
A. Appendix
A.1. Hardware Configuration

We detail our hardware setup in Figure 9, which centers on
a Franka Emika Panda robotic arm, a 7-DOF manipulator
known for its precision and torque-controlled movements.
The standard parallel gripper is equipped with UMI fingers
[6], which are flexible and can conform to objects of vary-
ing shapes, providing a more adaptable and secure grasp.
Two Intel RealSense D415 RGB-D cameras are utilized for
perception. One camera is mounted on the gripper, provid-
ing a first-person view from the robot’s perspective, while
the other is positioned opposite the robot to offer a third-
person view of the workspace. This setup facilitates both
detailed object perception and overall scene understanding.
The system is powered by a workstation equipped with an
Intel Core i7 processor, 64GB of RAM, and an NVIDIA
RTX 4090 GPU, ensuring real-time inference and planning.

RealSense
D415

Franka
Panda

RealSense
D415

Workspace

Figure 9. Hardware Configuration.

A.2. Prompt for Querying VLM

This paper uses GPT-4O from the OpenAI API as VLM.
Below, we provide specific prompts and corresponding
JSON schema to enable VLM to deliver structured outputs.
Task-relevant object grounding and stage partitioning.
Takes task instructions and the object detection results from
the VFM as inputs. Generates the task-relevant object IDs
and the stage partitioning results (Section 3.1 of the main
manuscript). The prompt is available for download here.
Grounding Interaction Point. Takes task instructions and
object images processed by the SCAFFOLD visual prompt-
ing mechanism as inputs. Generates the IDs of task-relevant
interaction points on the object (Section 3.2 of the main

manuscript). The prompt is available for download here.

Captioning Interaction Direction. Takes object im-
ages with candidate interaction directions and descriptions
of task-relevant object parts as inputs. Generates tex-
tual descriptions of the functionality associated with each
candidate interaction direction (Section 3.2 of the main
manuscript). The prompt is available for download here.

Determining Interaction Direction. Takes task instruc-
tions and textual descriptions of the functionality associ-
ated with candidate directions as inputs. Generates a rank-
ing of the candidates according to the relevance between
the directions and task instructions (Section 3.2 of the main
manuscript). The prompt is available for download here.

Self-correction via RRC. Takes rendered images of the in-
teraction results as inputs. Determines whether the inter-
action can be successful or if refinement is needed(Section
3.3 of the main manuscript). The prompt is available for
download here.

A.3. Implementation Details of Method

Object Canonicalization. In this paper, we employs
the single-view object generation model TripoSR to gen-
erate 3D object meshesM from single-view RGB images.
However, such reconstructions inherently face ambiguities
in scale, rotation, and translation. To resolve these ambi-
guities, we estimate the similarity transformation {s,R, t}
between the reconstructed mesh and the canonical object
space using the observed point cloud Pobs. First, the 6D ob-
ject pose is estimated using Omni6DPose, and Pobs is trans-
formed into the canonical point cloud Pcan. With known
correspondences between Pcan and the reconstructed mesh
M, the Umeyama [44] algorithm is applied to compute the
similarity transformation. This transformation includes the
scale factor s ∈ R+, the rotation matrix R ∈ SO(3), and
the translation vector t ∈ R3.

Functional Grasping. We apply special processing to the
‘grasp’ stage by directly generating primitives using uni-
versal grasp models [10, 45], without using RRC. Multiple
grasp points on an object that meet the task requirements
are obtained through [22]. For each point, a Gaussian dis-
tribution is generated and then superimposed, resulting in a
continuous heatmap. This heatmap is used to post-process
and filter the multiple grasp poses predicted by the grasp
model, ultimately identifying the most suitable grasp pose.

