
CVPR
#10607

CVPR
#10607

CVPR 2025 Submission #10607. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

V uniT: Visual Unit Tests for More Robust Visual Programming

Supplementary Material

A. Data001

The three compositional reasoning datasets used in this002
work are GQA [3], SugarCREPE [2], and WinoGround [11].003
Table 1 shows examples from each dataset, and Table 2004
summarizes the dataset statistics. For GQA validation we005
sample 5 questions from each of the 102 question groups006
from the balanced-val split with a total of 502 exam-007
ples. For testing, we sample 10 questions per group from008
the balanced-train split yielding 1022 examples. Note009
that some groups such as typeVerifyC, stateChoose,010
and companyVerify do not have a sufficient amount of011
questions, so we sample the whole group. For SugarCREPE,012
we utilize 788 examples for training by subsampling 10% of013
the dataset balanced across the 7 question types, excluding014
our validation split. This validation subset consists of 560015
examples and includes both positive and negative image-016
text pairings from 40 samples for each of the 7 question017
types. The full Winoground dataset is used, encompassing018
all possible positive and negative pairings for a total of 1600019
examples, with SugarCREPE employed for training.020

B. Unit Test Sampling Pseudocode021

For clarity, Algorithm 1 presents the pseudocode for the unit022
test coverage sampling method described in Section 3.023

C. Program Generation and Execution024

In this section, we outline the implementation details for025
program generation and execution.026

C.1. Generation Details027

For program generation we use in context examples028
both in of-the-shelf inference, and finetuned model in-029
ference. Generation is conducted using VLLM with the030
following generation parameters: temperature=1.0,031
top p=0.9, top k=0.0, max new tokens=320, and032
num beams=1. We set the temperature at a high value to033
ensure diversity in generated programs. For CodeLLaMA we034
prefix the prompt with <s>, and for CodeGemma we enclose035
it in <bos><start of turn>[..]<end of turn>036

C.2. Image Patch API037

We present the ImagePatch API in Code 1 which we038
adapt the from Khan et al. [4] which is in turn adapted039
from ViperGPT Surı́s et al. [10]. We implement object040
detection using IDEA-Research/grounding-dino-base [6]041
with text threshold=box threshold=0.2,042

Image Question Answer

GQA

Are there any guys to the
right of the brown horse?

no

Which direction is the animal
that looks white and brown

looking at?
forward

What type of animal is that
fence behind of, an elephant

or a giraffe?
giraffe

SugarCREPE

Is there a white pitcher
holding flowers in a window

sill?
yes

Are a cat and a dog napping
together under a blanket on

the couch?
no

Is a dog sitting in front of a
laptop on top of a bed?

yes

WinoGround

Verify image matches
text=“two humans and one

wheel”
yes

Verify image matches
text=“red building with white

shutters”
no

Verify image matches
text=“the person with the
white collared shirt waters
the plant while the other

holds it”

yes

Table 1. Dataset Samples

image-text-matching using openai/clip-vit-large-patch14- 043
336 [8] using 0.8 similarity threshold for detection, and 044
the underlying visual question answering module is 045
Salesforce/blip2-flan-t5-xxl [5] loaded in 8-bits using Bit- 046

1

https://github.com/vllm-project/vllm
https://huggingface.co/IDEA-Research/grounding-dino-base
https://huggingface.co/openai/clip-vit-large-patch14-336
https://huggingface.co/openai/clip-vit-large-patch14-336
https://huggingface.co/openai/clip-vit-large-patch14-336
https://huggingface.co/Salesforce/blip2-flan-t5-xxl
https://huggingface.co/docs/bitsandbytes/main/en/index
https://huggingface.co/docs/bitsandbytes/main/en/index

CVPR
#10607

CVPR
#10607

CVPR 2025 Submission #10607. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Samples # Images # Questions # Answers # Question Types # Questions/Type

GQA
1022/502 1014/487 937/474 176/122 105/102 10/5

WinoGround
-/1600 -/800 -/800 -/2 -/70 -/8

SugarCREPE
788/560 335/260 765/557 2/2 7/7 52/80

Table 2. Dataset Statistics: Values are shown in {train/test} format.
For SugarCREPE and WinoGround, both positive and negative
image-text pairings are included. In GQA, question types are di-
vided by the data field group, and in WinoGround by the data field
tag. The training data for WinoGround consists of SugarCREPE.

Algorithm 1 Unit Test Sampling Algorithm

Require: T = {t1, t2, . . . , tn}, the set of texts
Require: A = {a1, a2, . . . , am}, the set of answers
Require: f : T → A, a function mapping each text to an

answer
Require: E(t), embedding function for text t
Require: k, number of samples
Require: use answers, a boolean flag
Ensure: S, a subset of T of size k

1: function SAMPLETEXTS(T, A, f, E, k, use answers)
2: Initialize S ← ∅
3: if use answers = True then
4: for each ai ∈ A do
5: Select t from T such that f(t) = ai
6: S ← S ∪ {t}
7: T ← T \ {t}
8: end for
9: else

10: Select a random t from T
11: S ← {t}
12: T ← T \ {t}
13: end if
14: while |S| < k do
15: snew ← argmaxt∈T mins∈S ∥E(t)− E(s)∥
16: S ← S ∪ {snew}
17: T ← T \ {snew}
18: end while
19: return S
20: end function

sAndBytes with a maximum batch size of 4 and generation047
hyperparameters length penalty=-1, num beams=5,048
max length=10,min length=1,do sample=False,049
top p=0.9, repetition penalty=1.0, and050
temperature=1 for QA and set length penalty=1051
and max length=30 for captioning. All models are052
served by HuggingFace.053

C.3. In-Context Examples054

We present the in-context examples used for visual question055
answering and image-text matching in Codes 2 and 3 respec-056

tively. Code execution is handled using multiprocessing with 057
a batch size of 30, and a timeout of 120 seconds, after which 058
a TimeOutException is raised if execution exceeds the 059
limit. 060

D. Unit Test Generation 061

D.1. Implementation Details 062

To generate the unit test image descriptions and expected 063
answers we prompt meta-llama/Meta-Llama-3-8B-Instruct, 064
executed via VLLM with the following generation param- 065
eters: temperature=0.7, top p=0.9, top k=0.0, 066
max new tokens=512, and num beams=1. We return 067
3 output sequences, from which we extract the unit tests, 068
deduplicate them, and filter answers longer than five words 069
since they are out of distribution to the task before feeding 070
them to the sampling module. 071

D.2. In-Context Examples 072

We prompt the LLM with the system prompt presented be- 073
low, as well as in-context examples presented in Codes 6 and 074
7 for VQA and ITM respectively. 075

You are a skilled AI assistant 076
specialized in generating test 077
cases for programs that respond 078
to queries about images. 079

D.3. Unit Test Candidate Generation 080

We experiment with two prompting methodologies 081
for the unit test generation: Query-Only and 082
Query+Implementation. The former only takes 083
into account the user query to generate the unit-tests, while 084
the latter takes into account also each generated program. 085
We prompt the Visual Program Generator in the same way, 086
but instead also include implementation examples and the 087
current implementation as shown in Code 8. 088

D.4. Image Generation 089

To generate the images we use the diffusers li- 090
brary, and prompt each of the models with gener- 091
ation hyperaparameters guidance scale=16.0 and 092
num inference steps=50. In the case of NSFW im- 093
age generation, we update the seed by 1 and regen- 094
erate an image up to 10 times. Effectively, all unit 095
tests have a corresponding image. We use the follow- 096
ing implementations: CompVis/stable-diffusion-v1-4 for 097
SDv1.4, longlian/lmd plus for LM Guided Diffusion, and 098
stabilityai/stable-diffusion-xl-base-1.0 for SDXL3. 099

D.4.1. LM Grounded Diffusion 100

To generate the bounding boxes and phrases for 101
LM Grounded Diffusion we prompt meta-llama/Meta- 102
Llama-3-8B-Instruct, executed via VLLM with the 103

2

https://huggingface.co/docs/bitsandbytes/main/en/index
https://huggingface.co/
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://github.com/vllm-project/vllm
https://huggingface.co/docs/diffusers/en/index
https://huggingface.co/CompVis/stable-diffusion-v1-4
https://huggingface.co/longlian/lmd_plus
https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://github.com/vllm-project/vllm

CVPR
#10607

CVPR
#10607

CVPR 2025 Submission #10607. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

following generation parameters: temperature=1.0,104
top p=0.9, top k=0.0, max new tokens=320, and105
num beams=1. We return 5 candidate sequences to collect106
multiple candidates since we notice that often the extracted107
phrases can be empty, leading to failure in image generation.108
We present the prompt and in-context examples used for this109
part in Code 9.110

E. Strategies for Visual Unit Test Generation111

E.1. Unit Test Sampler σ112

Figure 1 illustrates the impact of different sampling strate-113
gies with varying the number of unit tests and program114
configurations. Our results indicate that ‘Coverage by An-115
swer then Input’, consistently outperforms other meth-116
ods. To gain deeper insights, we categorize the questions117
into three groups: Spatial, Attribute, and Other.118
For GQA, we classify any question groups containing119
Attr as Attribute and those mentioning location120
or position as Spatial. Figure 2 presents the average121
performance across scenarios with at least five unit tests and122
three program configurations. Notably, the Coverage by An-123
swer Then Input strategy emerges as the most effective for124
questions in the Attribute category.125

E.2. Image Generator M126

Figure 3 shows the impact of various diffusion models across127
different numbers of unit tests and program configurations.128
Our analysis reveals that LM-Guided diffusion consistently129
outperforms other methods, particularly in scenarios with130
more programs, where the likelihood of finding a suitable131
program for execution is higher. To gain deeper insights, fig-132
ure 2 presents the average performance across scenarios with133
at least three unit tests and two program configurations on134
the categories introduced in the previous subsection. To pro-135
vide a deeper understanding, Figure 4 illustrates the average136
performance across scenarios involving at least three unit137
tests and two program configurations, focusing on the cate-138
gories defined earlier. Notably, LM-Guided diffusion proves139
most effective for questions in the Spatial category, high-140
lighting the advantages of more controllable generation in141
achieving higher spatial fidelity.142

E.3. Scoring function h143

Figure 5 highlights the impact of error penalties across vary-144
ing configurations of unit tests and programs. While their145
effect becomes negligible in higher-resource configurations146
with more programs and unit tests, error penalties prove ben-147
eficial in lower-resource settings. In these scenarios, they148
help prioritize the selection of executable programs, thereby149
improving performance. Notably, runtime error penalties are150
more impactful for GQA, whereas compilation error penal-151
ties play a larger role in WinoGround. This difference likely152

46

48

50

52

54

Ac
c.

 (%
)

GQA | 2 Programs

40

42

44

46
Winoground | 2 Programs

46

48

50

52

54

Ac
c.

 (%
)

GQA | 3 Programs

42.5

45.0

47.5

50.0

Winoground | 3 Programs

50.0

52.5

55.0

57.5

60.0

Ac
c.

 (%
)

GQA | 4 Programs

40.0

42.5

45.0

47.5

50.0

Winoground | 4 Programs

3 5 7 9
Unit Tests

50.0

52.5

55.0

57.5

60.0

Ac
c.

 (%
)

GQA | 5 Programs

3 5 7 9
Unit Tests

40

45

50

Winoground | 5 Programs

Sampling
Random
Coverage By Answer then Input

Coverage By Answer
Coverage By Input

Figure 1. Effect of sampling methods on performance across vary-
ing numbers of unit tests and program configurations.

Other Attribute Spatial

50

60

70

80

Ac
c.

 (%
)

Dataset = GQA

Other Attribute Spatial
40

45

50

Dataset = WinoGround

Sampling Method
Random
Coverage By Answer then Input

Coverage By Answer
Coverage By Input

Figure 2. Performance of sampling methods across question cate-
gories. Results are averaged over scenarios with at least five unit
tests and three program configurations.

stems from the higher complexity of WinoGround programs, 153

3

CVPR
#10607

CVPR
#10607

CVPR 2025 Submission #10607. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

45.0

47.5

50.0

52.5

55.0

Ac
c.

 (%
)

GQA | 2 Programs

35.0

37.5

40.0

42.5

45.0
WinoGround | 2 Programs

45.0

47.5

50.0

52.5

55.0

Ac
c.

 (%
)

GQA | 3 Programs

35

40

45

50

WinoGround | 3 Programs

45

50

55

60

Ac
c.

 (%
)

GQA | 4 Programs

35

40

45

50

WinoGround | 4 Programs

1 3 5 7 9
Unit Tests

45

50

55

60

Ac
c.

 (%
)

GQA | 5 Programs

1 3 5 7 9
Unit Tests

35

40

45

50

WinoGround | 5 Programs

SDXL3 LM Guided SD v1.4

Figure 3. Effect of diffusion model on performance across varying
numbers of unit tests and program configurations.

Attribute Other Spatial

50

60

70

80

Ac
c.

 (%
)

Dataset = GQA

Attribute Other Spatial
42

44

46

48

50
Dataset = WinoGround

SDXL3 LM Guided SD v1.4

Figure 4. Performance of different diffusion models across question
categories. Results are averaged over scenarios with at least three
unit tests and two program configurations.

which are more prone to compilation errors.154

45

50

55

Ac
c.

