dataset Dclean and
the noisy dataset Dnoisy, defined as follows:

Dclean = {i | ŷi = ỹi} , Dnoisy = {j | ŷj ̸= ỹj} . (10)

After the split, the two subsets are trained using different
loss functions. For the clean dataset, we leverage the high
performance of CE loss, while for the noisy dataset, we use
MAE loss to enhance robustness. The harmonizing loss can
be expressed as

ℓNLPrompt =
∑

i∈Dclean

−y⊤
i log si +

∑
j∈Dnoisy

||yj − sj ||1. (11)

where yi is the target label and si is the output similarity
for i-th sample.

Remark. Our NLPrompt utilizes OT to harmonize CE
and MAE. Unlike using generalized CE loss in noise-label
prompt learning [53], our method fully exploits the ad-
vantages of prompt learning under vision-language founda-
tion models. First, we utilize the text representation from
prompt learning as a strong initial prototype. This allows
our method to maintain global label consistency, setting it
apart from other prediction-based methods. Additionally,
we refine the dataset to take advantage of the robustness of
mean absolute error, specifically for noisy samples, rather
than treating both clean and noisy samples with the same
loss. This flexibility not only enhances our model’s robust-
ness but also allows us to leverage the advantages of CE,
leading to improved overall performance.

6. Experiments
In this section, we conduct comprehensive experiments to
evaluate the performance of our method in noisy label sce-
narios, demonstrating the effectiveness of our method.

6.1. Datasets and Baselines
Datasets. To evaluate the performance of our method, we
conduct experiments on seven synthetic noisy datasets: Cal-
tech101 [13], DTD [10], EuroSAT [21], Flowers102 [40],
OxfordPets [42], StanfordCars [31], and UCF101 [45].
These representative visual classification datasets are used
to simulate datasets with limited samples. They cover a
variety of tasks, including general object classification,
texture classification, fine-grained classification, action

recognition, and satellite imagery recognition. Since
these datasets do not contain noisy labels by default, we
manually generate noisy labels for them. In addition, we
conduct experiments on a real-world noisy label dataset,
Food101N [34], which inherently contains noisy labels and
does not require manually synthesized noisy labels.

Baselines. We compare our NLPrompt method with three
baselines : CoOp [60], CoOp+GCE [53], JoAPR [19]. The
latter two methods are specifically designed to tackle la-
bel noise in prompt learning for prompt learning in vision-
language pretrained Models.

6.2. Noise Setting
For these synthetic noisy datasets, we introduce two types
of noise: symmetric noise (denoted as Sym) and asymmet-
ric noise (denoted as Asym). We only flip the labels of the
training set in these datasets while keeping the test set un-
changed. For symmetric noise, the clean labels in the train-
ing set are randomly flipped to other labels with equal prob-
ability. This means that labels within the same class can be
incorrectly mapped to multiple different classes. For asym-
metric noise, the clean labels in the training set are only
flipped to a unique neighboring label, with labels within
the same class being mapped exclusively to their succes-
sor class. Due to its stronger structural nature, asymmetric
noise has a more significant negative impact on model per-
formance, making it a stricter robustness test to evaluate the
model’s stability and adaptability when confronted with la-
bel noise. The goal of learning with noisy labels is to train
a robust model on the noisy training set and achieve high
accuracy on the clean test set.

6.3. Implementation Details
In our experiments, we adopt the same setup as CoOp [60]
and JoAPR [19] to ensure a fair comparison. We use the
SGD optimizer with an initial learning rate of 0.002 and
employ cosine annealing. Our model backbone is consis-
tent with CoOp [60], based on the pre-trained CLIP model
[46], utilizing either ResNet-50 or ViT-B/16 as the image
encoder, with ResNet-50 as the default if not explicitly
specified. We use a 63M parameter text transformer as the
text encoder. The default number of training epochs is set
to 200. Additionally, we employ 16 shared context tokens
across all categories, with the class token placed at the end.
We sample a 16-shot training set from each dataset and eval-
uate the model on the original test set. The reported exper-
imental results are the averages of test accuracy from three
runs with different seeds, with the highest accuracy high-
lighted in bold. All experiments were conducted using Py-
Torch [43] on a cluster equipped with NVIDIA A40 GPU.
It is noted that our noise setting differs from that of JoAPR.
Our setting is more challenging and practical. The differ-



Table 1. Performance metrics across various datasets and noise levels. (%)

Dataset Method Noise Rate: Sym Noise Rate: Asym
12.5% 25.0% 37.5% 50.0% 62.5% 75.0% 12.5% 25.0% 37.5% 50.0% 62.5% 75.0%

Flowers102

CoOp 88.93 83.50 77.93 70.10 55.60 37.17 86.97 74.70 60.43 42.60 26.53 12.60
GCE 88.80 88.33 86.73 84.07 78.37 70.37 88.40 86.37 80.33 69.93 61.50 39.23

