
TokenHSI: Unified Synthesis of Physical Human-Scene Interactions
through Task Tokenization

Supplementary Material

A. Simulated Character

Character Model Creation. We apply a custom simu-
lated character model, with 32 degrees-of-freedom (DoF).
This custom model is based on the character model used in
AMP [13], which comprises 15 rigid bodies, 12 controllable
joints, and 28 DoF, as depicted in Fig. A (a). While retain-
ing most designs of AMP’s character model, we introduce
three improvements:

• (1) The 3D relative positions of the lower body joints, in-
cluding the hips, knees, and ankles, are adjusted to match
those in the SMPL [8] human body model configured
with a neutral gender and default shape parameters.

• (2) The collision shapes of the foot rigid bodies are modi-
fied from rectangular boxes to realistic foot meshes using
the method proposed by SimPoE [17].

• (3) The knee joints are upgraded from 1-DoF revolute
joints to 3-DoF spherical joints.

An illustration of our custom character model is available in
Fig. A (b). The primary motivation for building this custom
model is two fold: the reference motion datasets are repre-
sented using SMPL parameters, and the kinematic structure
of AMP’s character model is different from that of SMPL.
Consequently, directly copying rotation parameters to retar-
get these motions onto AMP’s character model leads to un-
natural lower body motions. In contrast, using our improved
character model, which features a lower body structure con-
sistent with SMPL, can significantly reduce retargeting er-
rors and ensure more natural character motions.

The designed simulated character is used for most tasks,
except those involving stairs terrain, as illustrated in Fig. 4
(e) and (f). This difference is due to inaccurate contact sim-
ulation between the meshed foot rigid bodies and the terrain
in IsaacGym [10]. To address this issue, we revert the col-
lision shapes of foot rigid bodies back to rectangular boxes,
which are more simulation-friendly, as shown in Fig. A (c).

The Proprioception st and Action at. The propriocep-
tion st describes the simulated state of the character at each
time step t. Following ASE [14], st is constructed using a
set of features, including the positions, rotations, linear ve-
locities, and angular velocities of all rigid bodies. All fea-
tures are expressed in the character’s local coordinate frame,
except for the root joint rotation, which is represented in
the world coordinate frame. The 6D rotation representa-
tion [18] is employed. Notably, the root joint position is ex-
cluded from the proprioception. Combined, these features

(a) AMP (b) Ours (c) Ours (for terrain)

Figure A. Different simulated character models. Building on (a)
AMP’s model, we devise two improved versions: (b) and (c),
which are used for tasks on flat ground and tasks on stairs ter-
rain, respectively.

define a 222D humanoid proprioception st ∈ R222. At each
time step t, the control policy generates an action at, rep-
resenting the target rotations for the PD controllers at each
of the character’s degrees-of-freedom. The target rotations
for 3D spherical joints are encoded using a 3D exponential
map [3]. Our character model has ten 3-DoF spherical joints
and two 1-DoF revolute joints (i.e., left and right elbows),
resulting in a 32D action space at ∈ R32. No external forces
are applied to any rigid body of the simulated character.

B. Tasks

In this section, we provide the implementation details about
all tasks involved in this paper. Tab. A presents an overview
of all 12 tasks, including 4 foundational HSI tasks, 3 skill
composition tasks, 4 object/terrain shape variation tasks,
and 1 long-horizon task. We begin by introducing the com-
mon settings shared across tasks in Section B.1. Task-
specific settings, such as task observations and reward func-
tions, are detailed in the subsequent sections.

B.1. Preliminaries
Reference Motion Dataset. To encourage the character
to perform tasks in a realistic and life-like manner, we man-
ually construct a comprehensive reference motion dataset
encompassing a wide variety of behavior categories associ-
ated with the four foundational HSI tasks. The dataset is
divided into five distinct subsets:

• Loco: This subset includes 12 motion sequences from
the AMASS [9] dataset, covering basic locomotion be-
haviors such as standing, walking, and turning around on
flat ground. Since every task involves a walking stage,
this subset is used for all tasks.