Rendering Details of RRC. After obtaining the canonical-
ized object mesh and deriving the interaction vector and
corresponding target pose as described in Section 3.2, we
set the pose for all meshes and render them using Pyrender.
Before rendering, we apply the method from [40] to inpaint
the original areas of the rendered object in the image, pre-
venting interference with the VLM.

https://raw.githubusercontent.com/omnimanip/omnimanip.github.io/refs/heads/save/prompts/task_stage_partition.json
https://raw.githubusercontent.com/omnimanip/omnimanip.github.io/refs/heads/save/prompts/interaction_point_generation.json
https://raw.githubusercontent.com/omnimanip/omnimanip.github.io/refs/heads/save/prompts/interaction_direction_generation_part_1.json
https://raw.githubusercontent.com/omnimanip/omnimanip.github.io/refs/heads/save/prompts/interaction_direction_generation_part_2.json
https://raw.githubusercontent.com/omnimanip/omnimanip.github.io/refs/heads/save/prompts/RRC.json

Figure 10. System error breakdown.

A.4. Action Primitives based on Constraints

We define the following atomic actions for VLM to se-
lect and complete constraint-based manipulation. (a) Grasp:
Move to 8cm in front of the grasp pose, move forward and
close the gripper. (b) Place: move to vcm in front of the tar-
get pose, move to the target pose and open the gripper. (c)
Push: move to vcm in front of the target pose, close the grip-
per, and move to the target pose. (d) Pull: move to vcm in
behind of the target pose (e) Rotate: rotate v degrees along
the interaction vector. (f) Pour: move to the target point
and then rotate around that point to achieve the desired ori-
entation. v is the distance predicted by VLM. These atomic
actions can be coupled with VLM to ahchive most everyday
manipulation tasks.

A.5. System Error Breakdown

In this section, we conduct an empirical study by manually
examining the failure cases of experiments in Table 1, cal-
culating the likelihood of each module causing failures in
the pipeline. The results are shown in Figure 10. Among
the different modules, object canonicalization (3D AIGC
and Pose estimation) is relatively prone to failure. Our qual-
itative analysis indicates that the main reason is the signifi-
cant decline in the quality stability of [41] generation when
small objects are positioned far from the camera. There-
fore, it is recommended to use high-resolution cameras and
capture images as close to the objects as possible. Addi-
tionally, the Grasping module and the VFM-based object
grounding module also contribute to some errors. In con-
trast, the module that extracts interaction points and direc-
tions based on VLM is more stable, contributing less to fail-
ures. Lastly, factors such as unsolvable inverse kinematics
(IK) for the robotic arm and collisions during execution also
lead to some failure cases.

A.6. OmniManip for Demonstration Generation

We deployed OmniManip in Isaac Sim for autonomous
demonstrations collection. Unlike prior methods reliant on
task-specific privileged information, OmniManip collects
demonstration trajectories for new tasks in a zero-shot man-
ner, without needing task-specific details or prior object
knowledge. To validate the effectiveness of OmniManip-
generated data, we collected 150 trajectories per task to
train behavior cloning policies [5]. Figure 11 illustrates the
overall trajectory distribution for the tasks ’insert flower’
and ’fit lid onto teapot’, showcasing a notable diversity
in the data. As shown in Table 4, the policy [5] trained
using demonstration trajectories generated by OmniManip
achieved an average accuracy of 86.93% across five tasks,
which partially validates the quality of the demonstrations
generated by OmniManip.

Task Success Rate

Pick up cup on dish 95.24%
Recycle battery 91.30%
Insert pen into holder 86.36%
Fit lid onto teapot 79.16%
Insert flower into vase 82.61%
Total 86.93%

Table 4. Behavior cloning with demonstrations from OmniManip.

A.7. Comprehensive Limitation Analysis

Stability and Trade-offs in 3D-AIGC. OmniManip’s
closed-loop planning reduces sensitivity to various compo-
nents, but 3D AIGC model quality remains crucial. Balanc-
ing stability and efficiency is key. To ensure fast inference

Figure 11. Trajectories visualization from OmniManip.

in real-world tests, we used [41] to generate a 3D mesh in
under half a second. This efficient option can yield poor
meshes with low resolution or unusual angles. For better
results, users can choose higher-quality models like [29],
though this increases computational time significantly.
Challenges in General Pose Estimation. General pose
estimation [58] shows instability with certain rare objects,
such as uncommon categories and transparent items. The
estimated 6D pose at this point may not correctly align
with the object’s functional axis, reducing the sampling ef-
ficiency of OmniManip. However, the presence of RRC al-
lows OmniManip to compensate to some extent.
Heavy VLM Calls. Multiple VLM calls average a cost of
11,000 tokens per plan, which represents a large computa-
tional overhead. However, most modules within the system
can be executed and optimized in parallel to significantly
enhance efficiency.
Complex Task Handling with OmniManip. It is chal-
lenging for OmniManip to handle complex tasks that are
difficult to represent structurally, such as manipulating de-
formable objects. However, we believe that OmniManip,
with its dual closed-loop features, continues to advance in
the field of general object manipulation.