JoAPR 85.57 81.23 74.60 70.23 67.90 66.93 85.17 79.63 73.97 73.83 53.37 13.27
NLPrompt 93.87 92.57 92.73 89.90 84.77 76.80 93.80 93.40 91.77 81.10 73.63 55.33

DTD

CoOp 56.00 49.57 43.30 34.37 27.83 17.27 55.60 47.75 38.07 29.63 20.53 11.70
GCE 61.00 59.83 56.80 50.73 43.60 33.67 60.70 57.57 52.70 43.97 33.40 18.23

JoAPR 58.07 57.70 56.33 53.03 48.05 29.90 52.40 56.63 53.10 48.93 40.20 28.26
NLPrompt 62.97 61.23 59.17 55.17 49.03 39.80 62.30 60.60 56.47 50.80 40.27 28.37

EuroSAT

CoOp 76.50 69.23 61.67 52.33 37.63 26.70 76.00 66.27 53.83 41.17 28.00 17.43
GCE 82.13 78.60 74.67 63.13 49.67 31.40 78.23 72.70 63.63 45.30 22.90 12.10

JoAPR 75.13 61.10 60.90 63.63 38.97 27.33 69.37 67.30 59.40 47.60 33.93 17.50
NLPrompt 82.53 79.53 78.13 66.70 63.53 43.80 80.13 77.13 71.43 54.30 66.33 32.73

OxfordPets

CoOp 76.50 66.73 60.33 47.03 35.77 24.60 76.10 66.20 52.53 38.73 26.63 14.90
GCE 85.63 84.60 83.67 79.23 71.40 53.17 85.50 83.03 76.73 68.07 50.70 31.97

JoAPR 84.00 83.26 83.20 83.10 82.40 74.40 82.90 83.40 79.07 75.84 52.74 43.57
NLPrompt 86.17 86.00 85.33 84.87 83.63 70.77 86.00 84.97 82.40 77.53 66.33 48.60

StanfordCars

CoOp 66.20 59.70 53.40 45.90 35.67 22.90 65.77 57.13 46.23 33.73 22.37 12.80
GCE 69.70 66.40 66.47 63.77 59.25 50.87 70.00 66.45 61.23 53.67 39.65 26.60

JoAPR 68.60 66.30 62.83 56.67 48.50 39.40 66.47 61.70 51.50 42.03 30.80 22.97
NLPrompt 69.37 68.80 67.20 65.63 62.83 58.30 69.77 67.53 64.23 59.03 50.90 39.50

UCF101

CoOp 69.03 63.40 58.23 49.73 40.83 26.30 67.23 58.07 46.47 34.43 23.67 13.17
GCE 74.00 73.63 72.57 69.37 66.00 57.07 73.90 71.87 67.97 62.23 52.50 36.37

JoAPR 72.83 71.17 70.37 67.63 65.30 57.67 72.07 69.80 64.10 59.17 56.07 47.46
NLPrompt 74.83 73.40 72.83 70.33 68.10 60.53 74.90 73.53 71.03 65.97 58.97 49.27

Caltech101

CoOp 86.43 81.03 76.73 70.90 61.33 46.90 84.93 75.23 62.87 49.43 33.57 20.33
GCE 92.00 90.90 90.80 89.30 86.70 79.03 91.27 91.20 89.73 85.80 78.20 62.07

JoAPR 90.30 90.45 89.90 88.27 86.93 83.93 90.30 89.30 88.30 88.73 85.80 81.90
NLPrompt 91.73 91.13 90.77 89.93 88.30 86.70 91.60 91.17 90.20 89.27 86.17 81.07

Table 2. Test accuracy (%) on Food101N.

Method CoOp GCE JoAPR NLPrompt

Accuracy 69.50 71.32 72.57 76.46

ences between the two noise settings and more implemen-
tation details are provided in the Supplementary Materials.

6.4. Performance Comparison

For the synthetic noisy datasets, we introduce noise of vary-
ing intensities, ranging from 12.5% to 75.0%, with an in-
terval of 12.5%. The experimental results are shown in
Table 1. In the vast majority of cases, our NLPrompt
achieves state-of-the-art performance, with only a few in-
stances where it performs almost identically to the best re-
sults, showing negligible differences. Furthermore, in sce-
narios with high levels of noise, our method consistently
outperforms the other methods, showing a significant per-
formance improvement. This demonstrates the effective-
ness and superiority of our method in handling noisy la-
bels in prompt learning. The experimental results on a real-
world noisy dataset Food101N are shown in Table 2, where

Table 3. The generalization of NLPrompt .