 (%
)

GQA | 2 Programs

35.0

37.5

40.0

42.5

45.0
WinoGround | 2 Programs

45

50

55

Ac
c.

 (%
)

GQA | 3 Programs

40.0

42.5

45.0

47.5

50.0

WinoGround | 3 Programs

45

50

55

60

Ac
c.

 (%
)

GQA | 4 Programs

40.0

42.5

45.0

47.5

50.0

WinoGround | 4 Programs

1 3 5 7 9
Number of Unit Tests

45

50

55

60

Ac
c.

 (%
)

GQA | 5 Programs

1 3 5 7 9
Number of Unit Tests

40

45

50

WinoGround | 5 Programs

(Compilation, Runtime) Error Penalties
(0.0, 0.0) (0.0, 0.1) (0.1, 0.0) (0.1, 0.1)

Figure 5. Effect of error penalties on accuracy.

E.4. Aggregate Scorer H 155

Figure 6 illustrates the impact of various aggregator func- 156
tions on accuracy. Among these, mean score aggregation 157
consistently outperforms other methods, particularly in con- 158
figurations with a higher number of programs. In the case of 159
WinoGround, however, max aggregation also performs com- 160
petitively, occasionally surpassing mean aggregation. This is 161
likely due to the binary nature of the answers in WinoGround 162
and the increased likelihood of selecting correct for incorrect 163
reasons programs. 164

4

CVPR
#10607

CVPR
#10607

CVPR 2025 Submission #10607. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

42

44

46

48

50

52

Ac
c.

 (%
)

GQA | 2 Programs

35.0

37.5

40.0

42.5

45.0
WinoGround | 2 Programs

45

50

55

Ac
c.

 (%
)

GQA | 3 Programs

35

40

45

50

WinoGround | 3 Programs

45

50

55

60

Ac
c.

 (%
)

GQA | 4 Programs

30

35

40

45

50
WinoGround | 4 Programs

1 3 5 7 9
Number of Unit Tests

45

50

55

60

Ac
c.

 (%
)

GQA | 5 Programs

1 3 5 7 9
Number of Unit Tests

35

40

45

50

WinoGround | 5 Programs

Aggregate Scorrer
mean median max min

Figure 6. Effect of aggregator function on accuracy.

F. Visual Unit Test Utilization Methods165

F.1. Best Program Selection166

Table 3 shows additional results on best program selection167
with varrying number of programs.168

F.2. Answer Refusal169

Figure 7 shows additional statistics on answer refusal, in par-170
ticular the accuracy of selecting programs that will provide171
the correct final answer and the programs that succeed on172
the unit tests at different thresholds.173

VQA Image-Text Matching

LLM # Prog # UT GQA Winoground SugarCREPE Avg.

Base Setup
gpt-4o-mini 1 0 42.03±1.21 44.98±0.75 38.75±0.47 41.92±0.81

CodeLlama-7B 1 0 35.99±2.94 38.83±0.45 30.54±0.99 35.12±1.46

CodeGemma-7B 1 0 41.83±2.26 39.60±1.38 42.56±1.52 41.33±1.72

Most Common Answer Setup
CodeLlama-7B 2 0 27.76±0.41 36.19±0.66 32.02±2.25 31.99±1.11

CodeLlama-7B 3 0 35.99±0.70 42.40±0.85 37.26±2.70 38.55±1.42

CodeLlama-7B 4 0 38.71±1.61 42.12±0.60 39.17±2.01 40.00±1.41

CodeLlama-7B 5 0 42.50±1.50 45.85±0.77 41.67±1.79 43.34±1.35

CodeGemma-7B 2 0 31.87±0.80 33.04±0.67 36.37±1.62 33.76±1.03

CodeGemma-7B 3 0 40.31±1.00 40.50±1.33 44.58±0.55 41.80±0.96

CodeGemma-7B 4 0 40.44±0.53 43.06±1.89 44.46±1.17 42.66±1.20

CodeGemma-7B 5 0 43.89±0.98 46.04±1.48 46.67±1.69 45.53±1.38

ViUniT Setup (Ours)
CodeLlama-7B 2 5 41.90±1.74 46.65±1.63 40.24±0.82 42.93±1.40

CodeLlama-7B 3 5 45.68±0.94 48.54±0.37 43.93±1.09 46.05±0.80

CodeLlama-7B 4 5 49.07±2.39 50.17±0.54 45.65±1.22 48.30±1.38

CodeLlama-7B 5 5 49.27±1.13 49.73±0.73 47.02±1.19 48.67±1.02

CodeGemma-7B 2 5 44.02±0.72 49.27±0.57 46.73±2.30 46.67±1.20

CodeGemma-7B 3 5 46.08±0.41 51.17±1.98 48.93±1.86 48.73±1.42

CodeGemma-7B 4 5 47.88±1.36 52.25±1.35 50.83±1.32 50.32±1.34

CodeGemma-7B 5 5 48.01±1.05 51.92±0.90 51.85±2.16 50.59±1.37

Table 3. Accuracy on Best Program Selection with varying number
of programs. Bold is best.

0.1 0.3 0.5 0.7 0.9
0.0

0.2

0.4

0.6

0.8 Accuracy

0.1 0.3 0.5 0.7 0.9
0.0
0.2
0.4
0.6
0.8

Pass Rate Dataset
GQA
SugarCrepe
WinoGround
Model
CodeLlama-7B
CodeGemma-7B

Figure 7. Accuracy and Program Pass Rate for different thereshold
values for answer refusal.

F.3. Re-prompting 174

F.3.1. Implementation Details 175

We consider an application of the unit tests to generate differ- 176
ent candidate programs if the generated program falls below 177
a threshold. To do so, we maintain the same hyperparameters 178
in the program generator and adapt the prompt to include 179
the outputs of the unit tests as well as use suitable in context 180
examples as shown in Codes 4 and 5 for VQA and ITM 181
respectively. 182
Error Reprompting Baseline We employ the same model 183
and hyperparamters as ViUniT reprompting, but instead 184
adapt the prompt to take into account the error messages 185
instead of the unit tests as shown in Codes 10 and 11 for 186
VQA and ITM respectively. 187

F.3.2. Additional Results 188

Table 4 presents the results of an additional reprompting iter- 189
ation, highlighting that while ViUniT continues to achieve 190
higher performance overall, there is a slight drop in accuracy 191
compared to the previous iteration. This decline can be at- 192
tributed to its attempts to refine programs that may already 193
produce correct answers for the wrong reasons. Such correc- 194
tions can inadvertently cause shifts in the generated answers, 195
leading to decreased accuracy despite the method’s focus on 196

5

CVPR
#10607

CVPR
#10607

CVPR 2025 Submission #10607. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

improving program fidelity.197

VQA Image-Text Matching

LLM Iter. # Prog # UT GQA Winoground SugarCREPE Avg.

Base Setup (Iteration = 0)
CodeLlama-7B 0 1 0 35.99±2.94 38.83±0.45 30.54±0.99 35.12±1.46

CodeGemma-7B 0 1 0 41.83±2.26 39.60±1.38 42.56±1.52 41.33±1.72

Error Reprompting
CodeLlama-7B 1 1 0 37.92±2.68 42.46±0.57 33.21±0.64 37.86±1.30

CodeLlama-7B 2 1 0 38.78±2.22 44.58±0.44 37.08±1.08 40.15±1.25

CodeGemma-7B 1 1 0 42.63±2.42 42.42±1.91 44.52±1.05 42.63±2.42

CodeGemma-7B 2 1 0 42.90±2.65 43.08±1.73 45.30±0.92 42.90±2.65

ViUniT Reprompting θ = 0.7 (Ours)
CodeLlama-7B 1 1 5 46.68±2.52 51.85±0.40 47.68±2.17 48.74±1.69

CodeLlama-7B 2 1 5 46.95±1.33 52.04±0.83 48.04±1.64 49.01±1.26

CodeGemma-7B 1 1 5 45.75±0.30 48.19±2.28 48.21±1.12 47.38±1.23

CodeGemma-7B 2 1 5 44.42±1.00 49.25±2.66 48.81±1.19 47.49±1.62

Table 4. Accuracy of different re-prompting methods with an addi-
tional iteration. Bold is best.

F.4. Reward Design for Reinforcement Learning198

F.4.1. Implementation Details199

Table 5 contains additional hyperparameters used for training.200
Each RL epoch requires about 30 minutes with correctness201
reward, and 90 minutes with ViUniT reward since it requires202
execution of unit tests.

Parameter Value

warmup ratio 0.1
max grad norm 0.3
lr scheduler type linear
learning rate 2e-4
lora config.r 16
lora config.lora alpha 32
lora config.lora dropout 0.05
lora config.bias none

lora config.target modules
k proj v proj
q proj o proj

Table 5. RL training hyperparameters.

203

F.4.2. Additional Analysis204

Table 6 highlights the reduced error rates—measured as205
the number of programs leading to exceptions—achieved206
using the ViUniT reward. Additionally, Table 7 presents207
the results of cross-task and cross-dataset generalization208
on policies trained with GQA, following the approach of209
[4]. For VQAv2 [1], we sample 10 questions for each of210
the 50 most common answers from the validation split of211
the compositional subset curated by [9], similar to [4]. For212
OKVQA [7], we sample 10 questions per question type,213
resulting in a total of 110 questions. The results indicate that214
while both reward types demonstrate strong generalization215
across tasks and datasets, the ViUniT reward consistently216
delivers superior performance.217

VQA Image-Text Matching

LLM # Prog # UT GQA Winoground SugarCREPE Avg.

Supervised Correctness Reward
CodeLlama-7B 1 0 15.14±7.74 8.21±1.72 20.06±3.62 14.47±4.36

CodeGemma-7B 1 0 9.10±9.35 13.25±6.30 12.86±4.41 11.73±6.69

Unsupervised ViUniT Reward (Ours)
CodeLlama-7B 1 0 9.56±2.13 10.31±1.55 15.42±3.03 11.76±2.24

CodeGemma-7B 1 0 1.99±0.91 5.81±0.49 6.25±1.02 4.68±0.80

Table 6. Comparison of Error Rates in models trained with su-
pervised correctness rewards versus unsupervised unit-test-based
rewards. Lower is better. Bold is best.

X-Dataset Generalization X-Task Generalization

LLM # Prog # UT VQAv2 OK-VQA Winoground SugarCREPE

Base Setup
CodeLlama-7B 1 0 25.67±2.20 16.09±2.02 30.54±0.99 35.12±1.46

CodeGemma-7B 1 0 36.40±1.44 27.58±2.48 42.56±1.52 41.33±1.72

Supervised Correctness Reward
CodeLlama-7B 1 0 34.33±7.82 24.12±5.98 41.02±3.05 37.14±6.48

CodeGemma-7B 1 0 42.47±6.03 28.12±6.20 47.98±4.98 39.94±11.58

Unsupervised ViUniT Reward (Ours)
CodeLlama-7B 1 0 35.87±2.31 25.64±0.91 43.63±2.89 44.35±3.18

CodeGemma-7B 1 0 44.00±4.20 36.85±3.48 51.78±0.41 49.23±2.54

Table 7. GQA policy generalization across tasks and datasets

G. End-to-End Fallback Methods 218

G.1. Implementation Details 219

G.1.1. VQA 220

For VQA we revert to ask the query directly to 221
Salesforce/blip2-flan-t5-xxl [5] loaded in 8-bits using Bit- 222
sAndBytes with a maximum batch size of 4 and generation 223
hyperparameters length penalty=-1, num beams=5, 224
max length=10,min length=1,do sample=False, 225
top p=0.9, repetition penalty=1.0, and 226
temperature=1. 227

G.1.2. Image-Text-Matching 228

For image-text-matching we revert to openai/clip-vit-large- 229
patch14-336 [8] using 0.8 similarity threshold for positive 230
match, and negative otherwise. 231

G.2. Results with Fallback Method on Exception 232

In this work, we report results without employing a fallback 233
method on exceptions, treating such cases as failures to 234
better assess the quality of programs generated by different 235
methods. However, it is common in the literature to report 236
accuracy with a fallback method applied on exceptions. In 237
Table 8 we present the best program selection results using 238
this fallback approach on error. 239

H. Human Evaluation 240

This section presents details on the human evaluations on 241
the quality of unit tests, and program correctness. We used 242
Google-Forms to conduct the evaluations. 243

H.1. Unit Test Evaluation 244

To assess the quality of unit tests we randomly sample 20 245
examples from each of the three datasets, each correspond- 246

6

https://huggingface.co/Salesforce/blip2-flan-t5-xxl
https://huggingface.co/docs/bitsandbytes/main/en/index
https://huggingface.co/docs/bitsandbytes/main/en/index
https://huggingface.co/docs/bitsandbytes/main/en/index
https://huggingface.co/openai/clip-vit-large-patch14-336
https://huggingface.co/openai/clip-vit-large-patch14-336
https://huggingface.co/openai/clip-vit-large-patch14-336
https://www.google.com/forms/about/

CVPR
#10607

CVPR
#10607

CVPR 2025 Submission #10607. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

VQA Image-Text Matching

LLM # Prog # UT GQA Winoground SugarCREPE Avg.

