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A. Project page
Please load the Project website for interactive visualiza-
tions.

B. Controlling 3D orientation
The main text primarily focused on an orientation con-
trol for a single angle. However, our method is not lim-
ited to single orientation control, and we present an experi-
ment for controlling all three orientation angles in a single
model. Specifically, we updated the pose injection network
to take 3 orientation angles as input to predict the pose to-
ken. We trained the model on flying objects - airplanes and
helicopters- as rotation along all three axes is plausible for

these objects. Specifically, we used six 3D assets from the
web for these categories and followed the procedure in sec.
3.1 (main paper) to render the dataset. We present results for
controlling all the 3 orientation angles in Fig. 1 and 2. In
Fig. 1, we present rotation along all three axes for a fighter
jet aircraft in three separate rows. Observe that, our method
can precisely control all the object orientations along all the
three axis. In Fig. 2, we show the generalization of our
trained model in controlling the orientation of a variety of
objects. Notably, our model is not trained on birds or rock-
ets. Still, it can generate consistent orientation-conditioned
scenes following the text prompts. Note, that the compass
shown in the figure is just for visualization purposes (can
have an error of a few degrees).

C. Additional Control
Continuous control for camera elevation. Our proposed
conditioning mechanism is generalized and can be adapted
to achieve continuous camera elevation control in Fig. 3.
We generated a dataset with camera elevation variations and
conditioned the denoising UNet on elevation angle.
Control for object scale. We can also precisely control the
size of individual objects with additional conditioning on
the object scale, as shown in Fig. 3. Specifically, we condi-
tion the diffusion model with the length of the diagonal of a
tight 2D bounding box.

D. Generalization to StableDiffusion-XL
We have presented all the results on StableDiffusion-2.1 in
the main paper. Our method also generalizes well to a larger
StableDiffusion-XL backbone model shown in Fig. 4. The
results demonstrate improved image quality with accurate
orientation control of the generated objects.

E. Diverse poses for non-rigid objects
We build our dataset with only a few synthetic objects in
their fixed canonical pose to generate our training data. This
makes the model prone to overfitting on these poses for
the non-rigid objects in the dataset - dog, horse, and lion.
For instance, during inference, the model can generate only
standing dogs in the given orientation. We generate aug-
mentations with realistic pose variations in the training data
to mitigate this. Specifically, we randomly mask some re-
gions from the Canny Edge map and pass it to the Control-
Net (Fig. 5a). This allows ControlNet to freely generate any
plausible pose within the masked region. When trained with
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Figure 1. Conditioning on all three orientation angles for a single object.
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Figure 2. Conditioning on all three orientation angles
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Figure 3. Additional Controls

resulting augmentations, our method can generate diverse
pose variations of non-rigid training objects while follow-
ing the precise orientation as shown in Fig. 5b).

F. Robustness to the 2D bounding boxes

Coarse bounding boxes. We analyze the robustness of
required 2D object bounding boxes during the inference.
First, we analyze the effect of the coarseness of the bound-

Figure 4. Compass Control on StableDiffusion-XL.

ing box on the generated scenes in Fig. 6. Our model does
not generate objects that tightly occupy the provided bound-
ing box. This is convenient for the user, as they don’t have
to provide an exact 2D bounding box. We present results for
different bounding box sizes while keeping the center fixed.
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a) Generating data with pose variations for non-rigid objects

b)   Generations with diverse pose variations 

Figure 5. Pose variations for non-rigid objects

The model is robust to size changes and generates realis-
tic scene compositions. The objects fall inside the box but
they don’t tightly fit the box. This provides more flexibil-
ity to the base generative model in generating more realistic
scenes with relaxed constraints than conditioning on precise
bounding boxes.

Spawning random boxes. In another experiment, we ran-
domly spawn non-overlapping boxes, eliminating the user
requirement to provide 2D boxes. The results are present
in Fig. 6. Our method generates realistic compositions
for these random layouts, with precise orientation control.
The proposed design of using loose bounding boxes dur-
ing training, enables this, as the objects can adjust their size
within the box region to make coherent scenes.