Method/Noise Ratio 12.5% 25.0% 37.5% 50.0% 62.5% 75.0%

VPT 89.20 79.43 65.20 61.37 41.67 27.67
VPT+Ours 91.80 91.07 89.53 86.93 80.73 73.90

MaPLe 83.27 77.67 65.27 55.40 37.53 25.47
MaPLe+Ours 89.23 84.30 78.37 76.43 73.30 59.87

PromptSRC 90.61 84.67 78.57 72.27 60.43 49.37
PromptSRC+Ours 91.29 87.67 84.97 80.33 72.10 59.50

our NLPrompt outperforms all baseline methods, further
highlighting the superiority of our approach.

6.5. The Generalization of NLPrompt

Our method is effective not only for CoOp but also for other
prompt-tuning approaches, including VPT [27], Maple
[29], and PromptSRC [30], which are subsequent methods
of CoOp. Additional results on the EuroSAT dataset under
symmetric noise are shown in Table 3. It demonstrates the
strong generalization ability of NLPrompt.
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Figure 3. Performance with the different number of shots.

6.6. Few-shot Learning Analysis
Following the few-shot evaluation setting used in previous
work [60], we further investigate the impact of the number
of shots on different datasets. To this end, we vary the num-
ber of shots during training within the range of [1, 2, 4, 8,
16], while keeping the noise rate fixed at 50%. The exper-
imental results are shown in Figure 3, where the horizon-
tal axis represents the number of shots and the vertical axis
shows the test accuracy. We observe that as the number of
shots increases, the performance of each method improves
gradually. However, our method consistently outperforms
the others, significantly enhancing the robustness of CoOp
across different shot numbers and noise levels.

Table 4. Ablation studies under multiple label noise ratios on
Flowers102. (%)

Method/Noise Ratio 10% 30% 50% 70% Avg

w\o OT (a) all data with CE 92.71 86.92 79.36 57.61 79.15
(b) all data with MAE 88.47 89.07 85.20 80.87 85.90

w\ OT
(c) w\o text feature init 87.16 83.81 79.77 73.00 80.94

(d) w\o noisy data 84.77 84.53 81.60 77.60 82.16
(e) w\o clean data 90.17 90.13 88.60 80.55 87.36

NLPrompt 96.87 93.44 92.30 85.38 92.00

6.7. Ablation Study
To evaluate the effectiveness of each component of our
method, we conduct ablation studies on the Flowers102
dataset. Here, we employ ViT-B/16 as the backbone and
train for 100 epochs in the symmetric noise scenario. The
experimental results are shown in Table 4. To validate the
effectiveness of OT, we designed two sets of experiments:
one without using OT for data purification and another us-
ing OT for data purification. The experimental design is as
follows: (a) Use CE loss for all data; (b) Use MAE loss for
all data; (c) Use random initialization prototype instead of
CLIP text feature as initialization; (d) Use CE loss for clean

data only after removing noisy data; (e) Use MAE loss for
noisy data only after removing clean data.

The average results show that (b) outperforms (a), vali-
dating the effectiveness of our PromptMAE. Moreover, the
average results show that (d) outperforms (a), and (e) out-
performs (b), further validating the effectiveness of Promp-
tOT in the data purification process. Additionally, the com-
parison between (c) and NLPrompt highlights the impor-
tance of text feature initialization in our method. Among
all methods, our NLPrompt achieves the best performance,
with significant improvements over other baselines, further
validating the effectiveness of each component.

7. Conclusion
In this study, we addressed the critical challenge of noisy
labels in prompt learning for vision-language founda-
tion models by introducing PromptMAE and PromptOT.
Our findings demonstrate that adopting the MAE loss in
prompt learning—despite its traditionally rare application
in noisy-label scenarios—substantially enhances robustness
and maintains high accuracy. By leveraging feature learn-
ing theory, we elucidated that MAE effectively suppresses
the impact of noisy samples, thus improving the overall ro-
bustness. Furthermore, the introduction of PromptOT, a
prompt-based OT data purification method, allows for an
accurate partition of datasets into clean and noisy subsets.
This selective application of CE loss to clean data and MAE
loss to noisy data in NLPrompt underscores a simple yet
powerful strategy for robust prompt learning. Extensive
experiments conducted across various noise settings have
confirmed the significant performance improvements. NL-
Prompt capitalizes on the expressive representation and pre-
cise alignment capabilities of vision-language models, pre-
senting a promising solution to enhance the robustness of
prompt learning in real-world scenarios. Extending NL-
Prompt to scenarios with unbalanced distributions is under
consideration for the future work.
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A. Algorithm Framework
NLPrompt employs optimal transport to enhance robust prompt learning by categorizing data into clean and noisy subsets
and adapting different loss to each subset. The following pseudo-code illustrates the computation process for NLPrompt:

Algorithm 1 NLPrompt: Optimal Transport-Based Data Partition for Robust Prompt Learning

1: Initialize text encoder h, image encoder g, class prompts pc and trainable prompt p
2: for each batch {xi}Bi=1 do
3: Compute image features I and text features T
4: Compute similarity matrix S = TI⊤

5: Solve OT problem (9) to get Q⋆

6: Generate pseudo-labels ỹi = argmaxj Q
⋆
ij

7: Partition data into Dclean and Dnoisy
8: for each sample (xi, ỹi) do
9: if i ∈ Dclean then

10: Use CE loss to update prompts
11: else
12: Use MAE loss to update prompts
13: end if
14: end for
15: end for
16: return Fine-tuned text prompt p

B. Details of Dataset Setup
We selected eight representative visual classification datasets as benchmarks and manually added noise to create synthetic
noisy datasets. Additionally, we included a real-world noisy dataset, Food101N, which inherently contains noise and does
not require manual modification. Detailed statistics for each dataset, including the original task, the number of classes, and
the sizes of training and test samples, are presented in Table A5.



Table A5. The detailed statistics of datasets used in experiments.

Noise Type Dataset Task Classes Training Size Testing Size

Synthetic noisy dataset

Caltech101 Object recognition 100 4,128 2,465
Flowers102 Fine-grained flowers recognition 102 4,093 2,463
OxfordPets Fine-grained pets recognition 37 2,944 3,669

UCF101 Video action recognition 101 7,639 3,783
DTD Texture recognition 47 2,820 1,692

EuroSAT Satellite image classification 10 13,500 8,100
StanfordCars Fine-grained car recognition 196 6,509 8,041

SUN397 Scene recognition 397 15,880 19,850

Real-world noisy dataset Food101N Fine-grained food recognition 101 310,009 30,300

C. Further Experiments

C.1. Experiments on SUN397

We also conducted experiments on SUN397, a dataset with a large number of classes. The results are presented in Table A6.
On this dataset, our NLPrompt still outperforms all baseline methods, further highlighting the superiority of our approach.

Table A6. Test accuracy (%) on SUN397.

Dataset Method Noise Rate: Sym Noise Rate: Asym
12.5% 25.0% 37.5% 50.0% 62.5% 75.0% 12.5% 25.0% 37.5% 50.0% 62.5% 75.0%

SUN397
CoOp 65.50 62.90 59.30 55.50 48.30 37.80 63.50 56.10 45.50 33.80 22.10 11.40
GCE 67.60 66.30 65.40 64.20 62.00 59.20 68.40 66.40 63.80 60.00 53.60 43.80

NLPrompt 68.40 67.50 66.40 64.80 64.10 61.70 68.70 67.50 66.10 64.00 61.40 53.00

C.2. Experiments on Purfication Strategy

We present experiments to demonstrate that PromptOT is an effective purification method in prompt learning. We frame the
purification task as a binary classification problem, where the goal is to distinguish between clean and noisy samples. To
evaluate the purification performance, we use accuracy and F1-score metrics for this binary classification task. We compare
our purification strategy with the partition method that uses pseudo-labels generated by CLIP zero-shot (denoted as CLIP-
ZS), as well as the partition strategy used in JoAPR [19]. For our experiments, we use the Caltech101, DTD, and Flowers
datasets, with results shown in Table A7. From this table, we observe that our prompt-based OT selection method achieves
higher purification accuracy compared to both the CLIP zero-shot partition and the JoAPR partition.

Table A7. Comparison between different purification strategies. (%)

Method Caltech101 DTD Flowers
Acc F1 Acc F1 Acc F1

CLIP-ZS 70.38 58.35 56.25 26.72 56.62 25.16
JoAPR 50.88 44.99 51.54 32.32 50.37 32.56

NLPrompt 75.37 67.41 59.97 36.89 62.07 39.49

C.3. Hyperparameter Ablation

We evaluate the impact of different context token lengths on the DTD dataset under 50% symmetric noise in Table A8 and
test various entropy regularization coefficients of OT in Figure A4. The results indicate that our NLPrompt is robust to
hyperparameters.



Table A8. Test accuracy (%) under different context token lengths.

Context length 1 4 8 16 32
NLPrompt 53.65±1.95 54.00±1.49 54.07±0.40 55.20±0.33 54.73±1.52

Figure A4. Test accuracy (%) under different entropy regularization coefficients.

C.4. Comparison with JoAPR
The discrepancy in JoAPR results compared to the original paper arises from different noise settings. JoAPR introduces
noisy samples uniformly across each class, whereas we randomly distribute noisy samples throughout the entire training set.
For example, at a 75% noise rate with 16 shots, JoAPR’s setting turns 12 out of 16 samples in each class into noisy samples
and ensuring at least 4 clean samples per class. In contrast, our setting may lead to some classes having only 1 or even no
clean samples. Thus, our setting is more challenging and practical, leading to significant performance variance at high noise
levels. Additionally, we implemented our NLPrompt on the DTD dataset using JoAPR’s settings and consistently observed
improvements over JoAPR. The results are shown in Table A9.

