
7. Appendix

Due to space constraints in the main paper, we provide addi-

tional information and details in this supplementary material.

These include:

• A more detailed discussion of the preliminaries in Section

7.1.

• Comprehensive training details of the Identity Encoding

Loss in Section 7.2.

• Implementation details outlined in Section 7.3.

• Analysis of failure cases in Section 7.4.

• Ablation of initialization strategies in Section 7.5

• Examples of hair tagging in Section 7.6

• Additional visualizations presented in Section 7.9.

• Detailed information on the demo video [Disco4D-

demo.mp4] in Section 7.10.

7.1. Preliminary

3D Gaussian Splatting utilizes explicit 3D Gaussian points

as the core elements for rendering. Each 3D Gaussian point

is defined by the function:

G(x) = e�
1

2
(x�µ)TΣ

−1(x�µ),

where µ represents the spatial mean, and Σ denotes the co-

variance matrix. Additionally, each Gaussian is assigned an

opacity value α and a view-dependent color c, parameter-

ized by spherical harmonic coefficients f . During rendering,

these 3D Gaussians are projected onto the 2D view plane

via a splatting technique. The 2D projection is computed

using the projection matrix, while the 2D covariance matri-

ces are approximated as: Σ0 = JgWgΣW
T
g JT

g , where Wg

is the viewing transformation, and Jg is the Jacobian of the

affine approximation for perspective projection. The final

pixel color is obtained through alpha-blending of N layered

2D Gaussians from front to back C =
P

i2N Tiαici, with

Ti =
Qi

j=1(1− αj).

The opacity α is determined by multiplying γ with the

contribution of the 2D covariance, derived from Σ
0 and the

pixel coordinate in image space. The covariance matrix Σ is

parameterized using a quaternion q and a 3D scaling vector

v to aid in optimization.

SMPL-X parameterization [71] extends the original

SMPL body model [62] by incorporating detailed face and

hand deformations to capture more expressive human move-

ments. SMPL-X expands SMPL joint set by including

additional joints for facial features, toes and fingers, en-

abling a more accurate representation of complex body

movements. SMPL-X is defined by a function M(β, θ,ψ) :
R

|β|å|θ|å|ψ|
→ R

3N , where θ ∈ R
3K represents the pose

(with K being the number of body joints), β ∈ R
|β| repre-

sents body shape, and ψ ∈ R
|ψ| captures facial expressions.

Further details can be found in [71].

7.2. Training details of Identity Encoding loss

To optimize the introduced Identity Encoding of each Gaus-

sian, we render these encoded identity vectors into 2D im-

ages in a differentiable manner following [111]. We adapt

the differentiable 3D Gaussian renderer from [47], approach-

ing the rendering process similarly to the color optimization

using spherical harmonic (SH) coefficients, as described in

[47]. In this method, 3D Gaussian splatting utilizes neu-

ral point-based α0-rendering [52, 53], where the influence

weight α0 is calculated in 2D for each Gaussian and pixel.

Following the approach in [47], the influence of all Gaus-

sians on a pixel is computed by sorting them based on depth

and blending the N ordered Gaussians that overlap with that

pixel:

Eid =
X

i2N

eiαi

i�1
Y

j=1

(1− α0

j) (3)

Here, the rendered 2D mask identity feature Eid is the sum

of the Identity Encoding ei (of length 15) for each Gaussian,

weighted by the Gaussian’s influence factor α0

i on that pixel.

The value of α0

i is determined by evaluating a 2D Gaussian

with covariance Σ2D, which is scaled by a learned per-point

opacity αi:

Σ2D = JWΣ2D3DWTJT (4)

where Σ
3D is the 3D covariance matrix, Σ2D represents

the splatted 2D counterpart, J is the Jacobian of the affine

approximation for the 3D-to-2D projection, and W is the

world-to-camera transformation matrix.