Overlapping boxes. We present an ablation with the
amount of overlap of 2D object boxes in Fig. 7 during in-
ference. Our method can handle the overlap between 2D
boxes upto a good extent. On increasing the overlap the
models’ performance gracefully degrades in the pose con-
trol as the overlapping region is controlled by both the pose
tokens (jeep in 4th example). With a large overlap in the
bounding boxes, the model fails to generate both objects,
and this is one of the limitations of our proposed approach,
which is based on attention regularization. However, this
limitation is common across all the bounding box condi-
tioned or guided generative models.

G. Discussion with SoTA object-centric works.

We compare the framework of our approach with recent
works on object-centric 3D control in generation and edit-
ing with diffusion models. Particularly, we contrast our
method with Neural Assets [10] and LooseControl [1], as
these two are the closest method to ours. We present a
comparison with both these methods at an approach level
in Tab. 1.

H. Synthetic data generation
We render scenes with 3D assets in a Blender [5] environ-
ment for our dataset. Specifically, we place an opaque floor
on the x − y plane and place a camera tilted slightly to-
wards the ground at a fixed position. The scene is lighted
using 3 point lights of random intensity, placed at random
locations. Once the environment is ready, we place the 3D
assets at random locations and orientations and render the
scene. For each rendered image we store the identity of the
3D assets in it, their respective orientations and 2D bound-
ing boxes. We constrain the locations and orientations so
that the object completely lies within the rendered image.
Additionally, for two object scenes, we ensure that their 2D
bounding boxes do not overlap. In all, we have 1000 one-
object scenes and 7900 two-object scenes. Some samples
from the rendered images can be found in Fig. 8.
However, training on this dataset alone leads to over-fitting
to the plain backgrounds, as we have presented in the abla-
tive experiments in the main text. Therefore, to generate the
objects in diverse contexts, we augment the rendered scenes
using Canny ControlNet [11]. Specifically, given a rendered
scene, we extract it’s Canny map using OpenCV [2], with
the low and high thresholds set to 100 and 200 respectively.
We use the following prompts for the augmentations:

1. a photo of ⟨subject⟩ in a snowy forest, with a gentle
snowfall and snow-covered trees

2. a photo of ⟨subject⟩ in a vast desert with towering sand
dunes and a clear blue sky

3. a photo of ⟨subject⟩ in a medieval castle courtyard with
ancient stone walls and archways

4. a photo of ⟨subject⟩ in a sunflower field under a clear
blue sky

5. a photo of ⟨subject⟩ in a dense rainforest, with sunlight
streaming through the canopy

6. a photo of ⟨subject⟩ in a serene Japanese garden, sur-
rounded by cherry blossoms

7. a photo of ⟨subject⟩ on a rocky cliff overlooking a vast
ocean

8. a photo of ⟨subject⟩ by a riverside with wildflowers
blooming nearby

9. a photo of ⟨subject⟩ at a river’s edge with stones scat-
tered around

10. a photo of ⟨subject⟩ in front of the Eiffel Tower at sunset
11. a photo of ⟨subject⟩ in a vibrant autumn forest, with

orange and red leaves carpeting the ground
12. a photo of ⟨subject⟩ in a vast open plain, with golden

grasses swaying in the wind and distant mountains on
the horizon under a wide, clear sky

13. a photo of ⟨subject⟩ on a cobblestone street in a quaint
European village, with flower-filled balconies and his-
toric buildings

14. a photo of ⟨subject⟩ in a canyon with towering red rock
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Figure 6. Robustness of 2D bounding boxes. Our method generates realistic scene compositions with different 2D bounding box sizes.
Allowing for a loose bounding box during training provides this flexibility to the model to generate realistic scenes while coarsely following
the input 2D box. Further, random non-overlapping boxes can also be spawned during inference without any degradation in quality. This
robustness to the actual bounding box shape, reduces the burden on the user and is enabled by the loose bounding box used during training.

Overlap between object bounding boxes

Figure 7. Overlapping bounding boxes. Our method can handle overlap between the two input bounding boxes up to a good extent.
However, with a large overlap, the model struggles to generate accurate orientations (jeep in the fourth example), due to the mixing of pose
tokens.

formations, and scattered desert plants growing in the
rocky terrain
We run this augmentation pipeline on all the rendered

images, and do a manual filtering to remove the inconsis-
tent generations. In all, we have 771 single-object augmen-
tations and 5239 two-object augmentations.