Base Setup
gpt-4o-mini† 1 0 43.76±1.72 51.94±0.56 49.46±1.25 48.39±1.17

CodeLlama-7B† 1 0 44.75±2.01 51.65±1.09 48.57±0.82 48.32±1.31

CodeGemma-7B† 1 0 44.82±2.30 47.23±2.26 50.18±0.71 47.41±1.76

Most Common Answer Setup
CodeLlama-7B† 5 0 49.07±2.79 51.29±0.87 46.79±1.29 49.05±1.65

CodeGemma-7B† 5 0 46.61±1.24 49.10±1.32 49.17±1.52 48.29±1.36

ViUniT Setup (Ours)
CodeLlama-7B† 5 5 49.27±1.33 49.73±0.73 47.02±1.19 48.67±1.08

CodeGemma-7B† 5 5 48.14±1.02 51.92±0.90 51.85±2.16 50.63±1.36

Table 8. Accuracy on Best Program Selection using fallback method
on exception (indicated by †). Bold is best.

ing to 5 unit tests, resulting in a total of 300 unit tests for247
evaluation. The unit tests were judged by three indepen-248
dent annotators, instructed with Is the answer answer249
correct given the image?, where answer was pop-250
ulated with the unit test expected answer, expecting binary251
yes/no answers. Table 9 breaks down the results showing252
that on average 75% of unit tests are correct. Then the anno-253
tators optionally annotated the reason of failure by selecting254
from “Missing Object”, “Spatial Error”, “Incomplete ob-255
ject”, “Color Mismatch”, or “Other”. Figure 8 shows the256
break down by error type, highlighting “Missing Object” as257
the most common source of error.

GQA WinoGround SugarCREPE Avg.
Acc. κ Acc. κ Acc. κ Acc. κ
68.00 0.39 75.00 0.70 82.00 0.67 75.00 0.58

Table 9. Human Evaluation of Unit Test Quality. Accuracy corre-
sponds to how many unit tests from the total were accurate and κ
is the mean Kohen Kappa across annotators.

258

GQA SugarCREPE WinoGround All
Dataset

0

5

10

15

20

C
ou

nt

Error Type
Incomplete Object
Spatial Error
Color Mismatch
Missing Object
Other

Figure 8. Human Evaluation of Unit Test Quality. Bars show the
average number of times annotators selected a source of error.

H.2. Program Correctness Evaluation259

To assess the improvements on program quality by apply-260
ing ViUniT we conduct a human evaluation to rate GQA261
programs generated by the Base Setup and the programs262
selected from 5 candidate programs and 5 unit tests. Two263
annotators with 3+ years of Python experience graded pro-264
grams using the following grading scheme: “Correct: The265
code accurately and fully answers the query.” (0), “Partially266
Correct: The code answers the query but has some issues.”267

(1), “Incorrect: The code does not answer the query correctly.” 268
(2), and “Irrelevant: The code is unrelated to the query.” (3). 269
In addition, they were optionally asked to select the source 270
of error from “Missing Condition”, “Incorrect Logic”, “Irrel- 271
evant to the query”, “Wrong Conditions”, “Missing Checks 272
(e.g. could get list index out of range)”, “Performance Is- 273
sues”, “Other”. Table 10 shows the breakdown of program 274
correctness improvements using ViUniT and Figure 9 shows 275
the error types identified in each method. ViUniT has “Miss- 276
ing Checks” as the most common error type, which mostly 277
involves cases of not checking array length before access- 278
ing indices, typically still leading to correct solutions with 279
reasonable programs, whereas the main culprit for program 280
incorrectness in the base setup is “Incorrect Logic”. This 281
pattern of error redistribution occurs because unit tests dis- 282
qualify programs likely correct for the wrong reasons. Ir- 283
relevant programs rarely pass multiple tests, while errors 284
like wrong or missing conditions are less likely but possible. 285
Missing checks (e.g., checking array length prior to access) 286
often pass due to well-formatted inputs, which explains their 287
persistence even post unit-testing. 288

Base Setup ViUniT Setup (Ours)
Fully Correct (≤ 1) 77% 86%

Partially Correct (< 2) 86% 95%
Incorrect (≥ 2) 14% 5%
Irrelevant (> 2) 4% 0%

κ 0.24 0.30
κbin 0.59 0.40

Table 10. Human Evaluation of Program Correctness. Bold is best.

Miss
ing

 co
nd

iti
on

In
co

rre
ct

log
ic

Wro
ng

 C
on

dit
ion

s

Miss
ing

 ch
ec

ks

Irr
ele

va
nt

 to
 th

e q
ue

ry

Error Type

0

10

20

30

#
 E

rr
or

Setup
ViUniT
Base

Figure 9. Human Evaluation of Program Quality.

I. Limitations and Social Ethics Impact 289

I.1. Limitations 290

While ViUniT provides significant advancements in the logi- 291
cal correctness and robustness of visual programs, our frame- 292

7

CVPR
#10607

CVPR
#10607

CVPR 2025 Submission #10607. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

work has several limitations that present opportunities for293
future enhancement. First, although ViUniT improves pro-294
gram selection and execution by leveraging unit tests, it does295
not fully eliminate the issue of programs being correct for the296
wrong reasons, as shown by the human evaluation in Table297
10. Our approach does not provide a formal guarantee of log-298
ical correctness, as it relies on automatically generated tests299
to evaluate candidate programs. Addressing this challenge300
opens avenues for integrating formal verification methods301
and more sophisticated testing strategies to further enhance302
program correctness. Second, while we optimize for maxi-303
mizing input and output coverage during unit test generation,304
it is possible that the generated tests do not fully capture305
the space of edge cases or subtle logical errors in complex306
programs. This limitation highlights the potential for fu-307
ture work to develop more comprehensive coverage metrics308
and testing methodologies, possibly incorporating code-line309
execution coverage or other verifiable metrics. Third, the310
improved accuracy and robustness achieved by ViUniT , as311
seen in Table 1, come with an increase in computational ef-312
fort. Generating candidate programs, sampling unit tests, and313
executing them on generated images introduce additional314
overhead. This trade-off between accuracy and efficiency315
presents an exciting challenge for future research to opti-316
mize the framework for real-time or resource-constrained317
applications, possibly through algorithmic improvements or318
efficient execution strategies. Additionally, enhancing the319
explainability of program failures remains an area for fur-320
ther development. Providing clear and interpretable feedback321
when a program is rejected or not selected due to poor per-322
formance on unit tests can improve user trust and facilitate323
debugging. Future work could focus on combining unit test324
outputs to offer detailed explanations of program failures. Fi-325
nally, while ViUniT has demonstrated effectiveness on VQA326
and ITM tasks, exploring its applicability to other domains or327
tasks involving different modalities or reasoning paradigms328
presents an opportunity to extend its impact. Adapting the329
framework to diverse domains can unlock new possibili-330
ties and broaden its utility. Despite these limitations, the331
advancements introduced by ViUniT lay a strong foundation332
for future innovations in visual programming. By address-333
ing these challenges, we can further enhance the robustness,334
efficiency, and applicability of the framework.335

I.2. Social Ethics Impact336

ViUniT enhances the robustness and correctness of visual337
programming, with applications in critical domains like au-338
tonomous driving, healthcare, and education. By reducing339
instances where programs are correct for the wrong reasons,340
it helps build more trustworthy AI systems. However, ethical341
considerations are crucial for its responsible deployment:342
First, ViUniT relies on pre-trained models, which may prop-343
agate biases (e.g., gender, racial, or cultural). Future work344

should focus on integrating bias detection and correction 345
into unit test generation to promote fairness. Second, compu- 346
tational demands may limit access for resource-constrained 347
organizations. Advancing efficiency and optimization can 348
broaden accessibility and foster inclusivity. Third, increased 349
computational needs may raise energy consumption. Opti- 350
mizing for energy efficiency and using renewable energy 351
can reduce the environmental impact, while improved AI 352
reliability could deliver long-term sustainability benefits. 353
Finally, in sensitive domains such as healthcare or legal 354
decision-making, while ViUniT has the potential to enhance 355
the correctness of visual programs, it is crucial to carefully 356
communicate the framework’s limitations and ensure rigor- 357
ous validation. By proactively addressing ethical challenges 358
and focusing on responsible development, we can maximize 359
the positive societal impact of ViUniT, paving the way for 360
more reliable, fair, and trustworthy AI systems. 361

J. Qualitative Examples 362

We present two program selection examples in Figures 10 363
and 11. While all programs may pass some unit tests, those 364
that pass a greater number of tests tend to more effectively 365
capture the intent of the question. In Figure 11, the selected 366
program does not pass all unit tests—some of which cover 367
edge-cases not handled by the program. Nevertheless, it is 368
chosen because it sufficiently addresses the core intent of the 369
user’s query. 370

8

CVPR
#10607

CVPR
#10607

CVPR 2025 Submission #10607. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Unit Test Suite 𝓣

Candidate Programs 𝑷 = 𝝅(𝒒)
Selected Program no

Image 1 	(𝒗𝟏)

def execute_command(image):
image_patch = ImagePatch(image)
plastic_tables = image_patch.find(

"plastic table"
)

has_plastic_tables = len(plastic_tables) > 0
return bool_to_yesno(has_plastic_tables)

Visual Program 1 𝒑𝟏

Image 2 	(𝒗𝟐)

Answer 1	(𝒚𝟏)

No
Answer 2	(𝒚𝟐)

Yes

yes yes yes

Image 3 	(𝒗𝟑) Image 4 	(𝒗𝟒)

Answer 3	(𝒚𝟑)

No
Answer 4	(𝒚𝟒)

Yes

Image 5 	(𝒗𝟓)

Answer 5	(𝒚𝟓)

Yes

def execute_command(image):
image_patch = ImagePatch(image)
plastic_patches = image_patch.find(

"plastic”
)

tables_patches = image_patch.find("table")
if len(plastic_patches) > 0 or \

len(tables_patches) > 0:
return "yes"

else:
return "no"

Visual Program 2 𝒑𝟐

def execute_command(image):
image_patch = ImagePatch(image)
tables_patches = image_patch.find("table")
has_plastic_table = any([

image_patch.verify_property(
"table", "plastic”
) for table_patch in tables_patches]

)
return bool_to_yesno(has_plastic_table)

Visual Program 3 𝒑𝟑

yes yes

yes yes yes yes yes

no yes no yes yes

Visual Program 1 Unit Test Outputs

Visual Program 2 Unit Test Outputs

Visual Program 3 Unit Test Outputs

Visual Input (𝒗)

Query (𝒒): Are there any
plastic tables in the picture?

Scores

3/5

3/5

5/5

Figure 10. Program Selection Example

9

CVPR
#10607

CVPR
#10607

CVPR 2025 Submission #10607. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Unit Test Suite 𝓣

Candidate Programs 𝑷 = 𝝅 𝒒

Selected Program yes

Image 1 	(𝒗𝟏) Image 2 	(𝒗𝟐)

Answer 1	(𝒚𝟏)

Yes
Answer 2	(𝒚𝟐)

No

Image 3 	(𝒗𝟑) Image 4 	(𝒗𝟒)

Answer 3	(𝒚𝟑)
No Answer

Answer 4	(𝒚𝟒)

No

Image 5 	(𝒗𝟓)

Answer 5	(𝒚𝟓)

No

def execute_command(image):
image_patch = ImagePatch(image)
white_patches = image_patch.find("white")
white_patch = white_patches[0]
yellow_patches = image_patch.find("yellow")
yellow_patch = yellow_patches[0]
white_left_of_yellow = \

white_patch.horizontal_center < \
yellow_patch.horizontal_center

return bool_to_yesno(white_left_of_yellow)

Visual Program 1 𝒑𝟏

yes yes no no yes

yes no no no no

Visual Program 1 Unit Test Outputs

Visual Program 2 Unit Test Outputs

Visual Input (𝒗)
Query (𝒒): Is the white
vehicle to the left of the
yellow vehicle?