• Stair: This subset is used for tasks on stairs terrain and



Task Num. of Num. of Obj. Reference Motion Dataset Epis. Len. (s) Early Termination Condition
Task Tokens Train Test Loco Stair Climb Carry Sit Char. Fall Obj. Fall Path Dist. IET

Follow 1 / / ✓ 10 ✓ ✓
Sit 1 49 26 ✓ ✓ 10 ✓ ✓
Climb 1 38 26 ✓ ✓ 10 ✓ ✓
Carry 1 9 9 ✓ ✓ 20 ✓
Follow + Carry 3 / + 5 / + 9 ✓ ✓ 10 ✓ ✓ ✓
Sit + Carry 3 49 + 5 26 + 9 ✓ ✓ ✓ 10 ✓ ✓ ✓
Climb + Carry 3 38 + 5 26 + 9 ✓ ✓ ✓ 10 ✓ ✓ ✓
Obj. Shap. Var. (Chair) 1 63 27 ✓ ✓ 20 ✓ ✓
Obj. Shap. Var. (Table) 1 21 9 ✓ ✓ 20 ✓ ✓
Terr. Shap. Var. (Follow) 2 / / ✓ ✓ 10 ✓ ✓
Terr. Shap. Var. (Carry) 2 9 9 ✓ ✓ ✓ 20 ✓
Long-horizon Task 5 / / ✓ ✓ ✓ ✓ 40 ✓ ✓

Table A. The overview of all 12 tasks implemented in this paper. Key settings for each task are summarized, including the number of
task tokens, the construction of reference motion and object datasets, the episode length, and early termination conditions. The available
termination conditions contain character fall, object fall, path distance, and interaction early termination (IET). A slash (/) indicates that
the specific configuration is not applicable.

consists of 20 motion sequences for ascending and de-
scending stairs.

• Climb: To support the training of the climbing task,
we collect 11 motion sequences from the AMASS [9]
dataset, where characters climb onto a high platform from
the ground.

• Carry: We collect the carrying motions from hybrid
sources, with 17 sequences from the OMOMO [7] dataset
and 4 sequences from the AMASS [9] dataset.

• Sit: This subset consists of 20 sitting motions collected
from the SAMP [4] dataset.

The usage of these five motion datasets in each task’s train-
ing process is summarized in Tab. A. For skill composi-
tion tasks, such as sitting down while carrying an object,
no post-processing is applied to merge the two correspond-
ing subsets (i.e., Carry and Sit) to obtain composite kine-
matic reference motions. Therefore, the reference motion
dataset does not include any motions of sitting down while
carrying a box. The policy learns these composite skills pri-
marily through the guidance of task rewards. As the policy
learns composite tasks, the style reward decreases while the
task reward increases, leading to an overall increase in total
reward and improved task completion.

Object Dataset. To make learned interaction skills effec-
tively generalize to diverse unseen objects, we construct an
object training dataset and a corresponding testing dataset to
evaluate the generalization capabilities of these skills. The
high-quality 3D object models are collected from the 3D-
Front [2] object dataset, while the 3D models of boxes are
procedurally generated using Trimesh. The number of ob-
jects used for training and testing is described in Table A.
We carefully ensure all test are conducted on the unseen ob-
jects.

Early Termination Condition. Early termination is an
effective technique for improving the reinforcement learn-
ing (RL) training process by preventing negative samples
from adversely affecting the policy gradient [12]. A funda-
mental and widely applicable termination condition is hu-
manoid fall detection, which is utilized for all tasks in our
implementation. To further facilitate the learning of dy-
namic object-carrying skills, we introduce a similar condi-
tion called object fall detection. If the object’s height drops
below a specified threshold, the trial will be terminated. For
the path following task, we adopt the path distance detec-
tion condition proposed in Trace&Pace [15]. If the 2D dis-
tance between the root of the simulated character and the
target point on the trajectory at the current moment exceeds
a specified threshold, the trial will be terminated. For tasks
such as sitting and climbing, where the physical character
enters a static interaction state with the object upon task
completion, we introduce the Interaction Early Termination
(IET) condition proposed by InterScene [11]. This effec-
tively enhances smoothness and increases the success rate
performance of these particular tasks.

