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A. Diagnising Context Modeling for OAD
Existing methods [2, 5, 6] suffer from a training-inference
discrepancy, causing short-term context imbalance and a
non-causal leakage during anticipation, resulting in learning
biases. Fig. 1 shows the learning biases present in existing
works from a performance perspective.

Figure 1. Frame performance within the short-term memory on
THUMOS’14(top) and EK100(bottom).

First, we observe that early frames in the short-term mem-
ory are poorly learned, resulting in significantly lower perfor-
mance. These poorly represented frames serve as low-quality
samples, impairing the learning of classifier to effectively
predict the latest frame. In contrast, CMeRT improves per-
formance for early frames, though a performance gap still
remains compared to the latest frame. The remaining gap is
due to the use of a shorter near-past context, which limits the
amount of context available to earlier frames compared to the
latest one. Our empirical findings demonstrate that shorter
near-past contexts are more beneficial, as they act as a form
of data augmentation by exposing frames to less context.
Naive approaches [2, 5, 6] that omit near-past context can
also be seen as a form of data augmentation. However, they
over-augment the data, introducing poor training samples
that hamper the learning process.

Second, the performance curve of the anticipation-based
method MAT [2] confirms the presence of non-causal leak-
age, as it shows significantly higher performance for in-
termediate frames compared to the latest frame. CMeRT
however, effectively mitigate this leakage and learning bias,
prioritizing the learning of the latest frame.

B. Experiments
Hyperparameters. The hyperparameters used for each
dataset are summarized in Tab. 1.

Table 1. Hyperparameters for different experimental settings.

THUMOS’14 CrossTask EK100
batch size 32 32 32

epoch 12 12 12
warmup 8 5 10

learning rate 2e-4 7e-5 7e-5
weight decay 5e-5 1e-5 1e-4

MAT-rw and MAT-stream. We implement MAT-rw and
MAT-stream based on the state-of-the-art memory-based
model MAT [2] to evaluate standard approaches for address-
ing the training-inference discrepancy.

In MAT-rw, we assign a higher weight to the loss of
the latest frame to mitigate the learning bias towards inter-
mediate frames. Specifically, the weight is set to 1.2 for
THUMOS’14 and 3.0 for CrossTask and EK100.

In MAT-stream, only the latest frame in the short-term
memory is used for training, while other short-term frames
are discarded to align with the inference. we modify the
sliding window sampling by setting the stride to 1, ensur-
ing all video frames are used for training. However, this
increases the training set size compared to using a stride
equal to the short-term memory length, resulting in more
training samples and updates per epoch than the standard
MAT. To mitigate this, we adjust the batch size to match the
number of updates per epoch as in MAT [2].

C. Advancing OAD
DinoV2 Features. We use the Dinov2 ViT-g/14 model [1]
to extract advanced RGB features for THUMOS’14 and
CrossTask. We replace only the RGB features while other
features, such as optical flow, remain unchanged. For THU-
MOS’14, following [5], we extract video frames at a rate of
24 FPS and divide the video into chunks of 6 frames, using
the intermediate frame of each chunk for RGB feature extrac-
tion. The feature extraction is performed at the chunk level,
meaning evaluation occurs every 0.25 seconds. The feature
encoding process for CrossTask is similar to THUMOS”14,
except that the chunk size is increased to 24 frames to align
with the existing feature set.

While the advanced feature extractor improves perfor-
mance, it also increases the computational burden. Follow-
ing [5], we report the runtime for end-to-end online inference
on THUMOS’14, including two-stream feature extraction
in Tab. 2. Specifically, DenseFlow [4] is used to compute



optical flow, while RGB features are extracted using either
ResNet52 [3] or the DinoV2 model. The results in Tab. 2
align with prior works [2, 5], confirming that optical flow
remains the primary speed bottleneck. Compared to optical
flow feature, the runtime for DinoV2 RGB feature extraction
remains manageable. However, the DinoV2 model inference
can be further accelerated through techniques such as model
distillation, model weights quantization or conversion to
Optimized formats, like TorchScript and ONNX. Model in-
ference optimization is already a well-established practice in
the industry, providing significant opportunities to leverage
more advanced features while maintaining efficiency.
Table 2. Efficiency analysis of feature extraction on THUMOS’14.
The performance is reported in frames per second(FPS)

Optical Flow RGB
Computation Extraction ResNet52 DinoV2

8.6 47.6 69.0 13.9

Figure 2. Self-attention masking to control query interactions.

OAD with latency For applications where delays are ac-
ceptable or post-prediction refinement is required, it is valu-
able to explore the advantages of incorporating limited future
information into online action detection. To explore this, we
introduce a future latency parameter, �, and propose the
first OAD baseline with future latency. Specifically, we con-
struct base models based on Testra [6], MAT [2], and our
model CMeRT by replacing the causal mask in short-term
self-attention with a new latency mask, as shown in Fig. 2.
This new mask allows each short-term frame to additionally
access the near-future information up to a limit of �.

We evaluate the new OAD with latency setting using
various base models and latency settings, with results in
Fig. 3. Incorporating future latency improves performance
across all models. Even a small latency, e.g. � = 0.5 can
lead to greater improvements, with further gains expected
as the latency increases. CMeRT consistently outperforms
others by a large margin, demonstrating its robustness.

D. Qualitative Results
Fig. 4 and Fig. 5 show some qualitative results for THU-
MOS’14 and CrossTask, respectively. The bar charts present

Figure 3. OAD performance under varied future latency on THU-
MOS’14(top) and EK100(bottom).

a comparison between the ground truth and the predictions
from MAT [2] and our method CMeRT. The curve plots
display the confidence in identifying the current true action.
The results highlight that CMeRT effectively reduce the mis-
classification between background and foreground actions.
Additionally, it improves the distinction between similar ac-
tions (PoleVault vs. HighJump). However, it struggles with
short actions (Whisk mixture & add coffee) or small subjects
in similar backgrounds (SoccerPenalty).

E. Extra Ablation Studies
Query configuration in the long-term compressor: We
test on four query configurations (stage1-stage2): 16-16,
16-32, 32-32, and 32-64 on THUMOS’14. The mAP is
72.8%, 73.2%, 72.9%, and 72.8%, respectively. The results
suggest that intermediate configurations are optimal, as ex-
cessive queries introduce noise and redundancy, while too
few causes the loss of valuable information.
Short over long future: We designed the long-term mem-
ory (tl to ts) to generate a near-future (ts to ts + Tf ) that
overlaps and extends beyond the short memory to serve a
pseudo-future for all short-term frames. Experimentally,
generating a short near-future is favored over a longer one,
as longer pseudo-futures are more challenging and costly,
leading to degraded quality (Fig. 6). Even using the true fu-
ture, performance saturates beyond a certain length (Fig. 7),
which justifies our use of short-future generation.
Long-short division: We evaluate the impact of long-short
term division on performance. As shown in Fig. 8, excessive
long-term memory introduces noise, while insufficient long-
term causes information loss. The short-term length has
minimal impact if sufficient long-term is provided. Besides,
near-future generation is less impacted by the division, since
it always predicts the future following the long-term.



Figure 4. Quality results on THUMOS’14 - bar charts show predictions; curve plots for confidence of the true action.

Figure 5. Quality results on CrossTask: top - Make French Toast, middle - Change a Tire, bottom - Make a Latte

Figure 6. Extended future generation reduces
quality (on THUMOS’14).

Figure 7. Distant future not helpful (on THU-
MOS’14).

Figure 8. Impact of long-short division on
THUMOS’14.
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