Scores

1/5

4/5

def execute_command(image):
image_patch = ImagePatch(image)
white_vehicle_patches = image_patch.find(

"white vehicle”
)

yellow_vehicle_patches =
image_patch.find(

"yellow vehicle”
)

white_vehicle_patches.sort(
key=lambda x: x.horizontal_center
)

yellow_vehicle_patches.sort(
key=lambda x: x.horizontal_center
)

white_vehicle_patch = \
white_vehicle_patches[0]

yellow_vehicle_patch = \
yellow_vehicle_patches[0]

is_white_left_of_yellow = \
white_vehicle_patch.horizontal_center < \
yellow_vehicle_patch.horizontal_center

return bool_to_yesno(
is_white_left_of_yellow
)

Visual Program 2 𝒑𝟐

def execute_command(image):
image_patch = ImagePatch(image)
white_vehicle_patches = image_patch.find(

"white vehicle”
)

yellow_vehicle_patches = image_patch.find(
"yellow vehicle”
)

white_vehicle_patch = \
white_vehicle_patches[0]
yellow_vehicle_patch = \
yellow_vehicle_patches[0]
is_white_left_of_yellow = \
white_vehicle_patch.horizontal_center < \
yellow_vehicle_patch.horizontal_center
return bool_to_yesno(

is_white_left_of_yellow
)

Visual Program 3 𝒑𝟑
Visual Program 3 Unit Test Outputs

no no no no no 3/5

Figure 11. Program Selection Example

10

CVPR
#10607

CVPR
#10607

CVPR 2025 Submission #10607. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Listing 1. API Prompt
import math 371

372
class ImagePatch: 373

pass 374
375

def __init__(376
self, image, left=None, lower=None, right=None, upper=None, category=None 377

): 378
"""Initializes an ImagePatch object by cropping the image at the given 379
coordinates and stores the coordinates as attributes. If no coordinates are 380
provided, the image is left unmodified, and the coordinates are set to the 381
dimensions of the image. 382
Parameters 383
------- 384
image : array_like 385

An array-like of the original image. 386
left, lower, right, upper : int 387

An int describing the position of the (left/lower/right/upper) border of the 388
crop’s bounding box in the original image. 389

category : str 390
A string describing the name of the object in the image.""" 391

392
Rectangles are represented as 4-tuples, (x1, y1, x2, y2), 393
with the upper left corner given first. The coordinate 394
system is assumed to have its origin in the upper left corner, so 395
upper must be less than lower and left must be less than right. 396

397
self.left = left if left is not None else 0 398
self.lower = lower if lower is not None else image.height 399
self.right = right if right is not None else image.width 400
self.upper = upper if upper is not None else 0 401
self.cropped_image = image[:, image.shape[1]-upper:image.shape[1]-lower, left:right] 402
self.horizontal_center = (self.left + self.right) / 2 403
self.vertical_center = (self.upper + self.lower) / 2 404
self.category = category 405

406
def from_bounding_box(cls, image, bounding_box): 407

"""Initializes an ImagePatch object by cropping the image at the given 408
coordinates and stores the coordinates as attributes. 409
Parameters 410
------- 411
image : array_like 412

11

CVPR
#10607

CVPR
#10607

CVPR 2025 Submission #10607. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

An array-like of the original image.413
bounding_box : dict414

A dictionary like {"box": [left, lower, right, upper], "category": str}."""415
pass416

417
@property418
def area(self):419

"""420
Returns the area of the bounding box.421

422
Examples423
--------424
>>> # What color is the largest foo?425
>>> def execute_command(image) -> str:426
>>> image_patch = ImagePatch(image)427
>>> foo_patches = image_patch.find("foo")428
>>> foo_patches.sort(key=lambda x: x.area)429
>>> largest_foo_patch = foo_patches[-1]430
>>> return largest_foo_patch.simple_query("What is the color?")431
"""432
pass433

434
def find(self, object_name):435

"""Returns a list of ImagePatch objects matching object_name contained in the436
crop if any are found.437
Otherwise, returns an empty list.438
Parameters439
----------440
object_name : str441

the name of the object to be found442
443

Returns444
-------445
List[ImagePatch]446

a list of ImagePatch objects matching object_name contained in the crop447
448

Examples449
--------450
>>> # return the foo451
>>> def execute_command(image) -> List[ImagePatch]:452
>>> image_patch = ImagePatch(image)453
>>> foo_patches = image_patch.find("foo")454
>>> return foo_patches455
"""456
pass457

458
def exists(self, object_name):459

"""Returns True if the object specified by object_name is found in the image,460
and False otherwise.461
Parameters462
-------463
object_name : str464

A string describing the name of the object to be found in the image.465
466

Examples467
-------468
>>> # Are there both foos and garply bars in the photo?469
>>> def execute_command(image)->str:470
>>> image_patch = ImagePatch(image)471
>>> is_foo = image_patch.exists("foo")472
>>> is_garply_bar = image_patch.exists("garply bar")473
>>> return bool_to_yesno(is_foo and is_garply_bar)474
"""475
pass476

477
def verify_property(self, object_name, visual_property):478

"""Returns True if the object possesses the visual property, and False otherwise.479
Differs from ’exists’ in that it presupposes the existence of the object480
specified by object_name, instead checking whether the object possesses481
the property.482
Parameters483
-------484
object_name : str485

A string describing the name of the object to be found in the image.486
visual_property : str487

String describing the simple visual property (e.g., color, shape, material)488
to be checked.489

490
Examples491

12

CVPR
#10607

CVPR
#10607

CVPR 2025 Submission #10607. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

------- 492
>>> # Do the letters have blue color? 493
>>> def execute_command(image) -> str: 494
>>> image_patch = ImagePatch(image) 495
>>> letters_patches = image_patch.find("letters") 496
>>> # Question assumes only one letter patch 497
>>> return bool_to_yesno(letters_patches[0].verify_property("letters", "blue")) 498
""" 499
pass 500

501
def simple_query(self, question): 502

"""Returns the answer to a basic question asked about the image. 503
If no question is provided, returns the answer to "What is this?". 504
The questions are about basic perception, and are not meant to be used for 505
complex reasoning or external knowledge. 506
Parameters 507
------- 508
question : str 509

A string describing the question to be asked. 510
511

Examples 512
------- 513

514
>>> # Which kind of baz is not fredding? 515
>>> def execute_command(image) -> str: 516
>>> image_patch = ImagePatch(image) 517
>>> baz_patches = image_patch.find("baz") 518
>>> for baz_patch in baz_patches: 519
>>> if not baz_patch.verify_property("baz", "fredding"): 520
>>> return baz_patch.simple_query("What is this baz?") 521

522
>>> # What color is the foo? 523
>>> def execute_command(image) -> str: 524
>>> image_patch = ImagePatch(image) 525
>>> foo_patches = image_patch.find("foo") 526
>>> foo_patch = foo_patches[0] 527
>>> return foo_patch.simple_query("What is the color?") 528

529
>>> # Is the second bar from the left quuxy? 530
>>> def execute_command(image) -> str: 531
>>> image_patch = ImagePatch(image) 532
>>> bar_patches = image_patch.find("bar") 533
>>> bar_patches.sort(key=lambda x: x.horizontal_center) 534
>>> bar_patch = bar_patches[1] 535
>>> return bar_patch.simple_query("Is the bar quuxy?") 536
""" 537
pass 538

539
def crop_left_of_bbox(self, left, lower, right, upper): 540

"""Returns an ImagePatch object representing the area to the left of the given 541
bounding box coordinates. 542

543
Parameters 544
---------- 545
left, lower, right, upper : int 546

The coordinates of the bounding box. 547
548

Returns 549
------- 550
ImagePatch 551

An ImagePatch object representing the cropped area. 552
553

Examples 554
-------- 555
>>> # Is the bar to the left of the foo quuxy? 556
>>> def execute_command(image) -> str: 557
>>> image_patch = ImagePatch(image) 558
>>> foo_patch = image_patch.find("foo")[0] 559
>>> left_of_foo_patch = image_patch.crop_left_of_bbox(560
>>> foo_patch.left, foo_patch.lower, foo_patch.right, foo_patch.upper 561
>>>) 562
>>> return bool_to_yesno(left_of_foo_patch.verify_property("bar", "quuxy")) 563
""" 564
pass 565

566
def crop_right_of_bbox(self, left, lower, right, upper): 567

"""Returns an ImagePatch object representing the area to the right of the given 568
bounding box coordinates. 569

570

13

CVPR
#10607

CVPR
#10607

CVPR 2025 Submission #10607. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Parameters571
----------572
left, lower, right, upper : int573

The coordinates of the bounding box.574
575

Returns576
-------577
ImagePatch578

An ImagePatch object representing the cropped area.579
580

Examples581
--------582
>>> # Is the bar to the right of the foo quuxy?583
>>> def execute_command(image) -> str:584
>>> image_patch = ImagePatch(image)585
>>> foo_patch = image_patch.find("foo")[0]586
>>> right_of_foo_patch = image_patch.crop_right_of_bbox(587
>>> foo_patch.left, foo_patch.lower, foo_patch.right, foo_patch.upper588
>>>)589
>>> return bool_to_yesno(right_of_foo_patch.verify_property("bar", "quuxy"))590
"""591
pass592

593
def crop_below_bbox(self, left, lower, right, upper):594

"""Returns an ImagePatch object representing the area below the given595
bounding box coordinates.596

597
Parameters598
----------599
left, lower, right, upper : int600

The coordinates of the bounding box.601
602

Returns603
-------604
ImagePatch605

An ImagePatch object representing the cropped area.606
607

Examples608
--------609
>>> # Is the bar below the foo quuxy?610
>>> def execute_command(image) -> str:611
>>> image_patch = ImagePatch(image)612
>>> foo_patch = image_patch.find("foo")[0]613
>>> below_foo_patch = image_patch.crop_below_bbox(614
>>> foo_patch.left, foo_patch.lower, foo_patch.right, foo_patch.upper615
>>>)616
>>> return bool_to_yesno(below_foo_patch.verify_property("bar", "quuxy"))617
"""618
pass619

620
def crop_above_bbox(self, left, lower, right, upper):621

"""Returns an ImagePatch object representing the area above the given622
bounding box coordinates.623

624
Parameters625
----------626
left, lower, right, upper : int627

The coordinates of the bounding box.628
629

Returns630
-------631
ImagePatch632

An ImagePatch object representing the cropped area.633
634

Examples635
--------636
>>> # Is the bar above the foo quuxy?637
>>> def execute_command(image) -> str:638
>>> image_patch = ImagePatch(image)639
>>> foo_patch = image_patch.find("foo")[0]640
>>> above_foo_patch = image_patch.crop_above_bbox(641
>>> foo_patch.left, foo_patch.lower, foo_patch.right, foo_patch.upper642
>>>)643
>>> return bool_to_yesno(above_foo_patch.verify_property("bar", "quuxy"))644
"""645
pass646

647
648

14

CVPR
#10607

CVPR
#10607

CVPR 2025 Submission #10607. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

def best_image_match(list_patches: List[ImagePatch], content: List[str], return_index=False) -> 649
Union[ImagePatch, int]: 650
"""Returns the patch most likely to contain the content. 651
Parameters 652
---------- 653
list_patches : List[ImagePatch] 654
content : List[str] 655

the object of interest 656
return_index : bool 657

if True, returns the index of the patch most likely to contain the object 658
659

Returns 660
------- 661
int 662

Patch most likely to contain the object 663
""" 664
return best_image_match(list_patches, content, return_index) 665

666
def bool_to_yesno(bool_answer: bool) -> str: 667

return "yes" if bool_answer else "no" 668
669

Write a function using Python and the ImagePatch class (above) that could be executed to provide an 670
answer to the query. 671

672
Consider the following guidelines: 673
- Use base Python (comparison, sorting) for basic logical operations, left/right/up/down, math, etc. 674

675
Examples of how to use the API 676
INSERT_CONTEXT_HERE 677

678
Query: INSERT_QUERY_HERE 679
Program: 680

Listing 2. VQA In-Context Examples
Query: Is the vehicle in the top of the image? 681
def execute_command(image) -> str: 682

image_patch = ImagePatch(image) 683
Assume there’s only one vehicle patch. 684
vehicle_patch = image_patch.find("vehicle")[0] 685
vehicle_in_top_half = vehicle_patch.vertical_center > image_patch.vertical_center 686
return bool_to_yesno(vehicle_in_top_half) 687

688
Query: Are there trains or fences in this scene? 689
def execute_command(image) -> str: 690

image_patch = ImagePatch(image) 691
trains = image_patch.find("train") 692
fences = image_patch.find("fence") 693
has_trains_or_fences = len(trains) > 0 or len(fences) > 0 694
return bool_to_yesno(has_trains_or_fences) 695

696
Query: Is the pillow in the top part or in the bottom of the picture? 697
def execute_command(image) -> str: 698

image_patch = ImagePatch(image) 699
pillow_patches = image_patch.find("pillow") 700
pillow_patch = pillow_patches[0] 701
pillow_in_top_half = pillow_patch.vertical_center > image_patch.vertical_center 702
if pillow_in_top_half: 703

return "top" 704
else: 705

return "bottom" 706
707

Query: What color is the curtain that is to the right of the mirror? 708
def execute_command(image) -> str: 709

image_patch = ImagePatch(image) 710
mirror_patches = image_patch.find("mirror") 711
mirror_patch = mirror_patches[0] 712
right_of_mirror_patch = image_patch.crop_right_of_bbox(713

mirror_patch.left, mirror_patch.lower, mirror_patch.right, mirror_patch.upper 714
) 715
return right_of_mirror_patch.simple_query("What color is the curtain?") 716

Listing 3. ITM In-Context Examples
Query: Verify image matches text="An airplane is flying in the sky, and birds are flying below it." 717
def execute_command(image) -> str: 718

image_patch = ImagePatch(image) 719
airplane_patches = image_patch.find("airplane") 720

15

CVPR
#10607

CVPR
#10607

CVPR 2025 Submission #10607. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

bird_patches = image_patch.find("bird")721
722

airplane_in_sky = any(723
airplane_patch.vertical_center > image_patch.height * 0.6724
for airplane_patch in airplane_patches725

)726
727

birds_below_airplane = any(728
bird_patch.upper <= airplane_patch.lower729
for bird_patch in bird_patches for airplane_patch in airplane_patches730

)731
732

return bool_to_yesno(airplane_in_sky and birds_below_airplane)733
734

Query: Verify image matches text="The bird is flying above the tree, and a cat is sitting under the735
tree."736

def execute_command(image) -> str:737
image_patch = ImagePatch(image)738
bird_patches = image_patch.find("bird")739
tree_patches = image_patch.find("tree")740
cat_patches = image_patch.find("cat")741

