ManiVideo: Generating Hand-Object Manipulation Video with Dexterous and
Generalizable Grasping
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Figure 1. A sampling of our data.

Please refer to the demo video for more dynamic results.

A. Our Dataset

We train our ManiVideo on three types of datasets. For
object data, we utilize Objaverse [2], and human data is
sourced from Human4DiT [9]. For HOI video data, in ad-
dition to the public DexYCB dataset [1], We collect third-
person view videos of participants standing and interacting
with objects using bimanual hands. As shown in Tab. 1,
our dataset contains 722 videos (376k frames) depicting
daily tool-use behaviors covering 15 objects, 10 views and
8 participants. Compared to other datasets [3, 8], our data
is human-centric and free from distractions caused by irrel-
evant objects (e.g., tables), making it particularly suitable
for downstream applications like human-based HOI video
generation in Sec.4.4. As illustrated in Fig. 1, the dataset
comprises human-centered videos captured from multiple
views using both long-focus and short-focus cameras.
Object model acquisition. We utilize the 3D object models
from TACO [8] as our objects, with meshes consisting of up
to 100K triangular faces to capture fine-grained geometric
details. Specifically, we select commonly used objects from
daily life, including spoons, shovels, bowls, cups, and boxes.
Data Capturing. Similar to TACO [8], hand motion is ex-
tracted from multi-view RGB videos, whereas object mo-
tion is captured using a motion capture system by tracking
four markers affixed to the object’s surface. Moreover, our
data capture system combines 12 synchronized industrial
FLIR cameras with a NOKOV optical motion capture setup
equipped with six Mars4H infrared cameras.

Data Annotating. We process hands and objects as separate
entities. For hands, we employ RTMpose [6] to differentiate
between the left and right hands and extract 2D keypoints.
Subsequently, the MANO model is utilized to represent the

3D hand mesh, which is optimized using both 2D and 3D loss
functions. For a detailed description of the process, please
refer to TACO [8].

For objects, the 6D pose, comprising rotation and transla-
tion, is obtained using the motion capture system. Marker-
to-surface correspondence is then optimized, and the refined
object poses are computed by integrating the relative posi-
tions of markers on the object mesh with the captured marker
motions.

B. Training Strategy

Due to the differences between different datasets, we pro-
pose a training strategy to integrate all dataset. As shown
in Fig. 2, we apply distinct conditions to each of the three
datasets. For the HOI training, all conditions outlined in the
main paper are utilized. Deviations from HOI training in Ob-
javerse training are highlighted in red, while differences in
the human training are indicated in green. None conditions
are filled to zero.

C. Comparisons on HO3Dv3 Dataset

In addition to the public dataset DexYCB, we also conduct
comparison on dataset HO3Dv3 [4]. As shown in Figug. 3
and Fig. 4, our method achieves the best results when the
fingers are stacked together. Specifically, directly learning
the hand-object correspondence from 2D conditions poses
an ill-posed problem, making it challenging for HOGAN
to maintain consistency, particularly in scenarios where fin-
gers are densely packed. In diffusion-based methods, the
limited representation of fingers often causes details to be
misinterpreted during the denoising process.

D. More Results on Our Dataset

In Fig. 5 and Fig. 6, we show more results on our dataset.
Our method leverages the proposed multi-layer occlusion
representation to effectively capture occlusion relationships
based on comprehensive finger information. This approach
tackles challenges such as self-occlusion of fingers, mutual
occlusion between hands and objects, and the invisibility
of bent fingers, leading to more accurate handling of these
complex interactions.