B.2. Foundational HSI Tasks
B.2.1. Path Following
Definition. This task requires the simulated charac-
ter to move along a target 2D trajectory. We follow
the prior work [15] to procedurally generate the trajec-
tory dataset. A whole trajectory is formulated as τ =
{xτ

0.1, x
τ
0.2, ..., x

τ
T−0.1, x

τ
T }, where xτ

0.1 denotes a 2D way-
point of the trajectory τ at the simulation time 0.1s, and T
is the episode length. According to Tab. A, the path follow-
ing task’s episode length T is 10s. The character needs to
follow this trajectory τ accurately.
Task Observation. At each simulation mo-
ment t second, we query 10 future waypoints
{xτ

t , x
τ
t+0.1, ..., x

τ
t+0.8, x

τ
t+0.9} in the future 1.0s from



the whole trajectory τ by linear interpolation. The sam-
pling time interval is 0.1s. We use the 2D coordinates of
the sampled waypoints as the task observation gft ∈ R2×10.
Task Reward. The task reward rft calculates the distance
between the current character 2D root position xroot 2d

t and
the desired target waypoint xτ

t :

rft = exp
(
− 2.0

∥∥xroot 2d
t − xτ

t

∥∥2 ). (1)

B.2.2. Sitting
Definition. The task objective is for the character to move
its root joint to a target 3D sitting position located on the
object surface. The target position is placed 10 cm above
the center of the top surface of the chair seat.
Task Observation. The sitting task observation gst ∈ R38

includes the 3D target sitting position ∈ R3 and the 3D in-
formation of the interacting object, i.e., the root position
∈ R3, the root rotation ∈ R6, and the 2D front-facing direc-
tion ∈ R2, as well as the positions of eight corner points on
the object’s bounding box ∈ R3×8.
Task Reward. The sitting policy is trained by minimizing
the distance between the character’s 3D root position xroot

t

and the target 3D sitting position xtar
t . The task reward rst

is defined as:

rst =

0.7 rneart + 0.3 rfart ,
∥∥∥xobj 2d

t − xroot 2d
t

∥∥∥ > 0.5

0.7 rneart + 0.3, otherwise
(2)

rfart = exp
(
− 2.0

∥∥1.5− d∗t · ẋroot 2d
t

∥∥2 ) (3)

rneart = exp
(
− 10.0

∥∥xtar
t − xroot

t

∥∥2 ), (4)

where xroot
t is the 3D coordinates of the character’s root,

ẋroot 2d
t is the 2D linear velocity of the character’s root,

xobj 2d
t is the 2D position of the object root, d∗t is a hor-

izontal unit vector pointing from xroot 2d
t to xobj 2d

t , a · b
represents vector dot product.

B.2.3. Climbing
Definition. In this work, we introduce a new contact-based
interaction task similar to the sitting task. The goal is for the
character to stand on a given object, placing its root joint at
a target 3D climbing position. We place the target position
94 cm above the center of the top surface of the object.
Task Observation. The task observation gmt ∈ R27 in-
cludes the target root position ∈ R3 and the 3D coordinates
of eight corner points on the object’s bounding box ∈ R3×8.
Task Reward. This task is also optimized through mini-
mizing the 3D distance between the character’s root xroot

t

and its target location xtar
t . We formulate the task reward

rmt , as follows:

rmt =

0.5 rneart + 0.2 rfart ,
∥∥∥xobj 2d

t − xroot 2d
t

∥∥∥ > 0.7

0.5 rneart + 0.2 + 0.3 rfoott , otherwise
(5)

rfart = exp
(
− 2.0

∥∥1.5− d∗t · ẋroot 2d
t

∥∥2 ) (6)

rneart = exp
(
− 10.0

∥∥xtar
t − xroot

t

∥∥2 ) (7)

rfoott = exp
(
− 50.0

∥∥∥(xtar h
t − 0.94)− xfoot h

t

∥∥∥2 ), (8)

where xtar h
t denotes the height component of the 3D target

root position, xtar
t , (xtar h

t − 0.94) represent the height of
the top surface of the target object in the world coordinate,
and xfoot h

t denotes the mean height of the two foot rigid
bodies. The reward function rfoott is introduced to encour-
age the character to lift its feet, which is applied when the
character is close enough to the target object. We find it is
crucial for the successful training of the climbing task.