Table A9. Comparison with JoAPR in the JoAPR’s noise setting.

Method/Noise Ratio 12.5% 25.0% 37.5% 50.0% 62.5% 75.0%

JoAPR 58.83 57.67 55.70 53.07 50.67 46.30
NLPrompt 63.17 61.96 60.82 59.63 53.83 49.60

C.5. Comparison with Traditional LNL Method
The traditional LNL method does not fully utilize the benefits of prompt learning with VLMs, whereas our method effectively
leverage in prompt learning. In addition to the GCE method discussed in the paper, we also investigate the performance of
Mixup on the EuroSAT dataset which is shown in Table A10.

Table A10. Test accuracy (%) compared with Mixup.

Method/Noise Ratio 12.5% 25.0% 37.5% 50.0% 62.5% 75.0%

CoOp 76.50 69.23 61.67 52.33 37.63 26.70
CoOp+Mixup 75.30 71.63 64.07 54.23 42.37 26.90

NLPrompt 82.53 79.53 78.13 66.70 63.53 43.80

C.6. Computational Overhead of Optimal Transport
We evaluate the computation time of optimal transport through experiments. Leveraging the efficient Sinkhorn algorithm for
optimal transport, the computational overhead is minimal. For the Caltech101 dataset under a 16-shot learning setup, we
perform batch matching, where 1600 image features are matched against 100 classes. The average time required for optimal



transport per epoch is 0.00173 seconds, while the original backward process takes 4.352 seconds. Furthermore, even for
significantly larger datasets, such as 100, 000 images ×1, 000 classes, the average computation time for the optimal transport
method is approximately 1.888 seconds, which remains relatively small compared to the overall training time.

D. Limitation

In this paper, we utilize prompt-based optimal transport for data purification, dividing the data into clean and noisy subsets.
For the clean data, we apply cross-entropy (CE), while for the noisy data, we employ mean absolute error (MAE). As shown
in Table 1, our experimental results indicate that although NLPrompt achieves state-of-the-art performance in most cases, its
performance is not always superior to other methods under low noise rates, with slight gaps compared to the best results.
This suggests room for improvement in scenarios with low noise levels. This may be because, at low noise levels, optimal
transport can misclassify some correct samples as noisy, leading to reduced performance of MAE on datasets with low noise
rates.

E. Theoretical Analysis for the Robustness of PromptMAE

In this section, we demonstrate that the mean absolute error (MAE) loss is robust for prompt learning in vision-language
foundation models. Leveraging the properties of vision-language pre-trained models, we assume that the latent spaces of
the text encoder and image encoder are well-aligned. To clarify, we restate and explain some of our analysis settings. For
a classification task, the objective is to classify an image x into its ground truth class y ∈ [C], where C represents the
total number of classes. For simplicity, we assume that the features corresponding to these classes are orthogonal. In our
theoretical analysis, we focus on a binary classification scenario, where yi ∈ {+1,−1}. In most theoretical work of feature
learning, it is common to apply insights from binary classification to interpret experimental observations [1, 3]. So, we
employ such theoretical frameworks to validate and support our experimental findings.

In the definition of the text encoder (3), the incorporation of Wpc introduces nonlinearity between the trainable prompt
and the class prompt while maintaining the overall function’s nonlinear nature. The assumptions regarding the image encoder
(5) suggest that task-relevant features differ depending on whether the label is positive or negative, while task-irrelevant
features remain arbitrary and independent of the label’s polarity. Furthermore, the training loss objective is designed to
strengthen the similarity between the image feature g(xi) and the text feature generated by the label class prompt pyi

.
Following the standard feature learning theory [1], we assume that the weights of the pretrained model consist of two com-
ponents: task-relevant weights µ and task-irrelevant weights ξ. We begin by proving the following feature representation
lemma.

Lemma E.1 (Restatement of Lemma 4.1: Feature Representation). At the t-th iteration, the learnable prompt p(t) can
be rewritten as a linear combination of features and prompt initialization:

p(t) = α(t)p(0) + β(t)||µ||−2
2 µ+

L∑
l=1

ϕ
(t)
l ||ξl||−2

2 ξl,

where α(t) are the coefficients of initialization, β(t) is the coefficient of task-relevant features, ϕ(t)
(·) are the coefficients of

task-irrelevant features.