To ensure consistency in the Identity Encoding ei dur-

ing training, we apply an unsupervised 3D regularization

loss. This loss encourages the Identity Encodings of the

top k-nearest 3D Gaussians to remain close in feature space,

promoting spatial consistency. Using the softmax function

F , we define the KL divergence loss with m sampled points

as follows:

L3d =
1

m

m
X

j=1

DKL(P ||Q) =
1

mk

m
X

j=1

k
X

i=1

F (ej) log
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F (ej)

F 0(ej)

ç

(5)

Here, P is the sampled Identity Encoding e of a 3D Gaus-

sian, and Q consists of the k-nearest neighbors in 3D space,

represented as e01, e
0

2, ..., e
0

k. The total identity encoding loss

is then defined as:

Lid = L2d + L3d (6)

7.3. Implementation details

The 3D generation experiments were conducted using a

single 24GB RTX3090 GPU, while the 4D generation ex-

periments utilized a single 48GB RTX6000 GPU. For the

3D generation process, the SMPL-X fitting was performed



with 3000 iterations in 3 minutes, followed by skin color

inpainting on SMPL-X Gaussians for 100 iterations in 30

seconds. Reconstruction and disentanglement optimization

required 3000 iterations, completed in 12 minutes. In video

reconstruction, SMPL-X fitting aligned 14 frames in 6 min-

utes for in-the-wild videos. The 4D-Dress [96] experiments

involved 1000 iterations for clothing deformation over 18

minutes.

7.4. Failure cases

Figure 7. Failure cases of Disco4D. (a) Poor SMPL-X estimation

(b) Poor visual hull initialization (c) Misclassification of clothing

categories.

Disco4D relies on robust and pixel-aligned SMPL-X es-

timation, which is still an unsolved problem, especially for

challenging poses. In Figure 7a, it is difficult to correct the

pose with keypoints and segmentation mask due to depth am-

biguity. Disco4D occasionally fails for poor visual hull ini-

tialization (7b), which is common for difficult poses. Lastly,

poor disentanglement is a common problem due to misclas-

sification of clothing category by the segmentation model.

This is seen in Figure 7c where the arms are wrongly classi-

fied under the "top" category.

7.5. Initialization

We evaluate random, surface, and hull-based initialization

strategies. Surface initialization on SMPL-X often produces

inaccurate geometries for complex or loose garments, lead-

ing to elongated Gaussians and artifacts. Hull-based ini-

tialization better captures garment details, preserves pose

consistency, and aligns closely with the true clothed body

geometry, as seen in Figure 8.

7.6. Hair tagging

In our approach, hair Gaussians are tagged to head faces

rather than the nearest face during reposing. Reposing hair

Gaussians according to the nearest face, as commonly done

in previous works, often results in artifacts such as disjointed

hair (Figure 9). By leveraging the learned identity encoding,

we assign a unified identity to hair Gaussians, enabling them

to be reposed cohesively as a single entity, thereby preserving

the structural integrity of the hair during transformations.

Figure 8. Ablation of initialization. (a) Random Initialization (b)

SMPL-X Initialization (c) Visual Hull Initialization.
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Figure 9. Visualization of hair tagging.

7.7. In-the-wild evaluation

Figure 10. Qualitative evaluation on ITW images.

Figure 11. Qualitative evaluation on avatars clothed in dress.

Our focus on studio and synthetic datasets (e.g., Synbody,

CloSe, and 4DDress) was due to the availability of ground-



truth data from multiple views, enabling rigorous quantita-

tive evaluation. ITW images lack such ground-truth data,

making comparisons challenging. Nevertheless, our solution

applies to ITW images, with some examples shown in Fig.

10. Examples of avatars clothed in dress are added in Fig 11,

driven with poses from subjects in Fig. 10.

7.8. Facial detail

Additional visualizations of well known individuals are pro-

vided in Fig. 10 and Fig. 11.

7.9. Extra visualizations

Figure 12 presents visual comparisons with 2D animation

methods. Figure 13 illustrates ablation results for 4D recon-

struction. Finally, ablation studies on point geometry and

editing are provided in Figure 14.

7.10. Demo video

Extended visualizations and results showcasing 3D gener-

ation and disentanglement, pose-driven animation, video-

to-4D reconstruction, and fine-grained editing of animated

outputs are demonstrated in the accompanying demo video

[Disco4D-demo.mp4]. A sample of the video is shown in

Figure 15.
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Figure 12. Comparison to 2D animation methods. Compared to Magic-Animate and Animate-Anyone, we have better preservation of

body shape and details. Compared to CHAMP, we have better geometry and consistency.
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Figure 13. 4D reconstruction results on 4D-Dress Dataset.
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Figure 14. Ablation of points geometry (left) and editing results (right). Points ("All") are visualised with a Gaussian Scale of 0.1.
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Figure 15. Additional visualizations showcasing generation, disentanglement, animation, and editing. Full demonstrations are

available in the accompanying demo video [Disco4D-demo.mp4]. This figure provides a sample from the demo.
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