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Figure 8. Extended user study. We compare the plausible, diverse,
and expected nature of our motions to five baselines, including the
Random Arrows baseline. Each pair of bars shows the percentage
of comparisons in which our method or a baseline was judged
favorably with 95% confidence intervals.

A. Overview
In this appendix, we present extended versions of the user
study (Section B) and the ablation study (Section C). Addi-
tionally, we examine how much the generated motions X
differ for different generator seeds (Section D), how much
a given motion constrains the video generator by show-
ing different videos generated for the same motion (Sec-
tion E), show examples of secondary motions F, and apply
our method to augment one additional drag-based image edi-
tor (Section G). We also provide additional implementation
and timing details (Section H), a more detailed description
for baselines (Section I) and more details on the arrow-based
motion prompting application (Section J).

Our project website, https://motionmodes.
github.io, also contains, among other details, a full qual-
itative comparison on 28 images, results of our method on
a total of 54 different input images, and our arrow-based
motion prompting application using a different video gener-
ator [25].

B. Extended User Study
In Figure 8, we present an extended version of the user study
that includes the random arrows baseline. Results for this
baseline are collected from 16 instead of 32 participants, the
other study details are the same as for all other baselines.
Results confirm our findings for all other baselines: users
find our motions significantly more plausible and diverse,
and they also better agree with the motions users expected
for the selected object.

C. Extended Ablation
In Table 3, we provide an extended ablation study that in-
cludes an ablation of the smoothness guidance. Apart from
its function as regularizer, surprisingly, this energy also im-
proves object focus, i.e. it tends to better avoid static objects.
Our interpretation is that object motions are suppressed by

Table 3. Extended ablation of key components with metrics based
on diverse, focused metrics and their tradeoff Ē := 0.5(Ēd + Ēf ).
Underlined values are closer to the best than to the worst value.

div. focused

Ē ↓ Ēd ↓ Ēf ↓ (Ēc ↓ Ēo ↓)

without Ec 0.83 1.02 0.64 1.29 0.00
without Eo 0.97 1.03 0.91 0.06 1.75
without Ed 0.72 1.36 0.08 0.13 0.04
without Es 0.58 1.02 0.13 0.10 0.16

FPS instead of Ed 0.79 1.49 0.10 0.11 0.08
ControlNet instead of Ec,Eo 0.88 0.96 0.80 0.15 1.45

Motion Modes 0.55 1.04 0.07 0.09 0.05
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Figure 9. Multiple seeds for one input image. We generate
multiple videos from the same motion x. They differ in small
details, but overall follow the motion accurately.
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Figure 10. Multiple videos from one motion. We generate mul-
tiple videos from the same motion x. They differ in small details,
but overall follow the motion accurately.

the motion generator’s prior during the denoising process if
they start out unrealistically jerky or jittery. Our smoothness
energy guides the denoising trajectory away from these bad
object motions early on, resulting in a less suppression from
the prior.

D. Multiple Seeds for One Input Image
To show the variance a user may expect from our motion
generator, in Figure 9 we show to different sets of motions
for the same input image, generated with two different seeds.
We can see that the variety of motions is similar, although
slightly different motions are found in each case.

E. Multiple Videos Generated for One Motion
All videos in our experiments are obtained by first generating
a motion x and then generating a video conditioned on x.
To examine how closely the generated video follows x, in
Figure 10, we show multiple videos generated conditioned

https://motionmodes.github.io
https://motionmodes.github.io


Figure 11. Secondary motion. The video prior generates sec-
ondary motions outside of the masked region if necessary to main-
tain the plausibility of a video, such as motions of the steam of the
train engine, the reflection of the boat, and the shadow of the tank
(secondary motions are visualized with purple flow trajectories).

on the same motion x from different random noises. We can
see that small details are different, but overall, the motions
of the different videos are similar to each other and follow
the generated motion x accurately.

F. Secondary Motion

While our method encourages motions to be focused only on
the masked region, the prior of the video generator ensures
that any secondary motions that are caused by the motion in
the masked region are also generated if necessary to maintain
the overall plausibility of the video. A few examples are
shown in Figure 11, like the steam of the train engine, the
reflection of the boat, and the shadow of the tank.

G. Application to Puppet-Master

We demonstrate our application that augments coarse drag
motion inputs on one additional drag-based image editor
Puppet-Master [21]. Similar to our result in Figure 6 of the
main paper, we can see that the more detailed input motion
provides enough information to the drag-based image editor
to avoid ambiguities and implausible results.