A.8. Inference Results Example

To provide a more detailed explanation of our approach,
this section includes qualitative visualizations of three real-
world tasks. These visualizations illustrate the key steps at
each stage, such as identifying interaction points, providing
textual descriptions of interaction directions and their cor-
responding task-related sequences, and showcasing the re-
sults of the self-correction phase. Each stage of our method
is clearly and intuitively depicted. The tasks are: (a) Close
lid of laptop (Figure 12) (b) Insert pen into holder (Figure
13) and (c) Pick up cup onto dish (Figure 14).

{
"Task Name": "Close lid of laptop",
"Think Step by Step": "To close the lid of the laptop, the gripper needs to push the top edge of the laptop lid downwards until it is
fully closed.",
"objects": [

{"object_ID": "laptop", "bbox_ID": 1},
{"object_ID": "gripper", "bbox_ID": -1}

],
"stages": [

{"action": "push", "active_object_ID": "gripper", "passive_object_ID": "laptop"}
]
}
"interaction_elements": [

{"object_ID": "gripper", "element": {"action": ”push", "type": "active", "interaction_part": "finger", "part_visible_and_tangible":
True}},

{"object_ID": ”laptop", "element": {"action": ”push", "type": "passive", "interaction_part": "lid", "part_visible_and_tangible":
True}}]
}

Task Stage Partitioning

[
"1. The axis runs horizontally through the laptop, perpendicular to the screen, pointing
outward from the top edge.",
"2. The axis is vertical, extending upward from the top edge of the laptop.",
"3. The axis runs horizontally along the keyboard, perpendicular to the screen, pointing
away from the top edge.",
"4. The axis runs horizontally through the laptop, perpendicular to the screen, pointing
inward towards the top edge.",
"5. The axis is vertical, extending downward from the top edge of the laptop.",
"6. The axis runs diagonally along the keyboard, pointing towards the top edge."
]

{
"expected interaction direction caption": "The axis runs horizontally through the
laptop, perpendicular to the screen, pointing inward towards the top edge.",
"ranked directions": [1, 5, 4, 2, 3, 6]
}

Stage-1: Push

Interaction point generation Interaction direction extraction

{
"Think Step By Step": "The image shows a laptop with its lid partially open. The red arrow is pointing horizontally towards the top
edge of the laptop lid, indicating the direction to push the lid closed. The interaction part is the finger of the gripper, which should
push the top edge of the laptop lid. The arrow is correctly aligned with the task of closing the lid, as it points directly towards the edge
that needs to be pushed. However, the arrow is not perpendicular to the surface of the lid, which would be more effective for pushing
it closed.",
"Reasonable": "refine",
"interaction_value": 0
}

Passive
Object

(laptop)

RRC

{
"Target Part": ”base center",
"Selected dot": [2,6]

}

(visible_and_tangible)

Instruction: Close lid of laptop

{
"Think Step By Step": "The image shows a laptop with its lid partially open. The red arrow is pointing downward towards the top
edge of the laptop lid, indicating the direction to push the lid closed. The arrow is aligned with the task of closing the laptop lid, as
it suggests a downward motion which is appropriate for this task. The gripper's finger is positioned to interact with the top edge of
the laptop lid, which is suitable for pushing it closed.",
"Reasonable": "success",
"interaction_value": 0
}

Vision Foundation Model

Figure 12. Result of task ‘Close lid of laptop’.