742
bird_above_tree = any(743

bird_patch.lower >= tree_patch.upper and744
abs(bird_patch.horizontal_center - tree_patch.horizontal_center) < 50745
for bird_patch in bird_patches for tree_patch in tree_patches746

)747
748

cat_under_tree = any(749
cat_patch.upper <= tree_patch.lower and750
abs(cat_patch.horizontal_center - tree_patch.horizontal_center) < 50751
for cat_patch in cat_patches for tree_patch in tree_patches752

)753
754

return bool_to_yesno(bird_above_tree and cat_under_tree)755
756

Query: Verify image matches text="The apple is on top of the book, and the pen is beside the book."757
def execute_command(image) -> str:758

image_patch = ImagePatch(image)759
apple_patches = image_patch.find("apple")760
book_patches = image_patch.find("book")761
pen_patches = image_patch.find("pen")762

763
apple_on_book = any(764

apple_patch.lower >= book_patch.upper and765
book_patch.left <= apple_patch.horizontal_center <= book_patch.right766
for apple_patch in apple_patches for book_patch in book_patches767

)768
769

pen_beside_book = any(770
abs(pen_patch.horizontal_center - book_patch.horizontal_center) < 50 and771
abs(pen_patch.vertical_center - book_patch.vertical_center) < 100772
for pen_patch in pen_patches for book_patch in book_patches773

)774
775

return bool_to_yesno(apple_on_book and pen_beside_book)776
777

#Query: Verify image matches text="A man is riding a bicycle, and a dog is running beside him."778
def execute_command(image) -> str:779

image_patch = ImagePatch(image)780
man_patches = image_patch.find("man")781
bicycle_patches = image_patch.find("bicycle")782
dog_patches = image_patch.find("dog")783

784
man_on_bicycle = any(785

man_patch.left <= bicycle_patch.right and man_patch.right >= bicycle_patch.left and786
man_patch.lower <= bicycle_patch.upper and man_patch.upper >= bicycle_patch.lower787
for man_patch in man_patches for bicycle_patch in bicycle_patches788

)789
790

dog_beside_man = any(791
abs(dog_patch.horizontal_center - man_patch.horizontal_center) < 100 and792
abs(dog_patch.vertical_center - man_patch.vertical_center) < 50793
for dog_patch in dog_patches for man_patch in man_patches794

)795
796

return bool_to_yesno(man_on_bicycle and dog_beside_man)797

Listing 4. Reprompting with Unit Tests VQA

16

CVPR
#10607

CVPR
#10607

CVPR 2025 Submission #10607. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

INSERT_IMAGE_PATCH_API 798
799

You are provided a Python program that answers a query about an image, with a set of tests with the 800
corresponding outputs and exected responses. 801

Correct the Python program such that it passes the tests. 802
- Ensure the corrected program is different than the incorrect program provided. 803

804
Query: Is there a blue chair in the image? 805
Incorrect Program: 806
def execute_command(image): 807

image_patch = ImagePatch(image) 808
blue_chair = image_patch.find("chair") 809
if not blue_chair: 810

return "No" 811
is_blue = any([chair.verify_property("blue") for chair in blue_chair]) 812
return "Yes" if is_blue else "No" 813

Test Cases: 814
Test A 815
Image Content: "A room with a red chair" 816
Ground Truth Answer: "No" 817
Program Output: "Error: verify_property() missing 1 required positional argument: ’visual_property’" 818
Test B 819
Image Content: "A room with a blue chair under the window" 820
Ground Truth Answer: "Yes" 821
Program Output: "Error: verify_property() missing 1 required positional argument: ’visual_property’" 822
Test C 823
Image Content: "An empty room" 824
Ground Truth Answer: "No" 825
Program Output: "No" 826
Test D 827
Image Content: "A garden with a blue chair" 828
Ground Truth Answer: "Yes" 829
Program Output: "Error: verify_property() missing 1 required positional argument: ’visual_property’" 830
Test E 831
Image Content: "A room with several chairs, all red" 832
Ground Truth Answer: "No" 833
Program Output: "Error: verify_property() missing 1 required positional argument: ’visual_property’" 834
Corrected Program: 835
def execute_command(image): 836

image_patch = ImagePatch(image) 837
chair_patches = image_patch.find("chair") 838
if not chair_patches: 839

return "No" # No chairs found 840
blue_chair_found = any(chair.verify_property("chair", "blue") for chair in chair_patches) 841
return "Yes" if blue_chair_found else "No" 842

843
Query: "Are there any flowers to the left of the house?" 844
Incorrect Program: 845
def execute_command(image): 846

image_patch = ImagePatch(image) 847
house_patches = image_patch.find("house") 848
if not house_patches: 849

return "No house found" 850
left_of_house_patch = image_patch.crop_left_of_bbox(851

house_patches.left, house_patches.lower, house_patches.right, house_patches.upper 852
) # Incorrect attribute access 853
return "Yes" if left_of_house_patch.exists("flower") else "No" 854

Test Cases: 855
Test A 856
Image Content: "An image of a garden without any buildings." 857
Ground Truth Answer: "No house found" 858
Program Output: "Error: ’list’ object has no attribute ’left’" 859
Test B 860
Image Content: "A house without a garden" 861
Ground Truth Answer: "No flowers found" 862
Program Output: "Error: ’list’ object has no attribute ’left’" 863
Test C 864
Image Content: "A house with many flowers around" 865
Ground Truth Answer: "Yes" 866
Program Output: "Error: ’list’ object has no attribute ’left’" 867
Test D 868
Image Content: "A house with flowers only on the right side" 869
Ground Truth Answer: "No" 870
Program Output: "Error: ’list’ object has no attribute ’left’" 871
Test E 872
Image Content: "An image with flowers but no house" 873
Ground Truth Answer: "No house found" 874
Program Output: "Error: ’list’ object has no attribute ’left’" 875
Corrected Program: 876

17

CVPR
#10607

CVPR
#10607

CVPR 2025 Submission #10607. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

def execute_command(image):877
image_patch = ImagePatch(image)878
house_patches = image_patch.find("house")879
if not house_patches:880

return "No house found"881
for house_patch in house_patches:882

left_of_house_patch = image_patch.crop_left_of_bbox(883
house_patch.left, house_patch.lower, house_patch.right, house_patch.upper884

)885
flowers_found = left_of_house_patch.find("flower")886
if flowers_found:887

return "Yes"888
return "No"889

890
Query: Who wears a green shirt?891
Incorrect Program:892
def execute_command(image):893

image_patch = ImagePatch(image)894
people_patches = image_patch.find("person")895
if not people_patches:896

return "No one"897
person_wearing_green_shirt = None898
for index, person_patch in enumerate(people_patches):899

green_patches = person_patch.find("green")900
if green_patches:901

person_wearing_green_shirt = index902
break903

if person_wearing_green_shirt == None:904
return "No one"905

else:906
return people_patches[person_wearing_green_shirt].simple_query("Who is this?")907

Test Cases:908
Test A909
Image Content: "An image of an empty room"910
Ground Truth Answer: "No one"911
Program Output: "No one"912
Test B913
Image Content: "A young girl wearing a green dress and a boy wearing a blue shirt."914
Ground Truth Answer: "No one"915
Program Output: "girl"916
Test C917
Image Content: "A man wearing a red shirt and a woman wearing a green shirt."918
Ground Truth Answer: "woman"919
Program Output: "woman"920
Test D921
Image Content: "A boy wearing a green shirt."922
Ground Truth Answer: "boy"923
Program Output: "boy"924
Test E925
Image Content: "Two people wearing green shirts: a man and a woman"926
Ground Truth Answer: "man and woman"927
Program Output: "man"928
Corrected Program:929
def execute_command(image):930

image_patch = ImagePatch(image)931
people_patches = image_patch.find("person")932
if not people_patches:933

return "No people found"934
people_wearing_green_shirts = []935
for index, person_patch in enumerate(people_patches):936

if person_patch.verify_property("clothing", "shirt") and person_patch.verify_property("color",937
"green"):938
people_wearing_green_shirts.append(index)939

if not people_wearing_green_shirts:940
return "No one"941

wearing_green_shirts = ’ and ’.join([people_patches[i].simple_query("Who is this?") for i in942
people_wearing_green_shirts])943

return wearing_green_shirts944
945

Query: "Is the blue ball inside the box?"946
Incorrect Program:947
def execute_command(image):948

image_patch = ImagePatch(image)949
ball_patches = image_patch.find("ball")950
if not ball_patches:951

return "No"952
blue_ball = [ball for ball in ball_patches if ball.verify_property("color", "blue")]953
if not blue_ball:954

return "No" # No blue ball found955

18

CVPR
#10607

CVPR
#10607

CVPR 2025 Submission #10607. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

box_patches = image_patch.find("box") 956
if not box_patches: 957

return "No" 958
return "Yes" 959

Test Cases: 960
Test A 961

962
Image Content: "A blue ball is outside a box" 963
Ground Truth Answer: "No" 964
Program Output: "Yes" 965
Test B 966
Image Content: "A red ball is inside a box" 967
Ground Truth Answer: "No" 968
Program Output: "No" 969
Test C 970
Image Content: "A blue ball is inside a box" 971
Ground Truth Answer: "Yes" 972
Program Output: "Yes" 973
Test D 974
Image Content: "No balls or boxes in the image" 975
Ground Truth Answer: "No" 976
Program Output: "No" 977
Test E 978
Image Content: "Multiple blue balls, all outside boxes" 979
Ground Truth Answer: "No" 980
Program Output: "Yes" 981
Corrected Program: 982
def execute_command(image): 983

image_patch = ImagePatch(image) 984
ball_patches = image_patch.find("ball") 985
if not ball_patches: 986

return "No" # No ball found 987
blue_ball = [ball for ball in ball_patches if ball.verify_property("color", "blue")] 988
if not blue_ball: 989

return "No" # No blue ball found 990
box_patches = image_patch.find("box") 991
if not box_patches: 992

return "No" # No box found 993
blue_ball_patch = blue_ball[0] 994
for box_patch in box_patches: 995

if (box_patch.left <= blue_ball_patch.left and 996
box_patch.right >= blue_ball_patch.right and 997
box_patch.upper <= blue_ball_patch.upper and 998
box_patch.lower >= blue_ball_patch.lower): 999
return "Yes" 1000

return "No" 1001
1002

Query: INSERT_QUERY_HERE 1003
Incorrect Program: 1004
INSERT_CODE_HERE 1005
Test Cases: 1006
INSERT_UNIT_TEST_OUTPUTS_HERE 1007
Corrected Program: 1008

Listing 5. Reprompting with Unit Tests ITM
INSERT_IMAGE_PATCH_API 1009

1010
You are provided a Python program that answers a query about an image, with a set of tests with the 1011

corresponding outputs and exected responses. 1012
Correct the Python program such that it passes the tests. 1013
- Ensure the corrected program is different than the incorrect program provided. 1014

1015
Query: "Verify image matches text="An airplane is flying in the sky, and birds are flying below it."" 1016
Incorrect Program: 1017
def execute_command(image): 1018

image_patch = ImagePatch(image) 1019
airplane = image_patch.find("airplane") 1020
birds = image_patch.find("birds") 1021
if not airplane or not birds: 1022

return "No" 1023
if airplane[0].vertical_center >= birds[0].vertical_center: 1024

return "Yes" 1025
return "No" 1026

Test Cases: 1027
Test A 1028
Image Content: "An airplane flying high in the sky with birds below it." 1029
Ground Truth Answer: "Yes" 1030
Program Output: "Yes" 1031

19

CVPR
#10607

CVPR
#10607

CVPR 2025 Submission #10607. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Test B1032
Image Content: "Birds are flying above and below an airplane in the sky."1033
Ground Truth Answer: "No"1034
Program Output: "Yes"1035
Test C1036
Image Content: "An airplane and birds flying side by side."1037
Ground Truth Answer: "No"1038
Program Output: "Yes"1039
Test D1040
Image Content: "Only an airplane is flying in the sky."1041
Ground Truth Answer: "No"1042
Program Output: "No"1043
Test E1044
Image Content: "Birds flying in the sky with no airplane present."1045
Ground Truth Answer: "No"1046
Program Output: "No"1047
Corrected Program::1048
def execute_command(image):1049

image_patch = ImagePatch(image)1050
airplane_patches = image_patch.find("airplane")1051
bird_patches = image_patch.find("bird")1052
if not airplane_patches or not bird_patches:1053

return "No"1054
airplane = airplane_patches[0]1055
birds_below = all(bird.vertical_center > airplane.vertical_center for bird in bird_patches)1056
return "Yes" if birds_below else "No"1057