B.2.4. Carrying
Definition. The character is directed to move a box from a
randomly initial 3D location xbox init

t to a target 3D location
xbox tar
t . We use two thin platforms to support the box since

the its initial and target heights are randomly generated.
Task Observation. The task observation gct ∈ R42 com-
prises the following properties of the target box:
• Target location of the box ∈ R3

• Root position ∈ R3

• Root rotation ∈ R6

• Root linear velocity ∈ R3

• Root angular velocity ∈ R3

• Positions of 8 corner points on the bounding box ∈ R3×8

Task Reward. We implement the multi-stage task reward
function proposed by InterPhys [5]. The first stage aims
to encourage the character to walk to the initial box. The
corresponding reward rc walk

t is defined as:

rc walk
t =


0.2,

∥∥∥xobj 2d
t − xroot 2d

t

∥∥∥ < 0.5

0.2 exp
(
− 5.0

∥∥1.5− d∗t · ẋroot 2d
t

∥∥2 ),
otherwise

(9)

where d∗t is a horizontal unit vector pointing from xroot 2d
t

to xobj 2d
t , a · b represents vector dot product. The second

stage is to encourage the character to pick up and move the
box to its target location. We utilize two reward functions to
achieve this stage, i.e., rc carry

t to calculate the 3D distance
between the box current root position xobj

t and its target lo-
cation xtar

t , and rc pick
t to calculate the 3D distance between

the box position xobj
t and the mean 3D position of the char-

acter’s two hands xhand. We define rc carry
t as follows:

rc carry
t =


0.2 rneart + 0.2 rfart ,∥∥∥xobj 2d

t − xtar 2d
t

∥∥∥ > 0.5

0.2 rneart + 0.2, otherwise

(10)

rfart = exp
(
− 5.0

∥∥∥1.5− d#t · ẋobj 2d
t

∥∥∥2 ) (11)



rneart = exp
(
− 10.0

∥∥∥xtar
t − xobj

t

∥∥∥2 ), (12)

where xobj
t is the 3D coordinates of the box’s root, ẋobj 2d

t

is the 2D linear velocity of the box’s root, xobj 2d
t is the

2D position of the object root, xtar 2d
t is the 2D coordinates

of the box’s target location, d#t is a horizontal unit vector
pointing from xobj 2d

t to xtar 2d
t , a · b represents vector dot

product. The task reward rc pick
t to incentivize the character

pick up the box using its hands, defined as follows:

rc pick
t =


0.0,

∥∥∥xobj 2d
t − xroot 2d

t

∥∥∥ > 0.7

0.2 exp
(
− 5.0

∥∥∥xobj
t − xhand

t

∥∥∥2 ),
otherwise

(13)

where xhand
t denotes the mean 3D coordinates of the char-

acter’s two hands. Additionally, we further design a reward
function rc put

t to incentivize the character to put down the
box at its target location accurately, which is formulated as:

rc put
t =


0.0,

∥∥∥xobj 2d
t − xtar 2d

t

∥∥∥ > 0.1

0.2 exp
(
− 10.0

∥∥∥xobj h
t − xtar h

t

∥∥∥2 ),
otherwise

(14)

where xobj h
t denotes the hight of the current box and xtarh

t

represents the height of the target placing position. There-
fore, the total reward function rct for training the carrying
skill can be formulated as:

rct = rc walk
t + rc carry

t + rc pick
t + rc put

t . (15)

B.3. Downstream HSI Tasks
In this section, we provide the details about how we im-
plement the task observations and rewards used for training
these more challenging HSI tasks.
Skill Composition. When learning the composite tasks us-
ing our policy adaptation, we reuse and freeze two relevant
task tokenizers of foundational skills. Their task observa-
tions are illustrated in Sec B.2. Therefore, we mainly focus
on describing how we construct the task configurations for
these composite tasks.

Follow + Carry. The task observation gf+c
t contains

two parts: (1) the primary following task observation
gft ∈ R2×10 and (2) the revised carrying task observa-
tion gc revised

t ∈ R39, which excludes the target location
of the box ∈ R3 because the carrying task is no longer
the primary task. The final composite task observation is
gf+c
t ∈ R2×10+39 that considers both the primary task

states and the carrying box states. We define the task re-
ward for this composite task rf+c

t as follows:

rf+c
t =

0.0,
∥∥∥xobj 2d

t − xroot 2d
t

∥∥∥ > 0.7

0.5 rft + 0.5 rc pick
t , otherwise

(16)

where the rft is the same as Equ. 1 and the rc pick
t is equal

to Equ. 13.
Sit + Carry. The task observation gs+c

t also includes two
parts: (1) the primary sitting task observation gst ∈ R38 and
(2) the revised carrying task observation gc revised

t ∈ R39,
which have been introduced before. The final composite
task observation is gs+c

t ∈ R38+39. We define the task re-
ward for this composite task rs+c

t as follows:

rs+c
t =

0.0,
∥∥∥xobj 2d

t − xroot 2d
t

∥∥∥ > 0.7

0.7 rst + 0.3 rc pick
t , otherwise

(17)

where the rst is the same as Equ. 2 and the rc pick
t is equal

to Equ. 13.
Climb + Carry. The task observation gm+c

t also in-
cludes two parts: (1) the primary climbing task observa-
tion gmt ∈ R27 and (2) the revised carrying task observation
gc revised
t ∈ R39, which have been introduced before. The

final composite task observation is gm+c
t ∈ R27+39. We

define the task reward for this composite task rm+c
t as fol-

lows:

rm+c
t =

0.0,
∥∥∥xobj 2d

t − xroot 2d
t

∥∥∥ > 0.7

0.7 rmt + 0.3 rc pick
t , otherwise

(18)

where the rmt is the same as Equ. 5 and the rc pick
t is equal

to Equ. 13.
Object/Terrain Shape Variation. For object shape varia-
tion, we directly fine-tune the pre-trained box-carrying task
tokenizer Tc. That is, the task observation is still gct ∈ R42.
And we reuse the box-carrying reward function Equ. 15.
For terrain shape variation, we introduce an additional task
tokenizer for perceiving the surrounding height map, which
use 1024 sensor points to represent the height values in a
2×2m2 square area centered at the humanoid root position.
Thus, the new height map observation is gnewt ∈ R1024. We
also reuse the task observation and reward function of the
box-carrying task for terrain shape variation.
Long-horizon Task Completion. As illustrated in Fig. 4
(g), we sequence the four learned foundational skills to per-
form a long-horizon task in a complex environment. We
reuse all observations of foundational skills and introduce
a new height map observation gnewt ∈ R625, which utilizes
625 sensor points to observe the heights in a 1×1m2 square
area. We design a step-by-step task reward mechanism. For
each step in the task sequence, we reuse the task reward
from the corresponding task ((rft , r

s
t , r

m
t , or rct )). Once a

step is completed, the reward value for that sub-task is set
to its maximal value, indicating the task have been accom-
plished. Then, the task reward for the next step in the se-
quence will be activated for reward calculation. Please refer
to our publicly released code for more details.



C. Implementation Details of CML
In Sec. 4.2.1, we compare our transformer-based policy
adaptation with CML [16] and CML (dual) on the skill com-
position tasks. The network structure of CML (dual) is an
improved version based on the original CML framework.

CML [16] employs a hierarchical framework consisting
of a pre-trained, fixed meta policy πmeta as the low-level
controller and a newly introduced, trainable policy πnew as
the high-level controller. The high-level policy πnew ob-
serves the humanoid proprioception st and the new task
observation gnewt . The low-level policy πmeta observes
the humanoid proprioception st and the base task obser-
vation gbaset . Take the Climb + Carry task as an exam-
ple. We use a specialist policy trained on the climbing
task as the πmeta(ameta

t |st, gmt ), which possesses a joint
character-goal state space. Then, we introduce a new policy
πnew(anewt , wnew

t |st, gm+c
t ), which generates a new action

anewt and a group of joint-wise weights wnew
t ∈ R32, each

value is ∈ [0, 1]. The high-level policy πnew is trained to
cooperate with the low-level policy πmeta to quickly learn
the composite tasks. The composition process is conducted
in the action space as follows:

at = anewt + wnew
t ameta

t , (19)

which is called post-composition in the main paper.
However, the original CML framework supports only a

single meta policy. To ensure a fair comparison, we develop
CML (dual), an improved version that can simultaneously
utilize two meta policies πmeta

1 and πmeta
2 . To handle the

two sets of actions ameta1
t and ameta2

t , generated by the two
meta policies, the high-level policy πnew outputs an addi-
tional set of weights. In this way, we obtain wnew1

t and
wnew2

t . This results in the following post-composition pro-
cess:

at = anewt + wnew1
t ameta1

t + wnew2
t ameta2

t , (20)

where wnew1
t and wnew2

t are joint-wise weights applied to
the two sets of meta actions, ameta1

t and ameta2
t , respec-

tively. All weights are processed using sigmoid activations,
transforming their values to [0, 1].