{
"Task Name": "Insert pen into holder",
"Think Step by Step": "First, grasp the pen using the gripper. Then, position the pen above the holder and insert it into the holder's opening.",
"objects": [

{"object_ID": "robot_arm", "bbox_ID": 0},
{"object_ID": "holder", "bbox_ID": 1},
{"object_ID": "pen", "bbox_ID": 2},
{"object_ID": "gripper", "bbox_ID": -1},
{"object_ID": "table", "bbox_ID": -1}

],
"stages": [

{"action": "grasp", "active_object_ID": "gripper", "passive_object_ID": "pen"},
{"action": "place", "active_object_ID": "pen", "passive_object_ID": "holder"}

],
"interaction_elements": [

{''object_ID'': ''gripper'', ''element'': {''action'': ''grasp'', ''type'': ''active'', ''interaction_part'': ''finger'', ''part_visible_and_tangible'': True}},
{''object_ID'': ''cup'', ''element'': {''action'': ''grasp'', ''type'': ''passive'', ''interaction_part'': ''handle center'', ''part_visible_and_tangible'': True}},
{''object_ID'': ''cup'', ''element'': {''action'': ''place'', ''type'': ''active'', ''interaction_part'': ''base center'', ''part_visible_and_tangible'': True}},
{''object_ID'': ''dish'', ''element'': {''action'': ''place'', ''type'': ''passive'', ''interaction_part'': ''center'', ''part_visible_and_tangible'': True}}]

}

Task Stage Partitioning

[
"1. The axis runs perpendicular to the length of the pen, passing through its
center, with the arrow pointing outward from the side.",
"2. The axis is aligned along the length of the pen, extending from the handle
towards the tip, with the arrow pointing towards the tip.",
"3. The axis runs diagonally, intersecting the pen's body, with the arrow pointing
outward from the side.",
"4. The axis runs perpendicular to the length of the pen, passing through its
center, with the arrow pointing inward from the side.",
"5. The axis is aligned along the length of the pen, extending from the tip
towards the handle, with the arrow pointing towards the handle.",
"6. The axis runs diagonally, intersecting the pen's body, with the arrow pointing
inward from the side."
]

{
"expected interaction direction caption": " Extend outward along the pen tip,
away from the body",
"ranked directions": [2, 5, 1, 4, 3, 6]
}

[
"1. The axis passes through the holder's center, extending outward from the
side, perpendicular to its height.",
"2. The axis runs vertically through the holder, passing through the opening
center and extending upward.",
"3. The axis passes through the holder's center, extending outward from the
side, perpendicular to its height.",
"4. The axis passes through the holder's center, extending outward from the
side, perpendicular to its height.",
"5. The axis runs vertically through the holder, passing through the opening
center and extending downward.",
"6. The axis passes through the holder's center, extending outward from the
side, perpendicular to its height."
]

{
"expected interaction direction caption": " Perpendicular to the round
opening of the holder, facing inward",
"ranked directions": [5, 2, 1, 3, 4, 6]
}

{
"Target Part": "opening center",
"Selected dot": [4,4]

}

{
"Target Part": "opening center",
"Selected dot": [1,4]

}

Stage-2: Place

Interaction point generation Interaction direction extraction

Interaction direction extractionInteraction point generation

Stage-1: Grasp

Functional grasping grounding

{
"Think Step By Step": "The image shows a pen positioned above a holder with the tip of the pen aligned
with the opening center of the holder. The red arrow points downward, indicating the direction for placing the
pen into the holder. The alignment and direction are appropriate for the task of inserting the pen into the
holder.",
"Reasonable": "success",
"interaction_value": 0
}

Active
Object
(pen)

Passive
Object

(holder)

RRC

{
"Target Part": "tip",
"Selected dot": [4,7]

}

(visible_and_tangible)

(not visible_and_tangible)

Vision Foundation Model

Instruction: Insert pen into holder

Passive
Object
(pen)

{
"Strategy": "To grasp the pen securely for insertion into a holder, focus on the body
center. Select points that provide a stable grip around the middle section of the pen.",
"Selected dots": [[5, 4], [5, 5], [5, 6], [6, 4], [6, 5], [6, 6]]
}

Figure 13. Result of task ‘Insert pen into holder’.