1058
Query: "Verify image matches text="The bird is flying above the tree, and a cat is sitting under the1059

tree.""1060
Incorrect Program:1061
def execute_command(image):1062

image_patch = ImagePatch(image)1063
tree = image_patch.find("tree")1064
bird = image_patch.find("bird")1065
cat = image_patch.find("cat")1066
if not tree or not bird or not cat:1067

return "No"1068
if bird[0].vertical_center < tree[0].vertical_center and cat[0].vertical_center >1069

tree[0].vertical_center:1070
return "Yes"1071

return "No"1072
Test Cases:1073
Test A1074
Image Content: "A bird flying above a tree and a cat under the tree."1075
Ground Truth Answer: "Yes"1076
Program Output: "Yes"1077
Test B1078
Image Content: "A cat sitting above the tree and a bird flying below it."1079
Ground Truth Answer: "No"1080
Program Output: "Yes"1081
Test C1082
Image Content: "A bird sitting in the tree with no cat around."1083
Ground Truth Answer: "No"1084
Program Output: "No"1085
Test D1086
Image Content: "A cat climbing the tree while a bird flies overhead."1087
Ground Truth Answer: "No"1088
Program Output: "Yes"1089
Test E1090
Image Content: "A bird flying above a tree with a dog under the tree."1091
Ground Truth Answer: "No"1092
Program Output: "No"1093
Corrected Program:1094
def execute_command(image):1095

image_patch = ImagePatch(image)1096
tree_patches = image_patch.find("tree")1097
bird_patches = image_patch.find("bird")1098
cat_patches = image_patch.find("cat")1099
if not tree_patches or not bird_patches or not cat_patches:1100

return "No"1101
tree = tree_patches[0]1102
bird_above = all(bird.vertical_center < tree.vertical_center for bird in bird_patches)1103
cat_below = all(cat.vertical_center > tree.vertical_center for cat in cat_patches)1104
return "Yes" if bird_above and cat_below else "No"1105

1106
Query: "Verify image matches text="A car is parked near a tree, and a bird is sitting on the tree.""1107
Incorrect Program:1108
def execute_command(image):1109

image_patch = ImagePatch(image)1110

20

CVPR
#10607

CVPR
#10607

CVPR 2025 Submission #10607. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

car = image_patch.find("car") 1111
tree = image_patch.find("tree") 1112
bird = image_patch.find("bird") 1113
if not car or not tree or not bird: 1114

return "No" 1115
if car.horizontal_center - tree.horizontal_center < 100 and bird.vertical_center < 1116

tree.vertical_center: 1117
return "Yes" 1118

return "No" 1119
Test Cases: 1120
Test A 1121
Image Content: "A car parked near a tree with a bird sitting on it." 1122
Ground Truth Answer: "Yes" 1123
Program Output: AttributeError: ’list’ object has no attribute ’horizontal_center’ 1124
Test B 1125
Image Content: "A car far from a tree with a bird on the ground." 1126
Ground Truth Answer: "No" 1127
Program Output: AttributeError: ’list’ object has no attribute ’horizontal_center’ 1128
Test C 1129
Image Content: "A tree with a bird on it but no car nearby." 1130
Ground Truth Answer: "No" 1131
Program Output: "No" 1132
Test D 1133
Image Content: "A car parked near a tree with no bird in sight." 1134
Ground Truth Answer: "No" 1135
Program Output: AttributeError: ’list’ object has no attribute ’horizontal_center’ 1136
Test E 1137
Image Content: "A car and a bird but no tree present." 1138
Ground Truth Answer: "No" 1139
Program Output: AttributeError: ’list’ object has no attribute ’horizontal_center’ 1140
Corrected Program: 1141
def execute_command(image): 1142

image_patch = ImagePatch(image) 1143
car_patches = image_patch.find("car") 1144
tree_patches = image_patch.find("tree") 1145
bird_patches = image_patch.find("bird") 1146
if not car_patches or not tree_patches or not bird_patches: 1147

return "No" 1148
car = car_patches[0] 1149
tree = tree_patches[0] 1150
bird = bird_patches[0] 1151
car_near_tree = abs(car.horizontal_center - tree.horizontal_center) < 100 1152
bird_on_tree = bird.vertical_center < tree.vertical_center 1153
return "Yes" if car_near_tree and bird_on_tree else "No" 1154

1155
Query: "Verify image matches text="A man is holding a red balloon, and a child is reaching up to grab 1156

it."" 1157
Incorrect Program: 1158
def execute_command(image): 1159

image_patch = ImagePatch(image) 1160
man = image_patch.find("man") 1161
balloon = image_patch.find("balloon") 1162
child = image_patch.find("child") 1163
if not man or not balloon or not child: 1164

return "No" 1165
if balloon[0].verify_property("red") and child[0].vertical_center < balloon[0].vertical_center: 1166

return "Yes" 1167
return "No" 1168

Test Cases: 1169
Test A 1170
Image Content: "A man holding a red balloon, with a child reaching up." 1171
Ground Truth Answer: "Yes" 1172
Program Output: TypeError: verify_property() missing 1 required positional argument: ’visual_property’ 1173
Test B 1174
Image Content: "A man holding a blue balloon, with a child below him." 1175
Ground Truth Answer: "No" 1176
Program Output: TypeError: verify_property() missing 1 required positional argument: ’visual_property’ 1177
Test C 1178
Image Content: "A man holding a flower, with a child next to him." 1179
Ground Truth Answer: "No" 1180
Program Output: "No" 1181
Corrected Program: 1182
def execute_command(image): 1183

image_patch = ImagePatch(image) 1184
man_patches = image_patch.find("man") 1185
balloon_patches = image_patch.find("balloon") 1186
child_patches = image_patch.find("child") 1187
if not man_patches or not balloon_patches or not child_patches: 1188

return "No" 1189

21

CVPR
#10607

CVPR
#10607

CVPR 2025 Submission #10607. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

balloon = balloon_patches[0]1190
is_red_balloon = balloon.verify_property("balloon", "red")1191
child_below_balloon = all(child.vertical_center < balloon.vertical_center for child in1192

child_patches)1193
return "Yes" if is_red_balloon and child_below_balloon else "No"1194

1195
Query: "Verify image matches text="A cat is sitting on the table, and a book is lying beside it.""1196
Incorrect Program:1197
def execute_command(image):1198

image_patch = ImagePatch(image)1199
cat = image_patch.find("cat")1200
book = image_patch.find("book")1201
if not cat or not book:1202

return "No"1203
if abs(book[0].horizontal_center - cat[0].horizontal_center) < 50:1204

return "Yes"1205
return "No"1206

Test Cases:1207
Test A1208
Image Content: "A cat sitting on the table with a book beside it."1209
Ground Truth Answer: "Yes"1210
Program Output: "Yes"1211
Test B1212
Image Content: "A cat sitting on the floor with a book beside it."1213
Ground Truth Answer: "No"1214
Program Output: "Yes"1215
Test C1216
Image Content: "A cat sitting on the table with no book around."1217
Ground Truth Answer: "No"1218
Program Output: "No"1219
Test D1220
Image Content: "A book lying on the table with no cat in sight."1221
Ground Truth Answer: "No"1222
Program Output: "No"1223
Test E1224
Image Content: "A cat sitting on the table with a book on the floor."1225
Ground Truth Answer: "No"1226
Program Output: "Yes"1227
Corrected Program:1228
def execute_command(image):1229

image_patch = ImagePatch(image)1230
cat_patches = image_patch.find("cat")1231
book_patches = image_patch.find("book")1232
table_patches = image_patch.find("table")1233
if not cat_patches or not book_patches or not table_patches:1234

return "No"1235
cat = cat_patches[0]1236
book = book_patches[0]1237
table = table_patches[0]1238
is_cat_on_table = cat.vertical_center < table.vertical_center and abs(cat.horizontal_center -1239

table.horizontal_center) < 501240
is_book_beside_cat = abs(book.horizontal_center - cat.horizontal_center) < 501241
return "Yes" if is_cat_on_table and is_book_beside_cat else "No"1242

1243
Query: INSERT_QUERY_HERE1244
Incorrect Program:1245
INSERT_CODE_HERE1246
Test Cases:1247
INSERT_UNIT_TEST_OUTPUTS_HERE1248
Corrected Program:1249

Listing 6. VQA Unit Test Generation In Context Examples
Query: Is there a cat or dog in the image?1250
Tests:1251
1. Image Caption: "A grey tabby cat peacefully napping on a plush sofa" Answer: yes1252
2. Image Caption: "A lively golden retriever bounding across a grassy field in the park" Answer: yes1253
3. Image Caption: "Twin Siamese cats playfully swatting at a bright yellow ball" Answer: yes1254
4. Image Caption: "A cluster of wild horses trotting along the sandy shores of a sunlit beach" Answer:1255

no1256
5. Image Caption: "An orange cat and a black Labrador playfully tugging on a rope toy" Answer: yes1257
6. Image Caption: "A modern living room featuring sleek furniture and devoid of any pets" Answer: no1258

1259
Query: Is there a red truck or bus in the image?1260
Tests:1261
1. Image Caption: "A vibrant red Ford pickup parked beside a country road" Answer: yes1262
2. Image Caption: "A red double-decker bus navigating through a busy downtown street" Answer: yes1263
3. Image Caption: "A large blue semi-truck cruising down an interstate highway" Answer: no1264

22

CVPR
#10607

CVPR
#10607

CVPR 2025 Submission #10607. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

4. Image Caption: "A quiet suburban street devoid of any large vehicles like buses or trucks" Answer: 1265
no 1266

5. Image Caption: "A shiny red Ferrari speeding on a professional race track" Answer: no 1267
6. Image Caption: "An array of red delivery trucks lined up in a distribution center parking lot" 1268

Answer: yes 1269
7. Image Caption: "Several bright yellow school buses parked in a row at a local school" Answer: no 1270

1271
Query: What color is the largest car in the image? 1272
Tests: 1273
1. Image Caption: "A large blue Ford pickup truck driving on a busy highway" Answer: blue 1274
2. Image Caption: "A city street empty of any large vehicles like buses or trucks" Answer: no answer 1275
3. Image Caption: "A row of green food trucks serving lunch in an urban park" Answer: green 1276
4. Image Caption: "A scene with a green public bus next to a smaller blue pickup at an intersection" 1277

Answer: green 1278
1279

Query: Is the vase to the left or right of the center? 1280
Tests: 1281
1. Image Caption: "A delicate porcelain vase positioned on the right end of a mahogany dining table" 1282

Answer: right 1283
2. Image Caption: "A tall glass vase sitting on the left side of a neatly made bed in a sunlit room" 1284

Answer: left 1285
3. Image Caption: "A ceramic vase centrally placed on a round table surrounded by chairs" Answer: 1286

center 1287
1288

Query: What is the highest object in the image? 1289
Tests: 1290
1. Image Caption: "A massive skyscraper dominating the skyline among lower city buildings" Answer: 1291

skyscraper 1292
2. Image Caption: "A lone oak tree surpassing the height of the cottage it stands next to" Answer: tree 1293
3. Image Caption: "Colorful balloons drifting above the treetops in a clear sky" Answer: balloons 1294
4. Image Caption: "A commercial jet flying high above the city’s tallest skyscrapers" Answer: plane 1295
5. Image Caption: "A majestic eagle soaring high above a vast canyon landscape" Answer: eagle 1296
6. Image Caption: "A figure standing on the peak of a grassy hill under a blue sky" Answer: person 1297

1298
Query: INSERT_QUERY_HERE 1299
Tests: 1300

Listing 7. ITM Unit Test Generation In Context Examples
Query: Is the drawing of a tree on the hill, and a river that flows at the bottom of the hill? 1301
Tests: 1302
1. Image Caption: "A solitary tree stands atop a gentle hill, with a flowing river winding below it." 1303

Answer: yes 1304
2. Image Caption: "A tree on a grassy hill under a clear sky." Answer: no 1305
3. Image Caption: "A river meandering through a dense forest of tall trees." Answer: no 1306
4. Image Caption: "A panoramic view of rolling hills in the desert, with a river at the bottom." 1307

Answer: no 1308
5. Image Caption: "A vast plain with a river running through fields of wildflowers." Answer: no 1309
6. Image Caption: Image Caption: "A hill with multiple trees and a river flowing nearby." Answer: yes 1310

1311
Query: Is the drawing of an airplane flying in the sky, and birds flying below it? 1312
Tests: 1313
1. Image Caption: "An airplane soars through the sky, with a flock of birds flying beneath it." 1314

Answer: yes 1315
2. Image Caption: "Birds flying over a tranquil lake under a clear sky." Answer: no 1316
3. Image Caption: "An airplane performing aerobatic maneuvers, with birds flying above it." Answer: no 1317
4. Image Caption: "An airplane floating in the sea with birds flying above it." Answer: Yes 1318
5. Image Caption: "An airplane in a clear sky" Answer: no 1319

1320
Query: Is the drawing of a girl holding an umbrella in the rain? 1321
Tests: 1322
1. Image Caption: "A girl holding an umbrella walks through a rainy street." Answer: yes 1323
2. Image Caption: "A girl holds an umbrella under a bright sun in the park." Answer: no 1324
3. Image Caption: "A girl stands in the rain wearing a colorful raincoat and holding flowers." Answer: 1325

no 1326
4. Image Caption: "A girl walks her dog while holding an umbrella on a rainy day." Answer: yes 1327

1328
Query: Is the drawing of a person sitting at a desk with a computer monitor in front of them? 1329
Tests: 1330
1. Image Caption: "A person sitting at a desk, writing in a notebook with a lamp beside them." Answer: 1331

no 1332
2. Image Caption: "Someone sitting at a desk cluttered with papers and a computer monitor." Answer: yes 1333
3. Image Caption: "Someone sitting at a desk cluttered with papers and a computer monitor." Answer: yes 1334
3. Image Caption: "A person with a big computer screen in the background" Answer: no 1335

1336
1337

Query: Is the drawing of a man riding a bicycle, and a dog running beside him? 1338
Tests: 1339
1. Image Caption: "A man cycling alone on a mountain trail surrounded by trees." Answer: no 1340