D. Quantitative Evaluation on Long-horizon
Task Completion

Experimental Setup. We first describe the construction of
the long-horizon task shown in Fig. 4 (g). The long task
comprises four sequential sub-tasks: follow a target trajec-
tory → carry a box to its target location → climb onto the
box → sit on a chair located on the high platform. Each sub-
task should have a sub-goal. The finite state machine moni-
tors the task executing process using the spatial relationship
between the reference point (the humanoid root joint or the

The completed sub-task count

Scratch

Finetune
Ours

Number of Iterations (1e2)

Long-term Task Completion

Figure B. Learning curves comparing the efficiency on long-
horizon task completion using TokenHSI, Scratch [13], and itera-
tive fine-tuning of multiple pre-trained specialist policies, namely
Finetune.

box centroid) and the sub-goal. Each sub-goal is procedu-
rally generated—follow: the trajectory is planned by A*;
carry: the target box position is placed close to the platform
using a rule-based method; climb and sit: the character’s
target root position is pre-defined on the object geometry.
We use the completed sub-task count as the evaluation met-
ric. The maximal value is 4 in our case. We collect 512
trials to statistic the metrics.

Baselines. We compare our approach with two baseline
methods: (1) Scratch [13]: training a policy to learn the
whole long-term task from scratch; (2) Finetune [1, 6]: it-
erative fine-tuning multiple specialist policies in the envi-
ronment to improve skill transitions and collision avoid-
ance. We use our transformer policy as the policy architec-
ture when conducting the experiment Scratch. Both Scratch
and TokenHSI can observe height map. The difference be-
tween these two approaches is that our approach utilized
pre-trained parameters. Due to the limited flexibility of
MLP-based policies used by the experiment Finetune, we
cannot make them environment-aware. The training adopts
1, 024 parallel simulation environments and 3k PPO itera-
tions.

Quantitative Results. Our method achieves the highest
value of the completed sub-task count of 3.79 ± 0.14, sig-
nificantly outperforming Scratch 0.82 ± 0.06 and Finetune
1.86 ± 0.02. We also illustrate the convergence curves in
Fig. B, which shows that TokenHSI still maintains its effi-
ciency advantage in the long-horizon task completion.



(a)

(b)

Figure C. Qualitative results of new skills learned by our policy adaptation. (a) We first learn two out-of-domain interaction skills, i.e.,
pushing down a large object and walking to a target location while lifting up a box using two hands. (b) We then combine the new lifting
skill with previously learned sitting and path-following skills. These results demonstrate the good extensibility of our transformer policy.

E. Extensibility

In the main paper, we mainly focus on adapting skills
learned in the first stage (i.e., foundational skill learning) to
address more challenging HSI tasks through policy adapta-
tion. In this section, we want to evaluate the extensibility of
our approach to more HSI skills. We attempt to answer two
questions: (1) Can we insert out-of-domain skills into the
pre-trained transformer policy? (2) Can we further combine
the newly-added skills with previously learned foundational
skills to create more compositional cases? The flexibility of
the transformer policy allows us to explore these problems.

Q1: Out-of-domain Skill Insertion. We consider two
more types of manipulation skills, including pushing down
a large object and walking to a target location while lift-
ing up a box using two hands. To prepare the training, we
collect the reference motions from the AMASS dataset [9],
design the task observations, rewards, and other environ-
mental configurations. During training, we introduce a ran-
domly initialized task tokenizer Tnew and zero-initialized
adapter layers to the action head H. The rest network pa-
rameters are frozen. For the pushing task, we declare it
to be successful if the object falls. For the lifting task,
we determine a testing trial to be successful if the pelvis
is within 20 cm (XY-planar distance) of the target location
while maintaining the box in a lifted position. As shown
in Fig. C (a), our approach successfully synthesizes these
out-of-domain manipulation skills. Specifically, the push-
ing task attains a success rate of 100% and the lifting task
receives 80.6%± 2.6.

Q2: More Compositional Cases. Moreover, we combine
the newly learned box-lifting skill with previous sitting and
following skills. The training method is the same as skill
composition. Through policy adaptation, we create more
compositional cases shown in Fig. C (b). The success rates
are 72.1%± 2.8 and 91.1%± 0.8, respectively.