I. Orientation Regressor

We train a neural network model to predict the orientation
angle of an object in the generated image. We use a pre-
trained ResNet-18 [6] as the feature extractor and a mlp
head consisting of two hidden layers of 128 neurons, each
with ReLU activations. Finally, we predict a single orien-
tation angle θ along the up-axis (details in the main text -
sec.3.1). We call this model orientation regressor and train
with a dataset of 35K images generated by rendering 30

synthetic 3D assets of the test object categories followed by
their canny ControlNet augmentations. This data is highly
diverse, containing various backgrounds and object appear-
ances, enabling the learning of an accurate orientation re-
gressor. We train with a batch size of 128, a learning rate of
5e − 5 for 95 epochs with Adam optimizer. On an unseen
test set of 8K images from the same distribution, the trained
model achieves a mean angular error of 0.125. Further, we
present the results for evaluation on a completely unseen
dataset, generated by Stable Diffusion [9], containing the
test objects in Fig. 9. We can observe that the trained ori-
entation regressor predicts accurate orientations, and hence,
it is a good estimator for evaluating pose consistency. In
the case of multi-object scenes, we crop out the objects us-
ing Grounding DINO [8] and pass them to the orientation
regressor.



Model type Training data Input during inference Novel categories Input Representation Personalization
LooseControl [1] Generation Real images (w 3D boxes) 3D object boxes Yes Explicit 3D (Depth) No

Neural Assets [10] Editing Real videos (w 3D boxes) 3D object boxes No
Implicit

(List of bbox) Yes

Ours Generation
Synthetic images

(w Orientation + 2D boxes)
Orientation +

2D object boxes Yes
Implicit

List of orientations Yes

Table 1. Comparison with state-of-the-art approaches for object-centric control in the generation process.

Blender Renderings ControlNet Augmentations

Figure 8. Samples from data generation process

J. Baseline details
We provide implementation details for the baselines dis-
cussed in the paper.

J.1. ViewNeTI [3]
ViewNeTI trains a small MLP to project the 3D camera pose
to 3D view token. This token, along with the text prompt,
is used to condition the text-to-image model. In the basic
form, it is trained on a single scene with multi-view images
and 3D camera poses. Once trained, the model can generate
novel views for the trained scene. However, in an extended
version, it is trained with multiple scenes to learn a general-
izable view token. This token is then used for view control
in text-to-image generation. For comparison, we use this
version and train on our synthetic dataset of rendered multi-
view scenes. Specifically, instead of conditioning on 3D
camera pose, we condition on orientation angle θ and pre-
dict the view token. We train the model for 60K iterations

on 1000 multi-view images of 10 assets. Note that because
this model only supports a global view control, we train and
evaluate it on only single object scenes for orientation con-
trol.

J.2. Continous 3D Words [4]

In this approach, a text-to-image diffusion model is con-
ditioned on continuous 3D tokens to control 3D attributes
such as lighting and object pose. They learn a generaliz-
able 3D word in the text embedding space of the T2I model
for each attribute, which is used along with the text prompt
for conditioning. To learn the 3D word token, they use ren-
derings of a single object and generate its augmentations
with depth-conditioned ControlNet. However, it is essential
that the 3D word token is disentangled from the object used
for training. For this, they follow a staged training proce-
dure: first learn the object’s appearance (stage 1), and then
learn the 3D attribute (stage 2). Following this, we train this
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Figure 9. Predictions of the trained orientation regressor on unseen samples generated from Stable Diffusion [9]. The model can predict
the orientations accurately for the diverse unseen data and acts as a good critic to evaluate orientation consistency in generated images.

model a single 3D asset, sedan. We train for 5000 iterations
in stage 1 and 15000 iterations in stage 2 (same as the orig-
inal model). However, the trained model poorly generalizes
to new objects as it is trained on a single object mesh (Fig.7
in the main text).