23

CVPR
#10607

CVPR
#10607

CVPR 2025 Submission #10607. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

2. Image Caption: "A man rides a bicycle along the beach, his dog running beside him." Answer: yes1341
3. Image Caption: "A bicycle and a dog" Answer: no1342
4. Image Caption: "A dog next to a car" Answer: no1343
5. Image Caption: "A man walking his dog" Answer: no1344
6. Image Caption: "A man rides a bicycle down a sunny street with a dog running beside him." Answer:1345

yes1346
1347

Query: INSERT_QUERY_HERE1348
Tests:1349

Listing 8. VQA Unit Test Generation with Implementation In-Context Examples
Query: Is there a cat or dog in the image?1350
def execute_command(image) -> str:1351

image_patch = ImagePatch(image)1352
cats = image_patch.find("cat")1353
dogs = image_patch.find("dog")1354
has_cats_or_dogs = len(cats) > 0 or len(dogs) > 01355
return bool_to_yesno(has_cats_or_dogs)1356

Tests:1357
1. Image Caption: "A grey tabby cat peacefully napping on a plush sofa" Answer: yes1358
2. Image Caption: "A lively golden retriever bounding across a grassy field in the park" Answer: yes1359
3. Image Caption: "Twin Siamese cats playfully swatting at a bright yellow ball" Answer: yes1360
4. Image Caption: "A cluster of wild horses trotting along the sandy shores of a sunlit beach" Answer:1361

no1362
5. Image Caption: "An orange cat and a black Labrador playfully tugging on a rope toy" Answer: yes1363
6. Image Caption: "A modern living room featuring sleek furniture and devoid of any pets" Answer: no1364

1365
Query: Is there a red truck or bus in the image?1366
def execute_command(image) -> str:1367

image_patch = ImagePatch(image)1368
trucks = image_patch.find("truck")1369
buses = image_patch.find("bus")1370
red_trucks = [truck for truck in trucks if truck.verify_property("truck", "red")]1371
red_buses = [bus for bus in buses if bus.verify_property("bus", "red")]1372
has_red_trucks_or_buses = len(red_trucks) > 0 or len(red_buses) > 01373
return bool_to_yesno(has_red_trucks_or_buses)1374

Tests:1375
1. Image Caption: "A vibrant red Ford pickup parked beside a country road" Answer: yes1376
2. Image Caption: "A red double-decker bus navigating through a busy downtown street" Answer: yes1377
3. Image Caption: "A large blue semi-truck cruising down an interstate highway" Answer: no1378
4. Image Caption: "A quiet suburban street devoid of any large vehicles like buses or trucks" Answer:1379

no1380
5. Image Caption: "A shiny red Ferrari speeding on a professional race track" Answer: no1381
6. Image Caption: "An array of red delivery trucks lined up in a distribution center parking lot"1382

Answer: yes1383
7. Image Caption: "Several bright yellow school buses parked in a row at a local school" Answer: no1384

1385
1386

Query: What color is the largest car in the image?1387
def execute_command(image) -> str:1388

image_patch = ImagePatch(image)1389
car_patches = image_patch.find("car")1390
if not car_patches:1391

return "No cars found in the image."1392
Sort cars by their area to find the largest one1393
car_patches.sort(key=lambda x: x.area, reverse=True)1394
largest_car_patch = car_patches[0]1395
color_of_largest_car = largest_car_patch.simple_query("What is the color?")1396
return color_of_largest_car1397

Tests:1398
1. Image Caption: "A large blue Ford pickup truck driving on a busy highway" Answer: blue1399
2. Image Caption: "A city street empty of any large vehicles like buses or trucks" Answer: no answer1400
3. Image Caption: "A row of green food trucks serving lunch in an urban park" Answer: green1401
4. Image Caption: "A scene with a green public bus next to a smaller blue pickup at an intersection"1402

Answer: green1403
1404

Query: Is the vase to the left or right of the center?1405
def execute_command(image) -> str:1406

image_patch = ImagePatch(image)1407
vase_patches = image_patch.find("vase")1408
if not vase_patches:1409

return "No vases found in the image."1410
vase_patch = vase_patches[0]1411
vase_position = vase_patch.horizontal_center1412
image_center = (image_patch.left + image_patch.right) / 21413
if vase_position < image_center:1414

return "left"1415
elif vase_position > image_center:1416

24

CVPR
#10607

CVPR
#10607

CVPR 2025 Submission #10607. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

return "right" 1417
else: 1418

return "center" 1419
Tests: 1420
1. Image Caption: "A delicate porcelain vase positioned on the right end of a mahogany dining table" 1421

Answer: right 1422
2. Image Caption: "A tall glass vase sitting on the left side of a neatly made bed in a sunlit room" 1423

Answer: left 1424
3. Image Caption: "A ceramic vase centrally placed on a round table surrounded by chairs" Answer: 1425

center 1426
1427

Query: What is the highest object in the image? 1428
def execute_command(image) -> str: 1429

image_patch = ImagePatch(image) 1430
possible_objects = ["car", "tree", "building", "person", "vase", "animal", "vehicle", "furniture"] 1431
all_patches = [] 1432
for obj in possible_objects: 1433

all_patches.extend(image_patch.find(obj)) 1434
if not all_patches: 1435

return "No objects found in the image." 1436
highest_patch = max(all_patches, key=lambda x: x.upper) 1437
highest_object_name = highest_patch.simple_query("What is this?") 1438
return highest_object_name 1439

Tests: 1440
1. Image Caption: "A massive skyscraper dominating the skyline among lower city buildings" Answer: 1441

skyscraper 1442
2. Image Caption: "A lone oak tree surpassing the height of the cottage it stands next to" Answer: tree 1443
3. Image Caption: "Colorful balloons drifting above the treetops in a clear sky" Answer: balloons 1444
4. Image Caption: "A commercial jet flying high above the city’s tallest skyscrapers" Answer: plane 1445
5. Image Caption: "A majestic eagle soaring high above a vast canyon landscape" Answer: eagle 1446
6. Image Caption: "A figure standing on the peak of a grassy hill under a blue sky" Answer: person 1447

1448
Create test cases for the specified query and program using the format provided in the examples. 1449
The test cases should consist of image captions and answers to the query. 1450
The answers should be consice, limited to a single word. 1451

1452
Query: INSERT_QUERY_HERE 1453
Program: 1454
INSERT_PROGRAM_HERE 1455
Tests: 1456

Listing 9. Example Code
I will provide you with a caption for a photo, image, or painting. 1457
Your task is to generate the bounding boxes for the objects mentioned in the caption, along with a 1458

background prompt describing the scene. 1459
The images are of size 512x512. The top-left corner has coordinate [0, 0]. 1460
The bottom-right corner has coordinnate [512, 512]. 1461
The bounding boxes should not overlap or go beyond the image boundaries. 1462
Each bounding box should be in the format of (object name, [top-left x coordinate, top-left y 1463

coordinate, box width, box height]) and should not include more than one object. 1464
Do not put objects that are already provided in the bounding boxes into the background prompt. Do not 1465

include non-existing or excluded objects in the background prompt. 1466
Use "A realistic scene" as the background prompt if no background is given in the prompt. If needed, 1467

you can make reasonable guesses. 1468
Please refer to the example below for the desired format. 1469

1470
Caption: A realistic image of landscape scene depicting a green car parking on the left of a blue 1471

truck, with a red air balloon and a bird in the sky 1472
Objects: [(’a green car’, [21, 281, 211, 159]), (’a blue truck’, [269, 283, 209, 160]), (’a red air 1473

balloon’, [66, 8, 145, 135]), (’a bird’, [296, 42, 143, 100])] 1474
Background prompt: A realistic landscape scene 1475
Negative prompt: None 1476

1477
Caption: A realistic top-down view of a wooden table with two apples on it 1478
Objects: [(’a wooden table’, [20, 148, 472, 216]), (’an apple’, [150, 226, 100, 100]), (’an apple’, 1479

[280, 226, 100, 100])] 1480
Background prompt: A realistic top-down view 1481
Negative prompt: None 1482

1483
Caption: A realistic scene of three skiers standing in a line on the snow near a palm tree 1484
Objects: [(’a skier’, [5, 152, 139, 168]), (’a skier’, [278, 192, 121, 158]), (’a skier’, [148, 173, 1485

124, 155]), (’a palm tree’, [404, 105, 103, 251])] 1486
Background prompt: A realistic outdoor scene with snow 1487
Negative prompt: None 1488

1489
Caption: An oil painting of a pink dolphin jumping on the left of a steam boat on the sea 1490
Objects: [(’a steam boat’, [232, 225, 257, 149]), (’a jumping pink dolphin’, [21, 249, 189, 123])] 1491
Background prompt: An oil painting of the sea 1492

25

CVPR
#10607

CVPR
#10607

CVPR 2025 Submission #10607. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Negative prompt: None1493
1494

Caption: A cute cat and an angry dog without birds1495
Objects: [(’a cute cat’, [51, 67, 271, 324]), (’an angry dog’, [302, 119, 211, 228])]1496
Background prompt: A realistic scene1497
Negative prompt: birds1498

1499
Caption: Two pandas in a forest without flowers1500
Objects: [(’a panda’, [30, 171, 212, 226]), (’a panda’, [264, 173, 222, 221])]1501
Background prompt: A forest1502
Negative prompt: flowers1503

1504
Caption: An oil painting of a living room scene without chairs with a painting mounted on the wall, a1505

cabinet below the painting, and two flower vases on the cabinet1506
Objects: [(’a painting’, [88, 85, 335, 203]), (’a cabinet’, [57, 308, 404, 201]), (’a flower vase’,1507

[166, 222, 92, 108]), (’a flower vase’, [328, 222, 92, 108])]1508
Background prompt: An oil painting of a living room scene1509
Negative prompt: chairs1510

1511
Caption: INSERT_PROMPT_HERE1512
Objects:1513

Listing 10. Reprompting with Errors VQA
INSERT_IMAGE_PATCH_API1514
You are provided a Python program that answers a query about an image, with a set of tests with the1515

corresponding outputs and exected responses.1516
Correct the Python program such that it passes the tests.1517
- Ensure the corrected program is different than the incorrect program provided.1518

1519
Query: Is there a blue chair in the image?1520
Incorrect Program:1521
def execute_command(image):1522

image_patch = ImagePatch(image)1523
blue_chair = image_patch.find("chair")1524
if not blue_chair:1525

return "No"1526
is_blue = any([chair.verify_property("blue") for chair in blue_chair])1527
return "Yes" if is_blue else "No"1528

Error: verify_property() missing 1 required positional argument: ’visual_property1529
Corrected Program::1530
def execute_command(image):1531

image_patch = ImagePatch(image)1532
chair_patches = image_patch.find("chair")1533
if not chair_patches:1534

return "No" # No chairs found1535
blue_chair_found = any(chair.verify_property("chair", "blue") for chair in chair_patches)1536
return "Yes" if blue_chair_found else "No"1537

1538
Query: "Are there any flowers to the left of the house?"1539
Incorrect Program:1540
def execute_command(image):1541

image_patch = ImagePatch(image)1542
house_patches = image_patch.find("house")1543
left_of_house_patch = image_patch.crop_left_of_bbox(1544

house_patches.left, house_patches.lower, house_patches.right, house_patches.upper1545
) # Incorrect attribute access1546
return "Yes" if left_of_house_patch.exists("flower") else "No"1547

Error: ’list’ object has no attribute ’left1548
Corrected Program:1549
def execute_command(image):1550

image_patch = ImagePatch(image)1551
house_patches = image_patch.find("house")1552
if not house_patches:1553

return "No house found"1554
house_patch = house_patches[0]1555
left_of_house_patch = image_patch.crop_left_of_bbox(1556

house_patch.left, house_patch.lower, house_patch.right, house_patch.upper1557
)1558
flowers_found = left_of_house_patch.find("flower")1559
return "Yes" if flowers_found else "No"1560

1561
1562

Query: Who wears a green shirt?1563
Incorrect Program:1564
def execute_command(image):1565

image_patch = ImagePatch(image)1566
Incorrectly calling find() with an extra argument, leading to an error1567
people_patches = image_patch.find("person", "green")1568