H. Implementation Details

Guided Denoising As described in the paper, we use the
flow generation module from Motion-I2V [29] as our back-
bone. We further disconnect the ControlNet module de-
scribed in their paper, as we don’t need the conditioning and
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Figure 12. Arrow-based prompting with Puppet Master. We
use Motion Modes to augment coarse drag motion inputs for the
drag-based image editor Puppet-Master [21], avoiding results that
are implausible (right) or do not follow the input drag (left).

we found that the constraints from ControlNet conditioning
limits the diversity of our motions. The flow generator uses
25 total timesteps for denoising out of which the first 20
timesteps are guided in our approach.

Timing and Memory In our experiments, we further used
gradient checkpointing on the U-Net to minimize the mem-
ory cost of backpropagating the guidance gradients in each
denoising timestep. Given the time cost of gradient check-
pointing and additional memory costs of backpropagation,
our guided denoising approach has a peak memory usage
of 21.7GB and requires on average 2 minutes 35 seconds
to fully denoise a sample across 25 timesteps. Unguided
vanilla denoising, on the other hand, has 12.3GB peak mem-
ory usage and requires 1 minute 18 seconds on average to
fully denoise a sample.

I. Additional Baseline Details
Prompt Generation. Our backbone Motion-I2V [29] sup-
ports text-conditioning for image-to-video generation. In the
Prompt Generation baseline, we aim to sample diverse and
focused object motions using a set of distinct text prompts.
To automate this process, we use GPT-4 to generate text
prompts that correspond to distinct object motions for a
given input image and object. The prompts are then used as
text conditioning for Motion-I2V for video generation.

Specifically, we query GPT-4 for the prompts as follows.
GPT-4 is first provided the following context: “I am using
a text-based video generator to discover all the different
ways a specific object in an image can move, and I wish to
generate a set of text prompts in order to achieve this. In
particular, I will provide an image and specify an object.
For each such specification, I would like to generate 6 text
prompts that can be input to the video generator in order to
explore the distinct motions the specified object can have in
the scene. Remember that we want the motions to be focused
only on the specified object and to each be distinct from the
other.” We then provide the model with an image along with
a text specification of the object in the context of the same
conversation to retrieve the text prompts. Some examples
of retrieved prompts follow. For a scene with a basketball



near a net: “video of a basketball swishing through the hoop
after a jump shot”, “video of a basketball bouncing off the
rim and falling away from the hoop”, “video of a basketball
spinning around the rim before dropping in”. For a scene
with a cat on a ledge: “video of a cat walking gracefully
along a ledge with a scenic background”, “video of a cat
jumping off the ledge gracefully”, “video of a cat stopping
and looking around curiously”.

Random Arrows. Our backbone Motion-I2V [29] can be
conditioned on a drag arrow that describes the rough motion
direction and motion magnitude of a point in the image, in
an application the authors call MotionDrag. In the Random
Arrows baseline, we use random drag arrows to explore
a diverse set of motions for a selected object. Specifically,
given an object mask m, we set the starting point for the drag
arrow to a random point inside the object mask, randomly
sample a direction, and sample the length of the drag arrow
uniformly from an interval of reasonable lengths (20 to 80
pixels in an image with 320p resolution). We found that
arrow lengths outside this interval tended to either result in
zero object motion or implausible motions.

J. Additional Arrow-based Prompting Details
Our arrow-based prompting application shows that Mo-
tion Modes can be used to facilitate user interaction with
drag-controlled image editors and video generators. As im-
age editors, we work with Drag-A-Part [20] and Dragon-
Diffusion [24], and as video editors, we use MOFA [25]
and the MotionDrag application of Motion-I2V [29]. We
take as input a given drag arrow, defined by a start point
a ∈ [1, H]× [1,W ] and end point b ∈ [1, H]× [1,W ], both
given as pixel indices for resolution W×H . We then use this
drag arrow to retrieve the closest motion x from our motion
set X . Recall that in each frame, our motions describe the
same offset of each image point from its starting position as
a drag arrow. Thus we can simply compare the drag arrow
to each frame of the motion x at the starting position a of
the drag arrow:

min
k

∥∥∥xk,a −
−→
ab

∥∥∥
2
, (5)

where xk,a is the offset vector of the motion x in frame k
at the starting point a of the drag arrow. The motion x with
closest distance to the drag arrow describes a motion similar
to the drag arrow, but typically has good plausibility and
much more detail than the drag arrow. We then convert the
retrieved motion back into a representation that the image
or video editors can use as input. Specifically, Drag-A-Part
can take up to 10 drag arrows as input, for DragonDiffusion,
we can fit up to 100 arrows into memory, for MOFA, we use
up to 50 arrows (we found that more arrows result in non-
static backgrounds), and for Motion-I2V, we can directly

provide the retrieved motion x as conditional input. To
convert a motion to n drag arrows, we cluster the offsets
in the retrieved frame of the motion into n clusters using
K-Means, and use the cluster means as drag arrows.
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