Disuccusion on feature decomposition intuition Decomposite the trainable parameters in latent space into linear combi-
nations is a general technique in feature learning theory [1, 3]. Intuitively, in a text prompt, certain ”core” words (such
as adjectives describing class features before class names) play a key role in determining the image classification and are
considered ”task-relevant,” while other words are ”task-irrelevant.”
Coefficient dynamics Inspired by the previous study [3], we analyze the dynamics of coefficients in prompt fine-tuning
from vision-language foundation models. By analyzing the dynamics of the coefficients, we can reveal the feature learning
procedure during training. This analysis allows us to establish the order of coefficients and explore how they are affected by
the noisy rate p.
Loss design Our goal here is to compare two different types of loss functions: cross-entropy loss and mean absolute error



loss.

ℓCE(si,yi) =

C∑
c=1

−yi,c log si,c = −yi log si, (12)

ℓMAE(si,yi) =

C∑
c=1

|yi,c − si,c| = ||yi − si||1 (13)

Our analysis will be made under the following assumption:

Assumption E.2. Suppose that:
• The number of training samples N = Ω(polylog(d)), where d is the dimension of learnable prompts.
• The dimension of latent space m is sufficiently large, i.e., m = Ω̃(N).
• The learning rate η ≤ Õ(min{||µ||22, σ−2

p m−1}) and the standard deviation of network weight initialization σ0 ≤ Õ(mn) ·
min{(||µ||22, σp

√
d
−1

)}.
• we assume that µTp+1 ≥ 0 ≥ µTp−1 which implies a separability condition in the latent space.

Remark. In this assumption, a sufficiently large number of training samples and latent dimension are used to ensure that the
network has concentration properties. Meanwhile, a sufficiently small learning rate and appropriate weight initialization are
employed to guarantee that gradient descent, in the theoretical analysis, leads to loss convergence.
Gradient analysis. This section discusses the computational approach used to analyze the performance of the algorithm,
focusing on the gradient calculations essential for optimizing the model parameters. Leveraging the properties of the gradient
of the Softmax function, we have:

∂si,c
∂sim(gi, hc)

= (1− si,c)si,c,
∂si,c

∂sim(gi, h−c)
= si,−csi,c. (14)

We can derive the gradient of si,c with respect to learnable prompt p with chain rule.

∂si,c
∂p

= (1− si,c)si,c
∂sim(gi,hc)

∂p
− si,csi,−c

∂sim(gi,h−c)

∂p
(15)

= si,csi,−c

(
∂sim(gi,hc)

∂p
− ∂sim(gi,h−c)

∂p

)
. (16)

To calculate the gradient, we need the partial derivatives of sim(gi,hc) with respect to p. Recall from (3) and (6) that the
similarity is defined as:

sim(gi,hc) = ⟨σ(Wp+Wpc)− σ(−Wp+Wpc), g(xi)⟩. (17)

The gradient of this similarity can be derived as:

∂sim(gi,hc)

∂p
= (WT (σ′(Wp+Wpc) + σ′(−Wp+Wpc))) · g(xi). (18)

Using the previously derived gradient, we have

∂ℓ

∂p
=

∂ℓ

∂si,ỹi

∂si,ỹi

∂p
=

∂ℓ

∂si,ỹi

si,ỹisi,−ỹi

(
∂sim(gi,hỹi)

∂p
− ∂sim(gi,h−ỹi)

∂p

)
. (19)

The gradient for different loss functions can then be computed as follows:

∂ℓCE

∂si,ỹi

= − 1

si,ỹi

,
∂ℓMAE

∂si,ỹi

= −2 (20)

Here, we define ℓ′i =
∂ℓ

∂si,ỹi
si,ỹisi,−ỹi as the gradient coefficient. For cross-entropy loss, this simplifies to ℓ′i = si,−ỹi , while

for mean absolute error, it becomes ℓ′i = 2si,ỹisi,−ỹi . Defining σ′
r,i := σ(wT

r p+wT
r pỹi)+σ(−wT

r p+wT
r pỹi)−σ(wT

r p+

wT
r p−ỹi

)− σ(−wT
r p+wT

r p−ỹi
), the gradient can be expressed as follows:

∇pLT (p) = − 1

n

n∑
i=1

m∑
r=1

ℓ′ixr,iσ
′
r,iwr. (21)



Due to the update rule of gradient descent and the previous gradient formula, we can rewrite the update equation as follows:

p(t+1) = p(t) − η∇pLT (p
(t)) (22)

= p(t) +
η

n

n∑
i=1

m∑
r=1

ℓ′ixr,iσ
′
r,iwr, (23)

where η ≥ 0 is the learning rate. Next, we use the assumption about the rows of the weight matrix, as shown in (4). This
leads to the update formula for the corresponding rows of the features:

β(t+1) = β(t) +
η

n

n∑
i=1

ℓ′iσ
′
1,iỹiyi||µ||22 (24)

= β(t) +
η

n

∑
i∈S+

ℓ′iσ
′
1,i||µ||22 −

η

n

∑
i∈S−

ℓ′iσ
′
1,i||µ||22

ϕ
(t+1)
l = ϕ(t) +

η

n

n∑
i=1

ℓ′iσ
′
1,iỹixl+1,i||ξl||22. (25)

E.1. Theoretical analysis
Our analysis follows this logic: both CE and MAE will increase task-relevant and task-irrelevant features for clean data.
However, for noisy data, this leads to a decrease in task-relevant features and an increase in task-irrelevant features, causing
the SNR to decrease for both. Inspired by [41], we introduce the following lemma.