Here we present a variant of this model, which is trained
on multiple 3D assets instead of just one (as proposed in
their original paper). We use the same rendered images
dataset as ours, and augment it using their proposed aug-
mentation strategy. Notably, this dataset has diverse layouts
and objects placed at random locations in the scene, mak-
ing the learning process challenging. Since this model only
allows for global control, we train and evaluate it on single
object scenes only. We perform 30000 training iterations
in the first stage to learn the object appearance, followed
by 70000 iterations to learn the 3D word token. The com-
parison is presented in Fig. 10. Our method achieves supe-
rior performance as compared to this baseline. The base-
line struggles in pose control due to high diversity in the

scene layouts, highlighting the importance of our attention
localization mechanism CALL. Further, our backgrounds
are much richer, as we use canny-conditioned ControlNet
augmentations, which leads to richer augmentations.

J.3. LooseControl [1]

LooseControl is a conditioning framework on text-to-image
diffusion models that allows for 3D scene layout control.
The framework is built on a depth-conditioned ControlNet
model. However, instead of relying on accurate depth maps,
which are often difficult to construct, LooseControl con-
ditions the generation on coarse depth maps. Specifically,
in this loose depth map, the scene boundaries are repre-
sented as planes, and the objects are represented by their
loose 3D bounding boxes. LooseControl is implemented as
a LoRA [7] fine-tuning over depth-conditioned ControlNet
model. This fine-tuning enables it to condition the genera-
tion using loose object depth maps also, against the accurate
depth maps required by original ControlNet. In our exper-
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Figure 10. Comparsison with modified Continuous 3D Words [4] trained on multiple assets. Compass control generates more realistic
outputs and follows the text prompt better than the Cont-3D-Words trained on multiple object datasets.

iments, we generate the loose depth maps by placing 3D
bounding boxes in a Blender [5] environment, and render-
ing the depth from camera viewpoint. Specifically, we ran-
domly sample objects’ locations and pose within the scene
boundary and place a 3D bounding box for each object. No-
tably, one can control the object orientation by rotating the
corresponding 3D bounding box in the input. We define
a fixed template of 3D bounding box dimensions for each
test object in the dataset. The obtained depth maps are
used to condition the model. We used the publicly avail-
able checkpoint for LooseControl in our evaluation. As this
method allows for multi-object control, we compare both
single and multi-object scenes. However, in experiments,
we observe that LooseControl struggles to generate multi-
object scenes with precise pose control and often resorts to
generating bounding box artifacts. This is primarily due to
the strong depth conditioning prior in the base depth Con-
trolNet model, which is trained to follow exact depth maps.

K. Additional Results
K.1. Comparisons
We present additional baseline comparison results in
Fig. 12. Our method follows the text prompts and gener-
ates objects following the input prompts

L. Implementation Details
L.1. Method details
We use Stable Diffusion v2.1 [9] as our base T2I model
and use LoRA rank 4 for fine-tuning its UNet. Our en-
coder model P is a lightweight MLP: three linear layers
with ReLU. We train our model for 100K iterations with a
batch size of 4 with AdamW optimizer and a fixed learning
rate of 10−4. We train first stage for 30K iterations with

only single object scenes and the next stage for 70K iter-
ations with mix of single and two subject scenes. We use
SD-Xl for generating augmentations due to its higher real-
ism.

We keep the bounding box padding λ = 1.2 for CALL.
The training takes 24 hours on a single A6000 GPU, thus
highly efficient.

L.2. Evaluation dataset
We randomly sample 10 pose orientation in the range of
(0,360 deg) for each prompt and object combination. We
used the following set of prompts for evaluation, containing
single and two subject. In each prompt ¡subject¿ is replaced
with a single subject (e.g., jeep) or two subjects (e.g., jeep
and sedan). Notably these prompts are different that the one
used to generate ControlNet augmentations, to accurately
evaluate model generalization.