26

CVPR
#10607

CVPR
#10607

CVPR 2025 Submission #10607. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

if not people_patches: 1569
return "No one" 1570

people_wearing_green_shirts = [] 1571
for person_patch in people_patches: 1572

if person_patch.verify_property("clothing", "shirt") and person_patch.verify_property("color", 1573
"green"): 1574
people_wearing_green_shirts.append(person_patch) 1575

if not people_wearing_green_shirts: 1576
return "No one" 1577

wearing_green_shirts = ’, ’.join([person.simple_query("Who is this?") for person in 1578
people_wearing_green_shirts]) 1579

return wearing_green_shirts 1580
Error: find() takes 2 positional arguments but 3 were given 1581
Corrected Program: 1582
def execute_command(image): 1583

image_patch = ImagePatch(image) 1584
people_patches = image_patch.find("person") 1585
if not people_patches: 1586

return "No people found" 1587
people_wearing_green_shirts = [] 1588
for index, person_patch in enumerate(people_patches): 1589

if person_patch.verify_property("clothing", "shirt") and person_patch.verify_property("color", 1590
"green"): 1591
people_wearing_green_shirts.append(index) 1592

if not people_wearing_green_shirts: 1593
return "No one" 1594

wearing_green_shirts = ’, ’.join([people_patches[i].simple_query("Who is this?") for i in 1595
people_wearing_green_shirts]) 1596

return wearing_green_shirts 1597
1598

Query: "Is the blue ball inside the box?" 1599
Incorrect Program: 1600
def execute_command(image): 1601

image_patch = ImagePatch(image) 1602
ball_patches = image_patch.find("ball") 1603
blue_ball = [ball for ball in ball_patches if ball.verify_property("color", "blue")] 1604
blue_ball_left = blue_ball[0].left 1605
box_patches = image_patch.find("box") 1606
box_left = box_patches[0].left # Assuming there’s always a box present 1607
if not box_patches: 1608

return "No" 1609
return "Yes" 1610

Error: IndexError: list index out of range 1611
Corrected Program: 1612
def execute_command(image): 1613

image_patch = ImagePatch(image) 1614
ball_patches = image_patch.find("ball") 1615
if not ball_patches: 1616

return "No" # No ball found 1617
blue_ball = [ball for ball in ball_patches if ball.verify_property("color", "blue")] 1618
if not blue_ball: 1619

return "No" # No blue ball found 1620
box_patches = image_patch.find("box") 1621
if not box_patches: 1622

return "No" # No box found 1623
blue_ball_patch = blue_ball[0] 1624
for box_patch in box_patches: 1625

if (box_patch.left <= blue_ball_patch.left and 1626
box_patch.right >= blue_ball_patch.right and 1627
box_patch.upper <= blue_ball_patch.upper and 1628
box_patch.lower >= blue_ball_patch.lower): 1629
return "Yes" 1630

return "No" 1631
1632

Query: "Is the table bigger than the chair?" 1633
Incorrect Program: 1634
def execute_command(image): 1635

image_patch = ImagePatch(image) 1636
table_patches = image_patch.find("table") 1637
chair_patches = image_patch.find("chair") 1638
if not table_patches or not chair_patches: 1639

return "No" 1640
if table_patch.area < chair_patch.area: 1641

return "Yes" 1642
return "No" 1643

Error: name ’table_patch’ is not defined 1644
Corrected Program: 1645
def execute_command(image): 1646

image_patch = ImagePatch(image) 1647

27

CVPR
#10607

CVPR
#10607

CVPR 2025 Submission #10607. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

table_patches = image_patch.find("table")1648
chair_patches = image_patch.find("chair")1649
if not table_patches or not chair_patches:1650

return "No"1651
table_patch = table_patches[0]1652
chair_patch = chair_patches[0]1653
if table_patch.area > chair_patch.area:1654

return "Yes"1655
return "No"1656

1657
Query: "What is the color of the largest ball?"1658
Incorrect Program:1659
def execute_command(image):1660

image_patch = ImagePatch(image)1661
ball_patches = image_patch.find("ball")[0]1662
ball_patches.sort(key=lambda x: x.area)1663
largest_ball = ball_patches[-1] # Picks the smallest ball due to incorrect indexing1664
return largest_ball.simple_query("What is the color?")1665

Error: ’ImagePatch’ object has no attribute ’sort’1666
Corrected Program:1667
def execute_command(image):1668

image_patch = ImagePatch(image)1669
ball_patches = image_patch.find("ball")1670
ball_patches.sort(key=lambda x: x.area)1671
largest_ball = ball_patches[-1]1672
return largest_ball.simple_query("What is the color?")1673

1674
Query: INSERT_QUERY_HERE1675
Incorrect Program:1676
INSERT_CODE_HERE1677
Error: INSERT_ERROR_HERE1678
Corrected Program:1679

Listing 11. Reprompting with Errors ITM
INSERT_IMAGE_PATCH_API1680

1681
You are provided a Python program that answers a query about an image, with a set of tests with the1682

corresponding outputs and exected responses.1683
Correct the Python program such that it passes the tests.1684
- Ensure the corrected program is different than the incorrect program provided.1685

1686
Query: "Verify image matches text="An airplane is flying in the sky, and birds are flying below it.""1687
Incorrect Program:1688
def execute_command(image):1689

image_patch = ImagePatch(image)1690
airplane = image_patch.find("airplane")1691
birds = image_patch.find("birds")1692
if airplane[0].vertical_center > birds[0].vertical_center:1693

return "Yes"1694
return "No"1695

Error: IndexError: list index out of range1696
Corrected Program::1697
def execute_command(image):1698

image_patch = ImagePatch(image)1699
airplane_patches = image_patch.find("airplane")1700
bird_patches = image_patch.find("bird")1701
if not airplane_patches or not bird_patches:1702

return "No"1703
airplane = airplane_patches[0]1704
birds_below = all(bird.vertical_center > airplane.vertical_center for bird in bird_patches)1705
return "Yes" if birds_below else "No"1706

1707
Query: "Verify image matches text="The bird is flying above the tree, and a cat is sitting under the1708

tree.""1709
Incorrect Program:1710
def execute_command(image):1711

image_patch = ImagePatch(image)1712
tree = image_patch.find("tree")1713
bird = image_patch.find("bird")1714
cat = image_patch.find("cat")1715
if not tree or not bird or not cat:1716

return "No"1717
if bird.vertical_center < tree.vertical_center and cat.vertical_center > tree.vertical_center:1718

return "Yes"1719
return "No"1720

Error: list has no attribute vertical_center1721
Corrected Program:1722
def execute_command(image):1723

28

CVPR
#10607

CVPR
#10607

CVPR 2025 Submission #10607. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

image_patch = ImagePatch(image) 1724
tree_patches = image_patch.find("tree") 1725
bird_patches = image_patch.find("bird") 1726
cat_patches = image_patch.find("cat") 1727
if not tree_patches or not bird_patches or not cat_patches: 1728

return "No" 1729
tree = tree_patches[0] 1730
bird_above = all(bird.vertical_center < tree.vertical_center for bird in bird_patches) 1731
cat_below = all(cat.vertical_center > tree.vertical_center for cat in cat_patches) 1732
return "Yes" if bird_above and cat_below else "No" 1733

1734
Query: "Verify image matches text="A man is riding a bicycle, and a dog is running beside him."" 1735
Incorrect Program: 1736
def execute_command(image): 1737

image_patch = ImagePatch(image) 1738
man = image_patch.find("man") 1739
bicycle = image_patch.find("bicycle") 1740
dog = image_patch.find("dog") 1741
if not man or not bicycle or not dog: 1742

return "No" 1743
if abs(man[0].center_x - dog[0].center_x) < 50: 1744

return "Yes" 1745
return "No" 1746

Error: ImagePatch has no attribute center_x 1747
Corrected Program: 1748
def execute_command(image): 1749

image_patch = ImagePatch(image) 1750
man_patches = image_patch.find("man") 1751
bicycle_patches = image_patch.find("bicycle") 1752
dog_patches = image_patch.find("dog") 1753
if not man_patches or not bicycle_patches or not dog_patches: 1754

return "No" 1755
man = man_patches[0] 1756
bicycle = bicycle_patches[0] 1757
dog_beside = any(abs(dog.horizontal_center - man.horizontal_center) < 100 for dog in dog_patches) 1758
return "Yes" if dog_beside else "No" 1759

1760
Query: "Verify image matches text="A man is holding a red balloon, and a child is reaching up to grab 1761

it."" 1762
Incorrect Program: 1763
def execute_command(image): 1764

image_patch = ImagePatch(image) 1765
man = image_patch.find("man") 1766
balloon = image_patch.find("balloon") 1767
child = image_patch.find("child") 1768
if not man or not balloon or not child: 1769

return "No" 1770
if balloon[0].verify_property("red") and child[0].vertical_center < balloon[0].vertical_center: 1771

return "Yes" 1772
return "No" 1773

Error: verify_property() missing 1 required positional argument: ’visual_property’ 1774
Corrected Program: 1775
def execute_command(image): 1776

image_patch = ImagePatch(image) 1777
man_patches = image_patch.find("man") 1778
balloon_patches = image_patch.find("balloon") 1779
child_patches = image_patch.find("child") 1780
if not man_patches or not balloon_patches or not child_patches: 1781

return "No" 1782
balloon = balloon_patches[0] 1783
is_red_balloon = balloon.verify_property("balloon", "red") 1784
child_below_balloon = all(child.vertical_center < balloon.vertical_center for child in 1785

child_patches) 1786
return "Yes" if is_red_balloon and child_below_balloon else "No" 1787

1788
Query: "Verify image matches text="A cat is sitting on the table, and a book is lying beside it."" 1789
Incorrect Program: 1790
def execute_command(image): 1791

image_patch = ImagePatch(image) 1792
cat_patches = image_patch.find("cat") 1793
book_patches = image_patch.find("book") 1794
if not cat_patches or not book_patches: 1795

return "No" 1796
if abs(cat.horizontal_center - book.horizontal_center) < 50: 1797

return "Yes" 1798
return "No" 1799

Error: name ’cat’ is not defined 1800
Corrected Program: 1801
def execute_command(image): 1802

29

CVPR
#10607

CVPR
#10607

CVPR 2025 Submission #10607. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

image_patch = ImagePatch(image)1803
cat_patches = image_patch.find("cat")1804
book_patches = image_patch.find("book")1805
table_patches = image_patch.find("table")1806
if not cat_patches or not book_patches or not table_patches:1807

return "No"1808
cat = cat_patches[0]1809
book = book_patches[0]1810
table = table_patches[0]1811
is_cat_on_table = cat.vertical_center < table.vertical_center and abs(cat.horizontal_center -1812

table.horizontal_center) < 501813
is_book_beside_cat = abs(book.horizontal_center - cat.horizontal_center) < 501814
return "Yes" if is_cat_on_table and is_book_beside_cat else "No"1815

1816
Query: INSERT_QUERY_HERE1817
Incorrect Program:1818
INSERT_CODE_HERE1819

1820
Error: INSERT_ERROR_HERE1821

References1822

[1] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa matter: Elevating the role of1823
image understanding in visual question answering. In Proceedings of the IEEE conference on computer vision and pattern recognition,1824
pages 6904–6913, 2017. 61825

[2] Cheng-Yu Hsieh, Jieyu Zhang, Zixian Ma, Aniruddha Kembhavi, and Ranjay Krishna. Sugarcrepe: Fixing hackable benchmarks for1826
vision-language compositionality. Advances in neural information processing systems, 36, 2024. 11827

[3] Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning and compositional question1828
answering. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 6700–6709, 2019. 11829

[4] Zaid Khan, Vijay Kumar BG, Samuel Schulter, Yun Fu, and Manmohan Chandraker. Self-training large language models for improved1830
visual program synthesis with visual reinforcement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern1831
Recognition, pages 14344–14353, 2024. 1, 61832

[5] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training with frozen image encoders1833
and large language models. In International conference on machine learning, pages 19730–19742. PMLR, 2023. 1, 61834

[6] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, et al.1835
Grounding dino: Marrying dino with grounded pre-training for open-set object detection. In European Conference on Computer Vision.1836
Springer, 2024. 11837

[7] Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Ok-vqa: A visual question answering benchmark requiring1838
external knowledge. In Proceedings of the IEEE/cvf conference on computer vision and pattern recognition, pages 3195–3204, 2019. 61839

[8] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela1840
Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In International conference on1841
machine learning, pages 8748–8763. PMLR, 2021. 1, 61842

[9] Ramprasaath R Selvaraju, Purva Tendulkar, Devi Parikh, Eric Horvitz, Marco Tulio Ribeiro, Besmira Nushi, and Ece Kamar. Squinting1843
at vqa models: Introspecting vqa models with sub-questions. In Proceedings of the IEEE/CVF Conference on Computer Vision and1844
Pattern Recognition, pages 10003–10011, 2020. 61845

[10] Dı́dac Surı́s, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the1846
IEEE/CVF International Conference on Computer Vision, pages 11888–11898, 2023. 11847

[11] Tristan Thrush, Ryan Jiang, Max Bartolo, Amanpreet Singh, Adina Williams, Douwe Kiela, and Candace Ross. Winoground: Probing1848
vision and language models for visio-linguistic compositionality. In 2022 IEEE/CVF Conference on Computer Vision and Pattern1849
Recognition (CVPR), pages 5228–5238. IEEE Computer Society, 2022. 11850

30

	Data
	Unit Test Sampling Pseudocode
	Program Generation and Execution
	Generation Details
	Image Patch API
	In-Context Examples

	Unit Test Generation
	Implementation Details
	In-Context Examples
	Unit Test Candidate Generation
	Image Generation
	LM Grounded Diffusion

	Strategies for Visual Unit Test Generation
	Unit Test Sampler
	Image Generator M
	Scoring function h
	Aggregate Scorer H

	Visual Unit Test Utilization Methods
	Best Program Selection
	Answer Refusal
	Re-prompting
	Implementation Details
	Additional Results

	Reward Design for Reinforcement Learning
	Implementation Details
	Additional Analysis

	End-to-End Fallback Methods
	Implementation Details
	VQA
	Image-Text-Matching

	Results with Fallback Method on Exception

	Human Evaluation
	Unit Test Evaluation
	Program Correctness Evaluation

	Limitations and Social Ethics Impact
	Limitations
	Social Ethics Impact

	Qualitative Examples