{
"Task Name": "Pick up cup onto dish",
"Think Step by Step": "First, grasp the cup using the gripper. Then, lift and move the cup to position it above the dish. Finally, place the
cup onto the dish.",
"objects": [

{"object_ID": "cup", "bbox_ID": 2},
{"object_ID": "dish", "bbox_ID": 3},
{"object_ID": "gripper", "bbox_ID": -1},
{"object_ID": "table", "bbox_ID": -1}

],
"stages": [

{"action": "grasp", "active_object_ID": "gripper", "passive_object_ID": "cup"},
{"action": "place", "active_object_ID": "cup", "passive_object_ID": "dish"}

],
"interaction_elements": [

{"object_ID": "gripper", "element": {"action": "grasp", "type": "active", "interaction_part": "finger", "part_visible_and_tangible":
True}},

{"object_ID": "cup", "element": {"action": "grasp", "type": "passive", "interaction_part": "handle center", "part_visible_and_tangible":
True}},

{"object_ID": "cup", "element": {"action": "place", "type": "active", "interaction_part": "base center", "part_visible_and_tangible":
True}},

{"object_ID": "dish", "element": {"action": "place", "type": "passive", "interaction_part": "center", "part_visible_and_tangible": True}}]
}

Task Stage Partitioning

[
"1. The axis passes through the cup's base center, extending outward from the side,
perpendicular to the handle.",
"2. The axis runs vertically through the cup, passing through the base center and extending
upward.",
"3. The axis is horizontal, extending outward from the base center, parallel to the handle.",
"4. The axis passes through the cup's base center, extending outward from the side,
perpendicular to the handle.",
"5. The axis runs vertically through the cup, passing through the base center and extending
downward.",
"6. The axis is horizontal, extending outward from the base center, parallel to the handle."
]

{
"expected interaction direction caption": " Vertically through the cup, passing through
the base center and extending downward",
"ranked directions": [5, 2, 1, 4, 3, 6]
}

[
"1. The axis runs along the plane of the dish, extending.",
"2. The axis passes through the center of the dish, extending outward perpendicular to its
surface.",
"3. The axis runs along the plane of the dish, passing through its center.",
"4. The axis runs along the plane of the dish, passing through its center, similar to image 1
but from a different perspective.",
"5. The axis passes through the center of the dish, extending outward perpendicular to its
surface, similar to image 2 but from a different perspective.",
"6. The axis runs along the plane of the dish, passing through its center, in the opposite
direction of image 3."
]

{
"expected interaction direction caption": " Perpendicular to the round opening of the
holder, facing inward",
"ranked directions": [5, 1, 2, 4, 3, 6]
}

Stage-2: Place

Interaction point generation Interaction direction extraction

Interaction direction extractionInteraction point generation

{
"Think Step By Step": "The image shows a cup positioned above a dish. The red arrow indicates a
downward direction, suggesting the cup will be placed onto the dish. The base center of the cup aligns with
the center of the dish, which is appropriate for the task of placing the cup on the dish. The interaction seems
reasonable as the cup is positioned correctly to be placed on the dish.",
"Reasonable": "success",
"interaction_value": 0
}

Active
Object
(cup)

Passive
Object
(dish)

RRC

{
"Target Part": ”base center",
"Selected dot": [7,5]

}

(visible_and_tangible)

(visible_and_tangible)

Instruction: Pick up cup onto dish

{
"Target Part": "surface",
"Selected dot": [4,4]

}

Stage-1: Grasp
Functional grasping grounding

Passive
Object
(pen)

{
"Strategy": "To grasp the cup by its handle center, select points
that are centrally located on the handle for a stable grip.",
"Selected dots": [[4, 2], [4, 3], [5, 2], [6, 2]]
}

Vision Foundation Model

Figure 14. Result of task ‘Pick up cup onto dish’.

	. Introduction
	. Related Work
	. Method
	. Manipulation with Interaction Primitives
	. Primitives and Constraints Extraction
	. Dual Closed-Loop System

	. Experiment
	. Experimental Setup
	. Open-Vocabulary Manipulation
	. Core Attributes of OmniManip

	. Conclusion
	. Appendix
	. Hardware Configuration
	. Prompt for Querying VLM
	. Implementation Details of Method
	. Action Primitives based on Constraints
	. System Error Breakdown
	. OmniManip for Demonstration Generation
	. Comprehensive Limitation Analysis
	. Inference Results Example