E. Long Sequence Generation

Generating extended video sequences poses significant
challenges for video diffusion models. To overcome this



Dataset bimanual functional manipulation —multi-view mocap sequence frame
GRAB [10] v X X v 1.3K 1.6M
HO3D [4] X X v X 27 78K
DexYCB [1] X X v X 1L.OK 582K
Oaklnk [11] X X v v 778 314K
HOI4D [7] X v X X 4.0K 1.2M
ARCTIC [3] v X v v 339 2.1M
AffordPose [5] X v X X - 27K
Ours v v v v 722 376k

Table 1. Comparison of our dataset with existing 3D hand-object interaction datasets.
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Figure 2. Training strategy. We apply distinct conditions to each of the three datasets. For the HOI training, all conditions outlined in the
main paper are utilized. Deviations from HOI training in Objaverse training are highlighted in red, while differences in the human training

are indicated in green. Missing conditions are filled to zero.

limitation, we adopt a temporal sliding window approach,
which facilitates the generation of arbitrarily long videos
while ensuring inter-frame consistency throughout. Let N
denote the number of frames contained in the latent code z,
and w represent the window size with a stride of s. There-
fore, z will be divided into & —* + 1 parts. During DDIM
sampling, each timestep employs a sliding window mecha-
nism along the temporal dimension with a specified stride
to sample all groups. Overlapping segments are averaged to
maintain coherence. This process is repeated across succes-
sive timesteps, ensuring consistency in sequence generation.
Formally, sampling the p-th window at each timestep is as
follows:

DDIM(2{(p 1) xspxsis]) M

where indexes are sliced in the temporal dimension. Tempo-
ral smoothing effectively addresses inconsistencies in over-

all brightness, hue, and style, which commonly arise due to
noise variations and sampling discrepancies.

F. Ablation Studies

Here, we add further experiments about framework.
ApperanceNet R and Point cloud P: In all experiments,
we use classifier-free guidance to control P and R, com-
bining unconditional and conditional outputs via weighting
coefficients. For results of the full model (Ours in all exper-
iments), we set the coefficients to 3.5 to combine uncondi-
tional generation with the generation conditioned on P and
R. Here, we report the unconditional generation of R and P
by setting the coefficients to zero. The quantitative results
are shown in the first two rows of Tab. 2. For w/o R, we use a
reference image of the human interacting with objects as the
first frame to provide the necessary appearance. R plays a
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Figure 3. Qualitative comparison of different methods on HO3Dv3. Our approach achieves the best results.

crucial role in integrating appearance details, the absence of
R leads to inconsistent identities. P offers geometric infor-
mation about objects within 3D space, and the omission of
P can compromise the structural integrity. As shown in rows
three to five of Tab. 2, the model utilizes the guidance of D
to address issues such as finger dislocation in the absence of
D (w/o D).

G. Future Work

In this work, driving motion sequences are extracted from
our dataset. However, our method can be integrated with mo-
tion generation methods to achieve end-to-end hand-object
manipulation video generation. For example, given the ob-
ject model and motion trajectory, we first use ManiDext [12]
to generate motion sequences of HOIL. Then, our method

leverages appearance and generated motion as inputs to pro-
duce temporally coherent and visually plausible hand-object
manipulation videos, which is consistent with the main pa-
per.
Method | FID] LPIPS| PSNRT SSIM{ MPJPE]
w/oR | 53.12  0.151 24.87 0.784 40.55
w/oP | 40.33 0.115 28.88 0.901 33.76
wlioD | 44.07 0.117 28.03 0.868 38.89
D! 40.09 0.113 28.72 0.896 36.72
D? 42.99 0.114 28.46 0.893 37.20
Ours 37.70 0.113 29.59 0.905 32.89

Table 2. Quantitative comparison for ablation studies.
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Figure 4. Qualitative comparison of different methods on HO3Dv3. Our approach achieves the best results.
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Figure 5. Qualitative comparison of different methods on our dataset. Our approach achieves the best results.
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Figure 6. Qualitative comparison of different methods on our dataset. Our approach achieves the best results.
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Figure 7. Qualitative comparison of different methods on DexYCB
dataset [1]. Our results perform best in cases of hand-object mutual
occlusion and finger self-occlusion.
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Figure 8. Qualitative comparison of different methods on videos
we collect. Our approach achieves the best results.
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