For road objects
1. A photo of ⟨subject⟩ in front of the Taj Mahal
2. A photo of ⟨subject⟩ on the streets of Venice, with the

sun setting in the background
3. A photo of ⟨subject⟩ in front of the leaning tower of Pisa

in Italy
4. A photo of ⟨subject⟩ in a modern city street surrounded

by towering skyscrapers and neon lights
5. A photo of ⟨subject⟩ in an ancient Greek temple ruin,

with broken columns and weathered stone steps
6. A photo of ⟨subject⟩ in a field of dandelions, with

snowy mountain peaks in the distance
7. A photo of ⟨subject⟩ in a rustic village with cobblestone

streets and small houses
8. A photo of ⟨subject⟩ on a winding country road with

green fields, trees, and distant mountains under a sunny
sky

9. A photo of ⟨subject⟩ in front of a serene waterfall with
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Figure 11. Additional comparison results with the baselines for single object and multi-object scenes.
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Figure 12. More qualitative results from our method, Compass Control.

trees scattered around the region, and stones scattered in
the water

10. A photo of ⟨subject⟩ on a sandy desert road with dunes
and a vast, open sky above

11. A photo of ⟨subject⟩ on a bridge overlooking a river

with mountains in the background
12. A photo of ⟨subject⟩ on a dirt path in a dense forest with

sunbeams filtering through the trees
13. A photo of ⟨subject⟩ on a coastal road with cliffs over-

looking the ocean



14. A photo of ⟨subject⟩ in front of a historical castle with
high stone walls and flags flying in the breeze

15. A photo of ⟨subject⟩ in front of an amusement park with
bright lights and ferris wheels in the background
For water objects

1. A photo of ⟨subject⟩ on still waters under a cloudy sky,
mountains visible in the distant horizon

2. A photo of ⟨subject⟩ floating on a misty lake, sur-
rounded by calm waters and serene, foggy atmosphere

3. A photo of ⟨subject⟩ in the vast sea, with a clear blue
sky and a few fluffy clouds

4. A photo of ⟨subject⟩ in the middle of a stormy ocean,
with dark clouds and crashing waves

5. A photo of ⟨subject⟩ in a calm lake with lily pads and
reeds growing near the shoreline

6. A photo of ⟨subject⟩ on a river running through a dense
jungle with vibrant green foliage

7. A photo of ⟨subject⟩ in a mountain lake surrounded by
pine trees and snow-capped peaks

8. A photo of ⟨subject⟩ floating in a lagoon with tropical
fish and coral visible beneath the water

9. A photo of ⟨subject⟩ on a frozen lake with a snowy land-
scape surrounding it

10. A photo of ⟨subject⟩ on a serene river at dusk, with re-
flections of the sunset on the water

11. A photo of ⟨subject⟩ in the middle of a vast marshland
with tall grasses and migratory birds flying overhead

12. A photo of ⟨subject⟩ near a small waterfall cascading
into a clear pool in a rocky area

13. A photo of ⟨subject⟩ on a bay with large rock forma-
tions jutting out of the water

14. A photo of ⟨subject⟩ in a turquoise sea with gentle
waves and distant islands on the horizon

15. A photo of ⟨subject⟩ in a narrow canal in an old Euro-
pean city, with historic buildings lining the waterway
For indoor objects

1. A photo of ⟨subject⟩ in a modern living room setting
with painted walls and glass windows

2. A photo of ⟨subject⟩ in a minimalist living room
3. A photo of ⟨subject⟩ in a cozy library with shelves filled

with books and warm lighting
4. A photo of ⟨subject⟩ in a high-tech office with large

windows and a city view
5. A photo of ⟨subject⟩ in an art studio with canvas paint-

ings and art supplies scattered around
6. A photo of ⟨subject⟩ in a rustic kitchen with wooden

cabinets and a stone countertop
7. A photo of ⟨subject⟩ in a lavish living room with elegant

decor and soft lighting
8. A photo of ⟨subject⟩ in a large dining hall with chande-

liers and long tables
9. A photo of ⟨subject⟩ in a traditional Japanese tatami

room with sliding paper doors

10. A photo of ⟨subject⟩ in a well-equipped gym with
weights and fitness machines

11. A photo of ⟨subject⟩ in a music studio with soundproof
walls and musical instruments

12. A photo of ⟨subject⟩ in a sunlit greenhouse filled with
tropical plants

13. A photo of ⟨subject⟩ in a children’s playroom with col-
orful toys and posters on the walls

14. A photo of ⟨subject⟩ in an underground wine cellar with
wooden barrels and dim lighting

15. A photo of ⟨subject⟩ in a cozy reading nook with a soft
armchair and a small lamp
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