Lemma E.3. Under prompt learning, the test loss can be evaluated with the ratio between the task-relevant coefficient and
task-irrelevant coefficient.

Proof. For simplicity, we first introduce the definitions of F+ and F−. Here F+ means the train loss corresponding to the
positive class, while F− means the train loss corresponding to the negative class.

F+(p) = σ(Wp+Wp+)− σ(−Wp+Wp+), (26)
F−(p) = σ(Wp+Wp−)− σ(−Wp+Wp−), (27)
F (p) = F+(p)− F−(p). (28)

From (28), we have that the following expressions are equivalent:

⟨Fyi(p)− F−yi(p), g(xi)⟩ ≥ 0 ⇐⇒ yi⟨F (p), g(xi)⟩ ≥ 0. (29)

Note that

Wp =


µ⊤p
ξ⊤1 p

...
ξ⊤Lp

 =


β||µ||2
ϕ1||ξ1||2

...
ϕL||ξL||2

 . (30)

Also, since the weight and class prompts are fixed during prompt learning, Wp+ and Wp− can be treated as two constant
terms. To assess the algorithm’s performance, we evaluate the error rate during the testing procedure, which serves as our
test loss, denoted as ℓD:

ℓD(p) =
1

n

n∑
i=1

1(ŷi = yi). (31)

Recall that the test error is minimized when si,yi exceeds si,−yi . Therefore, the accuracy of the i-th sample is equivalent to:

1(ŷi = yi) = P(si,yi − si,−yi > 0). (32)

According to the monotonicity of the softmax function, we have that

si,yi
− si,−yi

> 0 ⇐⇒ sim(gi, hyi
)− sim(gi, h−yi

) > 0. (33)



Considering each row of F (p(t)) and x, we can expand the expression as:

F1(p
(t)) +

L∑
l=1

yixi,lFl+1(p
(t)) ≥ 0, (34)

where xi,r are Gaussian random variables with zero mean, and yi are random variables independent of xi,r. As in the test pro-
cedure, F1(p), . . . , Fl+1(p) are fixed. Therefore, based on the definition of prompt learning, the expectation that each sample
is correctly classified is determined by the ratio between F1(p) and the task-irrelevant coefficients F2(p), . . . , FL+1(p).

Since F1(p) is a monotonic function with respect to µ(t) and Fl+1(p) is a monotonic function with respect to ϕ
(t)
l , we

can express the following relationship:

ℓD(p(t)) ∼ F1(p
(t))

L∑
l=1

Fl+1(p(t))

. (35)

Therefore, the test loss can be analyzed by evaluating the ratio between the task-relevant and task-irrelevant coefficients.
Besides, due to the assumption that µTpc ≥ 0 ≥ µTp−c and the random initialization of Wp such that µTp ≥ 0, we
conclude that F1(p) ≥ 0. Additionally, the expectation of xi is zero, and Fl(p) remains constant for any iteration with a
fixed p, for all l. As a result, we derive the following inequality:

E(si,yi
− si,−yi

) ≥ 0 ⇐⇒ E(si,yi
− (1− si,yi

)) ≥ 0 ⇐⇒ E(si,yi
) ≥ 1

2
, (36)

which can be used to analyze the feature dynamics in prompt learning.

Based on the previous lemma, we can derive the following theorem.

Theorem E.4 (Restatement of Theorem 4.2). With high probability at test 1− d−1, the test loss ℓD for the prompt trained
by MAE is lower than the prompt trained by CE, i.e., ℓD(pMAE) ≤ ℓD(pCE). Here, pMAE and pCE refer to the text prompt
trained using MAE loss and CE loss, respectively.