References
[1] Alexander Clegg, Wenhao Yu, Jie Tan, C Karen Liu, and

Greg Turk. Learning to dress: Synthesizing human dressing
motion via deep reinforcement learning. ACM Transactions
on Graphics (TOG), 37(6), 2018. 5

[2] Huan Fu, Bowen Cai, Lin Gao, Ling-Xiao Zhang, Jiaming
Wang, Cao Li, Qixun Zeng, Chengyue Sun, Rongfei Jia, Bin-
qiang Zhao, et al. 3d-front: 3d furnished rooms with layouts
and semantics. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 10933–10942,
2021. 2

[3] F Sebastian Grassia. Practical parameterization of rotations
using the exponential map. Journal of graphics tools, 3(3):
29–48, 1998. 1

[4] Mohamed Hassan, Duygu Ceylan, Ruben Villegas, Jun
Saito, Jimei Yang, Yi Zhou, and Michael J Black. Stochas-
tic scene-aware motion prediction. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 11374–11384, 2021. 2

[5] Mohamed Hassan, Yunrong Guo, Tingwu Wang, Michael
Black, Sanja Fidler, and Xue Bin Peng. Synthesizing phys-
ical character-scene interactions. In ACM SIGGRAPH 2023
Conference Proceedings, pages 1–9, 2023. 3

[6] Youngwoon Lee, Joseph J Lim, Anima Anandkumar, and
Yuke Zhu. Adversarial skill chaining for long-horizon robot
manipulation via terminal state regularization. In 5th Annual
Conference on Robot Learning, 2021. 5

[7] Jiaman Li, Jiajun Wu, and C Karen Liu. Object motion
guided human motion synthesis. ACM Transactions on
Graphics (TOG), 42(6):1–11, 2023. 2

[8] Matthew Loper, Naureen Mahmood, Javier Romero, Ger-
ard Pons-Moll, and Michael J. Black. SMPL: A skinned
multi-person linear model. ACM Trans. Graphics (Proc.
SIGGRAPH Asia), 34(6):248:1–248:16, 2015. 1

[9] Naureen Mahmood, Nima Ghorbani, Nikolaus F Troje, Ger-
ard Pons-Moll, and Michael J Black. Amass: Archive
of motion capture as surface shapes. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 5442–5451, 2019. 1, 2, 6

[10] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo,
Michelle Lu, Kier Storey, Miles Macklin, David Hoeller,



Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac
gym: High performance gpu-based physics simulation for
robot learning. arXiv preprint arXiv:2108.10470, 2021. 1

[11] Liang Pan, Jingbo Wang, Buzhen Huang, Junyu Zhang, Hao-
fan Wang, Xu Tang, and Yangang Wang. Synthesizing phys-
ically plausible human motions in 3d scenes. In 2024 Inter-
national Conference on 3D Vision (3DV), pages 1498–1507.
IEEE, 2024. 2

[12] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel
van de Panne. Deepmimic: Example-guided deep reinforce-
ment learning of physics-based character skills. ACM Trans-
actions on Graphics (TOG), 37(4), 2018. 2

[13] Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and
Angjoo Kanazawa. Amp: Adversarial motion priors for styl-
ized physics-based character control. ACM Transactions on
Graphics (ToG), 40(4):1–20, 2021. 1, 5

[14] Xue Bin Peng, Yunrong Guo, Lina Halper, Sergey Levine,
and Sanja Fidler. Ase: Large-scale reusable adversarial
skill embeddings for physically simulated characters. ACM
Transactions On Graphics (TOG), 41(4):1–17, 2022. 1

[15] Davis Rempe, Zhengyi Luo, Xue Bin Peng, Ye Yuan, Kris
Kitani, Karsten Kreis, Sanja Fidler, and Or Litany. Trace and
pace: Controllable pedestrian animation via guided trajec-
tory diffusion. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 13756–
13766, 2023. 2

[16] Pei Xu, Xiumin Shang, Victor Zordan, and Ioannis
Karamouzas. Composite motion learning with task control.
ACM Transactions on Graphics (TOG), 42(4):1–16, 2023. 5

[17] Ye Yuan, Shih-En Wei, Tomas Simon, Kris Kitani, and Ja-
son Saragih. Simpoe: Simulated character control for 3d hu-
man pose estimation. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
7159–7169, 2021. 1

[18] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and
Hao Li. On the continuity of rotation representations in neu-
ral networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5745–
5753, 2019. 1


	Simulated Character
	Tasks
	Preliminaries
	Foundational HSI Tasks
	Path Following
	Sitting
	Climbing
	Carrying

	Downstream HSI Tasks

	Implementation Details of CML
	Quantitative Evaluation on Long-horizon Task Completion
	Extensibility