Proof. To prove that the MAE achieves better generalization performance, we need to compare the ratio between task-
relevant and task-irrelevant coefficients. When the task-relevant features dominate, the algorithm performs better, whereas
the dominance of task-irrelevant features leads to worse performance. Based on the iteration formulas in (24) and (25), we
can derive the expected updates for β and ϕ:

β
(t+1)
CE = β

(t)
CE + η

[
(1− p)

1

E[sy]
||µ||22 − p

1

1− E[sy]
||µ||22

]
, (37)

ϕ
(t+1)
CE = ϕ

(t)
CE + η

[
(1− p)

1

E[sy]
σ2
pd+ p

1

1− E[sy]
σ2
pd

]
, (38)

β
(t+1)
MAE = β

(t)
MAE + η

[
(1− p) · 2 · ||µ||22 − p · 2 · ||µ||22

]
, (39)

ϕ
(t+1)
MAE = ϕ

(t)
MAE + η

[
(1− p) · 2 · σ2

pd+ p · 2 · σ2
pd

]
. (40)

In this part, we use (34) and the assumption that µ⊤p+1 ≥ 0 ≥ µ⊤p−1 to show that the expectation of F1(p
(t)) is greater

than zero. Building on this, we assume that xl,i are Gaussian random variables with zero mean, and yi are Rademacher
random variables independent of xl,i. Taking the expectation of the left-hand side of (34), we obtain:

E[F1(p
(t)) +

L∑
l=1

yixi,lFl+1(p
(t))] = E[F1(p

(t))] ≥ 0, (41)

which simplifies to:

E[si,yi
− si,−yi

] ≥ 0 ⇐⇒ E[si,yi
− (1− si,yi

)] ≥ 0 ⇐⇒ E[2si,yi
− 1] ≥ 0 ⇐⇒ E[si,yi

] ≥ 1

2
. (42)



Here, the first inequality follows from the definition of accurate classification, the second inequality comes from the properties
of the softmax function, and the fourth inequality arises from the properties of expectation. Based on this, the increment of
the coefficients per step can be evaluated using expectation. We get the following expressions for the ratio of updates:

∆β
(t)
MAE

∆β
(t)
CE

=
(1− p) 1

E[sy ]
− p 1

1−E[sy ]

2− 4p
=

1

2E[sy]
·
1− p 1

1−E[sy ]

1− 2p
, (43)

∆ϕ
(t)
MAE

∆ϕ
(t)
CE

=
(1− p) 1

E[sy ]
+ p 1

1−E[sy ]

2s
=

1

2E[sy]

(
1− p

2E[sy]− 1

1− E[sy]

)
. (44)

Given that E[sy] > 1
2 , we have 1

1−E[sy ] > 2 and 2E[sy]− 1 > 0. Additionally, since 0 ≤ p ≤ 1
2 , it follows that:

∆β
(t)
MAE

∆β
(t)
CE

=
1

2E[sy]
·
1− p 1

1−E[sy ]

1− 2p
>

1

2E[sy]
, (45)

∆ϕ
(t)
MAE

∆ϕ
(t)
CE

=
1

2E[sy]

(
1− p

2E[sy]− 1

1− E[sy]

)
<

1

2E[sy]
. (46)

Compared to a model trained using cross-entropy, we observe that the task-relevant coefficient of a model trained using mean
absolute error (MAE) increases more quickly relative to the task-irrelevant coefficient. We can use induction to prove the
following two properties:

β
(t)
MAE

ϕ
(t)
MAE

≥
β
(t)
CE

ϕ
(t)
CE

and ϕ
(t)
MAE ≤ 1

2E[sy]
ϕ
(t)
CE. (47)

Assuming that the induction hypothesis holds at the t-th iteration, and given that the learning rate is sufficiently small, the
increase in the task-irrelevant coefficient is also small. Then we can write the following:

β
(t+1)
MAE

ϕ
(t+1)
MAE

=
β
(t)
MAE +∆β

(t)
MAE

ϕ
(t)
MAE +∆ϕ

(t)
MAE

≥ β
(t)
MAE

ϕ
(t)
MAE

+
∆β

(t)
MAE

ϕ
(t)
MAE

≥
β
(t)
CE

ϕ
(t)
CE

+
∆β

(t)
CE

2E[sy]ϕ
(t)
MAE

≥
β
(t)
CE

ϕ
(t)
CE

+
∆β

(t)
CE

ϕ
(t)
CE

≥
β
(t+1)
CE

ϕ
(t+1)
CE

. (48)

Additionally, we have:

ϕ
(t+1)
MAE = ϕ

(t)
MAE +∆ϕ

(t)
MAE < ϕ

(t)
MAE +

1

2E[sy]
∆ϕ

(t)
CE ≤ 1

2E[sy]
ϕ
(t)
CE +

1

2E[sy]
∆ϕ

(t)
CE =

1

2E[sy]
ϕ
(t+1)
CE . (49)

In conclusion, after a sufficiently large number of iterations, we have:

LD(pCE) ≥ LD(pMAE), (50)

which demonstrates that the test loss for mean absolute error (MAE) in prompt learning with noisy labels is lower than that
of cross-entropy loss, highlighting the robustness of MAE.
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